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1. Introduction

The study of lattice of convex sublattices of a lattice was started by K. M. Koh[3], in the
year 1972. He investigated the internal structure of a lattice L, in relation to CS(L), like
so many other authors for various algebraic structures such as groups, Boolean algebras,
directed graphs and so on.

In [3], several basic properties of CS(L) have been studied where one of the results
proved is “If L is complemented then CS(L) is complemented”. Also, the connection of
the structure of CS(L) with those of the ideal lattice I(L) and the dual ideal lattice D(L)
are examined by K. M. Koh. He also derived the best lower bound and upper bound
for the cardinality of CS(L), where L is finite. In a subsequent paper[1], Chen C. K.,
Koh K. M., proved that

CS(L×K) ∼= [(CS(L)− {∅})× (CS(K)− {∅})] ∪ {∅}.

Finally they proved that when L is a finite lattice and CS(L) ∼= CS(M) and if L is rela-
tively complemented(complemented) then M is relatively complemented(complemented).
This is true for Eulerian lattices, since an Eulerian lattice is relatively complemented.
These results gave motivation for us to look into the connection between L and CS(L) for
Eulerian lattices which are a class of lattices not defined by identities. A construction of
a new Eulerian lattice S(Bn) from a Boolean algebra Bn of rank n is found in the thesis
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of V. K. Santhi in 1992[11]. In 2012, Subbarayan had proved in his paper that the lattice
of convex sublattices of a boolean algebra Bn, of rank n, CS(Bn) with respect to the set
inclusion relation is a dual simplicial Eulerian lattice.

In this paper, we are going to look at the similar structure of CS(S(Bn)).
S(B4) is shown in the following diagram.

Figure 1: S(B2)

Figure 2: S(B4)

2. Preliminaries

Throughout this section CS(L) is equipped with the partial order of set inclusion rela-
tion.
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Definition 2.1. A finite graded poset P is said to be Eulerian if its Möbius function
assumes the value µ(x, y) = (−1)l(x,y) for all x ≤ y in P , where l(x, y) = ρ(y)− ρ(x) and
ρ is the rank function on P .

An equivalent definition for an Eulerian poset is as follows:

Lemma 2.2. [5] A finite graded poset P is Eulerian if and only if all intervals [x, y] of
length l ≥ 1 in P contain an equal number of elements of odd and even rank.

Example 2.3. Every Boolean algebra of rank n is Eulerian and the lattice C4 of Figure
2 is an example for a non-modular Eulerian lattice.

Also, every Cn is Eulerian for n ≥ 4.

Figure 3: Non-modular Eulerian lattice

Lemma 2.4. [12] If L1 and L2 are two Eulerian lattices then L1 × L2 is also Eulerian.

We note that any interval of an Eulerian lattice is Eulerian and an Eulerian lattice
cannot contain a three element chain as an interval.

Definition 2.5. A poset P is called Simplicial if for all t 6= 1 ∈ P , [0, t] is a Boolean
algebra and P is called Dual Simplicial if for all t 6= 0 ∈ P , [t, 1] is a Boolean algebra.

Lemma 2.6. [1] Let L and K be any two lattices. Then

CS(L×K) u [(CS(L)− {∅})× (CS(K)− {∅})] ∪ {∅}.

Lemma 2.7. [14] Let Bn be a Boolean lattice of rank n. Then CS(Bn) is a dual simplicial
Eulerian lattice.

3. Convex Sublattices of S(Bn)

Theorem 3.1. The lattice of convex sublattices of S(Bn), CS(S(Bn)) with respect to the
set inclusion relation is an Eulerian lattice.

Proof. It is clear that the rank of CS(S(Bn)) is n+ 2.
We are going to prove that CS(S(Bn)) is Eulerian.
That is, to prove that this interval [∅, Bn] has the same number of elements of odd and

even rank.
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Figure 4: CS[S(B2)]

Let Ai be the number of elements of rank i in CS(S(Bn)).

A1 = The number of singleton subsets of CS[S(Bn)]

= 2 + n+ 2 + 2n+

(
n
2

)
+ 2

(
n
2

)
+

(
n
3

)
+ 2

(
n
3

)
+

(
n
4

)
+ . . .+ 2

(
n

n− 2

)
+

(
n

n− 1

)
+ 2

(
n

n− 1

)
= 2 +

(
n
1

)
+ 2

(
n
0

)
+ 2

(
n
1

)
+

(
n
2

)
+ 2

(
n
2

)
+

(
n
3

)
+2

(
n
3

)
+

(
n
4

)
+ . . .+ 2

(
n

n− 2

)
+

(
n

n− 1

)
+ 2

(
n

n− 1

)
(1)

A2 = The number of rank 2 elements in CS(S(Bn))

= The number of edges in S(Bn)

= number of edges containing 0 + number of edges containing the atoms

+number of edges from the rank 2 elements

+ . . .+ number of edges containing the coatoms of S(Bn).

Number of edges containing 0 =n+ 2 (2)
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Number of edges containing an extreme atom =n

There are 2 such extreme atoms. Therefore total number of such edges = 2

(
n
1

)
.

From an atom of a middle copy, the number of edges = n− 1 + 2 = n+ 1.
There are n such atoms.
Therefore total number of such type of edges = n(n+ 1).
Totally from the atoms, the number of edges is equal to

2

(
n
1

)
+

(
n
1

)
(n+ 1). (3)

Number of edges from a rank 2 element in an extreme copy = n− 1.
There are 2n such elements.

Therefore the number of edges from these elements = 2

(
n
1

)
(n− 1).

The number of edges from the rank 2 elements in the middle copy =
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× (n −

2 + 2) =

(
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The total number of edges from rank 2 elements is
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(
n
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)
× n. (4)

The number of edges from the rank 3 elements in the middle copy is n− 3 + 2 = n− 1.

There are

(
n
3

)
such elements.

Therefore the number of edges from the rank 3 elements in the middle copy

=

(
n
3

)
(n− 1).

The number of edges from a rank 3 element in an extreme copy is n− 2.

There are 2

(
n
2

)
such elements.

Therefore number of edges from rank 3 elements in the extreme copies = 2

(
n
2

)
(n−

2).
Therefore total number of edges from rank 3 elements of CS(S(Bn)) is

2
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n
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)
(n− 2) +

(
n
3

)
(n− 1) (5)

Proceeding like this we get the number of edges from the co-atoms

= 2n = 2

(
n

n− 1

)
(n− n− 1)
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From (2), (3), (4) and (5), the total number of edges in S(Bn) is

A2 = n+ 2 + 2
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A3 = The number of 4-element sublattices.

The number of 4-element sublattices from 0 = 2

(
n
1

)
+

(
n
2

)
. (7)

Fix an atom a ∈ S(Bn).
If a is the bottom element of the left copy of S(Bn) then [a, 1] ' Bn.

Therefore the number of B2’s containing a is

(
n
2

)
.

Similarly the number of B2’s containing the bottom element of the right copy is

(
n
2

)
.

If a is in the middle copy of S(Bn) then [a, 1] ' S(Bn−1).
In this S(Bn−1), we have two extreme copies and a middle copy.

Therefore the number of B2’s containing a is 2(n− 1) +

(
n− 1

2

)
.

There are

(
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)
such atoms. Therefore the total number of B2’s containing all the

atoms in the middle copy is (
n
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)[
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2

)]
.

Therefore the number of B2’s containing all the atoms of S(Bn) is

2
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)
+
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n
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(
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. (8)

Fix a rank 2 element x in S(Bn). If x is in the left copy of S(Bn), we have,

[x, 1] ' Bn−1.
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A B2 containing x emanates from a rank 2 element in that Bn−1.

There are

(
n− 1

2

)
rank 2 elements in Bn−1.

Therefore the number of B2’s containing x in the left copy is

(
n− 1

2

)
.

There are n such rank 2 elements x in the left copy.

The number of B2’s in the left copy containing all the rank 2 elements is

(
n− 1

2

)
n.

Similarly the same number in the right copy.
If x is in the middle copy of S(Bn), then

[x, 1] ' S(Bn−2).

The number of B2’s containing x in the left copy of that S(Bn−2) is n − 2. Similarly
the number in the right copy is n− 2.

Come to the middle copy ' Bn−2. Therefore the number of B2’s containing x in the

middle copy of that S(Bn−2) is

(
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)
.

Therefore the total number of B2’s containing x in this S(Bn−2) is 2(n−2)+
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.

There are
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such x’s. Therefore the total number of B2’s containing all the rank
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. (9)

Fix a rank 3 element x of S(Bn). If x is in the left copy of S(Bn), then

[x, 1] ' Bn−2.

A B2 containing x emanates from a rank 4 element in that Bn−2.
Therefore the number of B2’s containing x in the left copy of S(Bn) is(
n
2

)(
n− 2

2

)
.

Similarly to the right copy.
Come to the middle copy. If x is in the middle copy of S(Bn), then

∴ [x, 1] ' S(Bn−3).

In this S(Bn−3) we have to calculate the number of B2’s containing x.
The number of B2’s containing x in the left copy of S(Bn−3) is n− 3.
Similarly the number in the right copy of this S(Bn−3) is n− 3.

The number of B2’s containing x in the middle copy of this S(Bn−3) is

(
n− 3

2

)
.
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Therefore, the number of B2’s in this S(Bn−2) containing x is 2(n− 3) +
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.

There are
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)
such rank 3 elements in x in the middle copy of S(Bn).
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in S(Bn) is
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From (7), (8), (9), (10), (11) and (12) we get,
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Similar argument will give,
A4 = the number of rank 3 sublattices.
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A5 = the number of rank 4 sublattices.
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and so on.
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An = 2

(
n

n− 2

)
+

(
n

n− 1

)
+ 2

(
n

n− 1

)
+ 2

(
n
1

)(
n− 1
n− 2

)
. (16)

An+1 = 2

(
n

n− 1

)
+ (n+ 2). (17)



G. Sheeba Merlin, A. Vethamanickam / Eur. J. Pure Appl. Math, 10 (4) (2017), 916-928 925

C ase (i): Suppose n is even.
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C ase (ii): Suppose n is odd.
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Hence the interval [∅, S(Bn)] has the same number of elements of odd and even rank.
Though in the above theorem we have proved that CS(S(Bn)) is Eulerian, it is not

dual simplicial. For example, CS(S(B2)) itself is not dual simplicial. For a general non-
Boolean Eulerian lattice it seems difficult to decide the structure, but for Cn we give the
proof in the next section.

4. Convex Sublattices of S(Cn)

Theorem 4.1. The lattice of convex sublattices of S(Cn) with respect to the set inclusion
relation is an Eulerian lattice.

Proof. We are going to prove that CS(S(Cn)) is Eulerian. That is to prove the interval
[5, S(Cn)] has the same number of elements of odd and even rank.

Let Ai be the number of elements of rank i in CS(S(Cn)).

A1 = The number of singleton subsets of CS(S(Cn))

= 1 + n+ 2 + 3n+ 2n+ 1

= 6n+ 4. (18)

A2 = The number of rank 2 elements in CS(S(Cn))

= 2 + n+ 2n+ 4n+ 4n+ 2n+ 2n

= 15n+ 2. (19)

A3 = The number of 4-element sublattices
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Figure 5: S(C5)

= 2n+ n+ 2n+ 2n+ 2n+ 2n+ n

= 12n. (20)

A4 = The number of rank 3 sublattices

= 2n+ n+ 2

= 3n+ 2. (21)

Therefore,

A1 −A2 +A3 −A4 = 6n+ 4− 15n− 2 + 12n− 3n− 2 = 0.

Hence the interval [5, S(Cn)] has a same number of elements of odd and even rank.
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