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Abstract. Finsler s−manifolds are a generalization of Riemannian s−manifolds. An important
property of such manifolds is the homogeneity. In this paper we study Finsler s−manifolds. We
first construct some example of Finsler s−manifolds which are neither Riemannian nor symmetric.
Then we consider symmetric preserving diffeomorphism of Finsler s−manifolds. Finally we give
some algebraic and existence theorem of these spaces.
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1. Introduction

Finsler manifold is a generalization of the Riemannian one, in the same as Riemannian
manifold is for the Euclidean. A metric depends on the point and the direction. A Finsler
metric on a manifold is a family of Minkowski norms on tangent spaces.
Let (M,F ) be a Finsler space, where F is positively homogeneous of degree one. Then we
have two ways to define the notion of an isometry of (M,F ). On the one hand, we call a
diffeomorphism σ of M onto itself an isometry if F (dσx(y)) = F (y), for any x ∈ M and
y ∈ TxM . On the other hand, we can also define an isometry of (M,F ) to be a one-to-one
mapping of M onto itself which preserves the distance of each pair of points of M . It is
well known that the two definitions are equivalent if the metric F is Riemannian. The
equivalence of these two definitions in the general Finsler case is a result of S. Deng and Z.
Hou [2]. Using these result, they proved that the group of isometries I(M,F ) of a Finsler
space (M,F ) is a Lie transformation group of M and for any point x ∈ M , the isotropic
subgroup Ix(M,F ) is a compact subgroup of I(M,F ). These results are important to
study homogenous and symmetric Finsler spaces, for example [3, 4, 5, 12, 13, 14].

Symmetric spaces and generalized symmetric spaces have appeared to be very rich in
content, stimulating the research in Lie groups, Mechanics, Physics, Gravity etc.

The definition of symmetric Finsler space is a naturall generalization of E. Cartan’s
definition of Riemannian symmetric spaces [8]. We call a Finsler space (M,F ) a symmetric
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Finsler space if for any point p ∈M there exists an involutive isometry sp of (M,F ) such
that p is an isolated fixed point of sp, [6, 5, 9, 12].
Affine and Riemannian s−manifold were first defined in [18] following the introduction of
generalized Riemannian symmetric spaces in [19]. They form a more general class than the
symmetric spaces [11]. An isometry of (M,F ) with an isolated fixed point x ∈M is called
a symmetry of (M,F ) at x. A family {sx|x ∈ M} of symmetries of a connected Finsler
space (M,F ) is called an s−structure of (M,F ), [7]. Σ−spaces and reduced Σ−spaces
were first introduced by Loos as a generalization of reflection spaces and symmetric spaces
[20]. He then proved that any Σ−space with compact Σ is a fibre bundle over a re-
duced Σ−space. Basic properties of any reduced Σ−space M and affine and Riemannian
Σ−space and Finsler Σ−space was given in [15, 21].
In this paper we are concerned with properties of Finsler spaces admitting such an
s−structure. We construct some example of Finsler s−manifolds which are neither Rie-
mannian nor symmetric. Then we study symmetry preserving diffeomorphism of Finsler
s−manifolds and show that the group of symmetry preserving diffeomorphism is a transi-
tive group. We then study some existence theorems and consider some geometric proper-
ties of Finsler s−manifolds.

2. Preliminaries

Let M be an n−dimensional smooth manifold without boundary and TM denote its
tangent bundle. A Finsler structure on M is a map F : TM −→ [0,∞) which has the
following properties [1]:

(i) F is smooth on T̃M := TM\{0}.

(ii) F (x, λy) = λF (x, y), for any x ∈M,y ∈ TxM and λ > 0.

(iii) F 2 is strongly convex, i.e.,

gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
(x, y)

is positive definite for all (x, y) ∈ T̃M .

Let V = vi∂/∂xi be a non-vanishing vector field on an open subset U ⊂ M . One can
introduce a Riemannian metric gV and a linear connection ∇V on the tangent bundle over
U as following [1] :

gV (X,Y ) = XiY jgij(x, v), ∀X = Xi ∂

∂xi
, Y = Y i ∂

∂xi
,

∇V∂
∂xi

∂

∂xj
= Γkij(x, v)

∂

∂xk
.

From the torsion freeness and g−compatibility of Chern connection we have

∇VXY −∇VYX = [X,Y ],
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XgV (Y, Z) = gV (∇VXY,Z) + gV (Y,∇VXZ) + 2CV (∇VXV, Y, Z),

where CV is the Cartan tensor defined by

CV (X,Y, Z) = XiY jZkCijk(x, v), Cijk(x, v) =
1

4

∂3F 2(x, v)

∂yi∂yj∂yk
,

and it satisfies
CV (V,X, Y ) = 0.

Given a nonzero vector field V on a Finsler manifold (M,F ) with connection ∇V , one can
consider the curvature tensor RV defined by

RV (X,Y )Z = ∇VX∇VY Z −∇VY∇VXZ −∇V[X,Y ]Z.

For a flag (V, σ) consisting of a nonzero tangent vector V ∈ TxM and a plane σ ⊂ TxM
spanned by the tangent vectors V,W , the flag curvature is defined as

K(V, σ) = K(V,W ) =
gV (RV (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
.

In the Riemannian case the flag curvature is the sectional curvature of the plane σ and
does not depend on V .
A diffeomorphism, ϕ : M −→M , is an isometry on a Finsler manifold (M,F ) if it preserves
the Finsler function:

F (ϕ(x), dϕx(X)) = F (x,X) ∀x ∈M,X ∈ TxM.

By the classical Dantzing-van der Waereden Theorem ([10]vol I, chapter I, Theorem 4.7
) and the Montgomery- Zippin Theorem ([10],vol I, chapter I, Theorem 4.6), the group
of isometries on a connected Finsler manifold form a Lie group. Strictly speaking, these
theorems prove the statement for absolute homogeneous Finsler functions. For positive
homogeneous Finsler functions consider the metric, d∗, defined by the function

F ∗(X) = F (X) + F (−X)

Then the G is a closed subgroup of G∗ defined for d∗. Thus both groups are Lie groups
[22].

3. Finsler s-manifolds

Affine and Riemmannian s−manifolds were first defined in [18] following the introduc-
tion of generalized Riemannian spaces in [19]. They form a more general class than the
symmetric spaces of E. Cartan.
Let (M, g) be a connected Riemannian manifold. A symmetry at x ∈ M is a isometry of
(M, g) for which x is an isolated fixed point. A s−structure on (M, g) is a family {sx}x∈M
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such that sx is a symmetry at x ∈ M , for each x ∈ M . An s−structure is called regular
if for any two points x, y ∈M

sx ◦ sy = sz ◦ sx, z = sx(y).

If {sx}x∈M is regular, then the map s : M −→ I(M, g), x −→ sx is always C∞, here
I(M, g) denotes the group of isometries of (M, g). An s−structure {sx}x∈M is called of
order k if (sx)k = idM for all x ∈M and k is the minimal number with this property. It is
well known that if (M, g) admits an s−structure, then it always admits an s−structure of
finite order. Further if (M, g) admits a regular s−structure, then (M, g) admits a regular
s−structure of finite order [11]. In particular if (M, g) admits an s−structure of order two
then it is a usual Riemannian symmetric space.
Let (M,F ) be a Finsler space, where F is positively homogeneous but not necessarily
absolutely homogeneous. We introduce isometries of (M,F ) which form a Lie transfor-
mation group of M as a result of S. Deng and Z. Hou [2] and moreover for any point
x ∈ M , the isotropic subgroup Ix(M,F ) is a compact subgroup of I(M,F ), the group of
isometries, which can be used to study homogeneous and symmetric Finsler spaces. The
definition of symmetric Finsler space is a natural generalization of E. Cartan’s definition
of Riemannian symmetric space [5], [6], [12]. We call a Finsler space (M,F ) a symmetric
Finsler space if for any point p ∈M there exists an involutive isometry sp of (M,F ) such
that p is an isolated fixed point of sp.
If we drop the involution property in the definition of symmetric Finsler space keeping the
property

sx ◦ sy = sz ◦ sx, z = sx(y),

we get a bigger class of Finsler manifolds as symmetric Finsler spaces.
The definition of Finsler s−manifolds is a natural generalization of definition of Rie-

mannian s−manifolds [7, 16].

Definition 1. Let (M,F ) be a connected Finsler space. An isometry on (M,F ) with an
isolated fixed point x will be called a symmetry at x, and will usually be written as sx.

Definition 2. A family {sx|x ∈M} of symmetries on a connected Finsler manifold (M,F )
is called an s−structure on (M,F )

An s−structure {sx|x ∈M} is called of order k (k ≥ 2) if (sx)k = id for all x ∈M and
k is the least integer of this property. Obviously a Finsler space is symmetric if and only
if it admits an s−structure of order 2. An s−structure {sx|x ∈ M} on (M,F ) is called
regular if for every pair of points x, y ∈M

sx ◦ sy = sz ◦ sx, z = sx(y).

Definition 3. A Finsler s−manifold is a connected Finsler manifold (M,F ) admitting a
regular s−structure and a Finsler space (M,F ) is said to be k−symmetric (k ≥ 2) if it
admits a regular s−structure of order k.
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Here we construct some Finsler s−manifolds which are non-Riemannian and non-
symmetric.

Example 1. Let k be a constant |k| < 1√
3
. Consider the following Randers metric on R3,

F (p1, p2, p3, y1, y2, y3) =
√
y21 + y22 + y23 + k(y1 + y2 + y3)

where p = (p1, p2, p3) ∈ R3 and (y1, y2, y3) ∈ TpR3.
Define

sp(x1, x2, x3) = (x3 − p3 + p1, x1 − p1 + p2, x2 − p2 + p3),

for any p ∈ R3 we clearly see that sp is an isometry of F such that p is an isolated fixed
point of sp.
It is evident that s3p = id and s2p 6= id and sp 6= id and

sp ◦ sq(x) = sz ◦ sp(x), z = sp(q).

So {sp} is a regular 3-structure on (R3, F ) �

Example 2. Let G be a compact connected Lie group. Consider the coset space (G ×
G)/G∗, where G∗ is the diagonal of G×G. (G×G)/G∗ is diffeomorphic to G via the map

(g1, gg)G
∗ −→ g1g

−1
2

G×G acts on G by
(g1, g2)y = g1yg

−1
2 .

The isotropy group at the origin e ∈ G is G∗. Now define σ : G×G −→ G×G by

σ(g1, g2) = (g2, g1),

which is an involute automorphism. The fixed point set is (G×G)σ = G∗ and σ induces
the map s : G −→ G, s(g) = g−1. Take a bi-invariant absolutely homogeneous Finsler
metric F on G. Then F is invariant with respect to the action of G × G on G. It is
also invariant with respect to s. Then (G,F ) is a symmetric Finsler space [17]. We now
consider the more general case of Gk+1/G∗ where Gk+1 is the direct product of G with
itself (k+1) times, and G∗ is the diagonal of Gk+1. We have

Gk+1/G∗ ∼= Gk

via π : Gk+1 −→ Gk, where

π(g1, ..., gk+1) = (g1g
−1
k+1, ..., gkg

−1
k+1).

Further define σ : Gk+1 −→ Gk+1 by

σ(g1, ..., gk+1) = (gk+1, g1, ..., gk).
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Then σ is an automorphism of order k + 1. It induces a map s : Gk −→ Gk defined by

s(g1, ..., gk) = (g−1k , g1g
−1
k , ..., gk−1g

−1
k ).

Let F be a bi-invariant Finsler metric on G. Then F generates a bi-invariant Finsler
metric F k+1 on Gk+1 such that

(Gk+1, F k+1) ∼= (G,F )× ...× (G,F )

Then F k+1 induces a Gk+1−invariant Finsler metric F [k] on Gk. The Finsler space
(Gk, F [k]) is a (k+1)-symmetric Finsler space. Similar to the Riemannian case (Gk, F [k])
is not a symmetric space.�

Example 3. Let (G1/H1, g1) , (G2/H2, g2) be two Riemannian s−manifolds with H1 and
H2 compact and {τp} , {σq} be s−structures on G1/H1 , G2/H2, respectively of order k.
Let M = G1/H1 × G2/H2 and o1 , o2 be the origins of G1/H1, G2/H2 respectively, and
denote the origin of M by o = (o1, o2). Now for

y = y1 + y2 ∈ ToM = To1(G1/H1) + To2(G2/H2),

we define

F (y) =

√
g1(y1, y1) + g2(y2, y2) + s

√
g1(y1, y1)s + g2(y2, y2)s

where s is any integer ≥ 2. Then F (y) is a Minkowski norm on ToM which is invariant
under H1 × H2. Hence it defines a G−invariant Finsler metric on M . It is easy to
see that Finsler manifold (M,F ) is non-Riemannian s−manifold with regular s−structure
{τp × σq}.�

Given an s−structure {sx|x ∈ M} on (M,F ) we shall always denote by S the tensor
field of type (1, 1) defined by Sx = (sx)∗ for all x ∈ M . Suppose there exists a nonzero
vector X ∈ TxM such that SxX = X. Since sx is isometry, sx(expx(tX)), |t| < ε is a
geodesic. Now expx(tX) and sx(expx(tX)) are two geodesics through x with the same
initial vector X. Therefore, for any |t| < ε we have

sx(expx(tX)) = expx(tX).

But this contradicts to assumption that x is an isolated fixed point of sx. Therefore Sx
has no non-zero invariant vector.

Theorem 1. Let (M,F ) be a Finsler s−manifold. Then we have

(a) For any x ∈M , Sx = (dsx)x has no invariant vector,

(b) (M,F ) is homogeneous. That is, the group of isometries of (M,F ), I(M,F ), acts
transitively on M .
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(c) (M,F ) is forward complete.

Proof: see [7].�

Theorem 2. Let (M,F ) be a Finsler s−manifol with regular s−structure {sx}. Then
there is a unique connection ∇̃ on M such that

(i) ∇̃ is invariant under all sx

(ii) ∇̃S = 0

Proof: The proof is similar to the Riemannian case [11].�
If the Finsler space (M,F ) is of Berwald type, then ∇̃ is given by the formula

∇̃XY = ∇XY − (∇(I−S)−1XS)(S−1Y )

where ∇ is the Chern connection of (M,F ).

Definition 4. Let (M,F ) be a generalized symmetric Finsler space, and let {sx} be the
regular s−structure of (M,F ). Then a diffeomorphism φ : M −→ M is called symmetry
preserving if φ(sx(y)) = sφ(x)φ(y) for all x, y ∈M .

Obviously, all symmetries sx are symmetry preserving due to sx◦sy = sz◦sx, z = sx(y).
We denote the group of symmetry preserving diffeomorphism by Aut({sx}). Let us denote
by A(M) the Lie group of all affine transformations of M with respect to the connection
∇̃. Each symmetry preserving diffeomorphism is an affine transformation of (M, ∇̃), i.e.

Aut(M, {sx}) ⊂ A(M).

Lemma 1. An affine transformation φ ∈ A(M) is symmetry preserving if and only if it
preserves the tensor field S. Consequently, Aut({sx}) is a closed subgroup of A(M) and
hence a Lie transformation group of M .

Proof: Let φ ∈ A(M) be symmetry preserving transformation then for each x ∈ M ,
maps φ ◦ sx , sφ(x) ◦ φ coincide, so (φ ◦ sx)∗x = (sφ(x) ◦ φ)∗x. Then φ preserves the tensor
field S. On the other hand if φ ∈ A(M) preserves the tensor field S then for each x ∈M ,
(φ ◦ sx)∗x = (sφ(x) ◦ φ)∗x. Because φ ◦ sx and sφ(x) ◦ φ are affine transformations, so
φ ◦ sx = sφ(x) ◦ φ that is φ is symmetry preserving map.�

In the following we show that the group Aut({sx}) of all symmetry preserving diffeo-
morphisms of (M,F ) is a transitive Lie transformation group.

Theorem 3. The Lie transformation group Aut({sx}) act transitively on M .

Proof: Let K ⊂ Aut({sx}) be the transformation group of M generated algebraicaly
by all the symmetries sx, x ∈ M . Choose an origin o ∈ M . Let K(o) be the orbit
of o with respect to K. Consider the map f(x) = sx(p) where p ∈ K(o) and x ∈ M .
Clearly f(p) = p. For v ∈ TpM we have f∗p(v) = (Ip − Sp)v. Hence f∗p = (Ip − Sp) is
a non-singular transformation and f maps a neighborhood U of p diffeomorphically onto
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a neighborhood V of p. We get V ⊂ K(o) and the orbit K(o) is open. The union of all
other orbits of K must be also open and hence K(o) is closed. Consequently K(o) = M . �

Let V be a finite dimensional vector space and T : V −→ V an endomorphism. Then
there is a unique decomposition V = V0T +V1T of V into T−invariant subspaces such that
the restriction of T to V0T is nilpotent and the restriction of T to V1T is an automorphism.

Definition 5. A regular homogeneous s−manifold is a triplet (G,H, σ), where G is a
connected Lie group, H its closed subgroup and σ an automorphism of G such that

(i) G◦σ ⊂ H ⊂ Gσ where Gσ is the subgroup consisting of the fixed points of σ in G and
G◦σ denotes the identity component of Gσ.

(ii) If T denotes the linear endomorphism Id− σ∗, then g0T = h.

Clearly if (G,H, σ) is a regular homogeneous s−manifold, then g0T = h = ker T and
g1T = Im(T ).

Let G be a connected Lie group and H its closed subgroup. Consider the homogeneous
manifold G/H. Here π : G −→ G/H will denote the canonical projection, and o = π(H)
the origin of G/H. Let g and h be the Lie algebras of G and H respectively. Suppose
that there is a subspace m ⊂ g such that g = h + m (direct sum of vector spaces) and
Ad(h)m = m for every h ∈ H. Then the homogeneous space G/H is said to be reductive
with respect to the decomposition g = h + m.

Lemma 2. Let (G,H, σ) be a regular homogeneous s−manifold, then the homogeneous
space G/H is reductive with respect to the decomposition g = h + g1T

Proof: Let (G,H, σ) be a regular homogeneous s−manifold, since H ⊂ Gσ we obtain
Ad(h) ◦ σ∗ = σ∗ ◦Ad(h) for each h ∈ H. Hence Ad(h) commutes with T on g and

Ad(h)(g1T ) = (Ad(h) ◦ T )(g)

= T (Ad(h)g)

= T (g) = g1T .

�

Theorem 4. Let G be a connected Lie group, H its closed subgroup and σ an automor-
phism of G such that

(i) (Gσ)◦ ⊂ H ⊂ Gσ,

(ii) σk = id, where k is the minimum number with this property,

Then the triple (G,H, σ) is a regular homogeneous s−manifold of order k.
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Proof: Let T = id− σ∗. We have to show that g0T = h. Clearly h = KerT and hence
h ⊂ g0T . Suppose now that there is X ∈ g0T such that X is not in h. Without loss of
generality we assume that TX 6= 0 , T 2X = 0. Then we get

σ∗X = TX − σ2∗X
= X − σ∗(X − σ∗X).

Let Z = σ∗(X − σ∗X) = TX. So we have σ∗X = X − Z and σ∗Z = Z. Hence by the
induction we get

σ2∗X = X − 2Z

.

.

.

σk∗X = X − kZ

Now Since σk∗X = X, we get Z = 0, a contradiction. This completes the proof. �

Theorem 5. Let (G,H, σ) be a regular homogeneous s−manifold, π : G −→ G/H the
canonical projection and let F be a G−invariant Finsler metric on G/H such that the
transformation s of G/H determined by σ, i.e. s ◦ π = π ◦ σ is metric preserving at the
origin eH of G/H. Then G/H is a Finslerian s−manifold and the symmetry sx is given
by

sx = g ◦ s ◦ g−1 g ∈ G, x = π(g)

Proof: We will identify the elements of G with the corresponding transformations of
M = G/H. Choose g ∈ G and x ∈M then x = π(g′) for some g′ ∈ G. Now,

(s ◦ g ◦ s−1)(x) = (s ◦ g ◦ s−1 ◦ π)(g′)

= (s ◦ g ◦ π)(σ−1(g′))

= (s ◦ π)(gσ−1(g′))

= (π ◦ σ)(gσ−1(g′))

= π(σ(g)g′) = σ(g)[π(g′)] = σ(g)(x).

Hence we get
s ◦ g ◦ s−1 = σ(g) g ∈ G (1)

So for h ∈ H we obtain s ◦ h ◦ s−1 = h and hence h ◦ s ◦ h−1 = s. Consequently the
transformation g ◦ s ◦ g−1 always depends only on π(g) and

sπ(g) = g ◦ s ◦ g−1 g ∈ G

defines a family {sx|x ∈ M} of diffeomorphisms of M . We can also easily that (x, y) −→
sx(y) is differentiable. Further for x ∈M , x = π(g) we have x = g(o) and hence

sx(x) = (g ◦ s ◦ g−1)(x) = x,
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because s(o) = o.
Now for x, y ∈M put sx = g ◦ s ◦ g−1, sy = g′ ◦ s ◦ (g′)−1, where x = g(o) and y = g′(o).
Then

(g ◦ s ◦ g−1 ◦ g′ ◦ s−1)(o) = sx(g′(o)) = sx(y),

on the other hand, (1) yields g◦s◦g−1◦g′◦s−1 = gσ(g−1g′). Thus, the map g◦s◦g−1◦g′◦s−1
coincides with the action of an element g′′ ∈ G, g′′(o) = sx(y). Now

sx ◦ sy = g ◦ s ◦ g−1 ◦ g′ ◦ s ◦ (g′)−1

= g′′ ◦ s ◦ (g′′)−1 ◦ g ◦ s ◦ g−1

= ssx(y) ◦ sx.

It remains to prove that sx∗ has no fixed vector except the null vector. If we identify g
with TeG, then the projection π∗e : TeG −→ ToM induces an isomorphism of g1T onto
ToM . From the relation π∗ ◦ σ∗ = s∗ ◦ π∗ we can see that π∗ ◦T = (Io− s∗o) ◦ π∗. Because
T is an automorphism on g1T , Io − s∗o is an automorphism of ToM . From

sπ(g) = g ◦ s ◦ g−1, g ∈ G, x = π(g),

we obtain easily that Ip−Sp is an automorphism of TpM for each p ∈M . Thus {sx|x ∈M}
is a regular s−structure on (M,F ).�

Corollary 1. Let (G,H, σ) be a regular homogeneous s−manifold of order k, with the
G−invariant Finsler metric F on G/H such that the transformation s of G/H determined
by π ◦ σ = s ◦ π is metric preserving at the origin eH of G/H. Then G/H is a Finsler
s−manifold of order k.

Proof: It is a consequence of Theorem 4 and Theorem 5.�

Theorem 6. Let (M,F ) be a Finsler s−manifold and o ∈M a fixed point. Let G be the
identity component of the symmetry preserving group Aut({M, sx}) and Go the isotropy
subgroup of G at o. Define a map σ : G −→ Aut(M, {sx}) by the formula

σ(g) = so ◦ g ◦ s−1o g ∈ G.

Then σ is an automorphism of G, and (G,Go, σ) is a regular homogeneous s−manifold.
The symmetries sx are given by the formula

sπ(g) = g ◦ so ◦ g−1, x = π(g)

and M ' G/Go.

Proof: By Theorem 3 Aut(M, {sx}) is transitive on M and M is connected. So G is
also transitive on M . Obviously, the map σ given by

σ(g) = so ◦ g ◦ s−1o g ∈ G
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is an isomorphism and σ(G) = G. Let Go be the isotropy group of G at o, then M ' G/Go.
Let π : G −→ G/Go 'M be the canonical projection. Then for any g ∈ G we have

(π ◦ σ)(g) = σ(g)(o)

= (so ◦ g ◦ s−1o )(o)

= so(g(o))

= (so ◦ π)(g).

Hence on G we have
π ◦ σ = so ◦ π. (2)

Because g ∈ G is a symmetry preserving diffeomorphism, we have

g ◦ sx = sg(x) ◦ g.

In particular, for each h ∈ G we have

σ(h) = so ◦ h ◦ s−1o
= sh(o) ◦ h ◦ s−1o
= h,

so Go ⊂ Gσ.
Let g, go, g

σ denote the Lie algebra of G,Go, G
σ respectively from (1) we have π∗ ◦ σ∗ =

so ◦ π∗ on g = TeG. Let T = I − σ∗, hence on g we have

π∗ ◦ T = (I − So) ◦ π∗. (3)

Consider the decomposition g = g0T + g1T . Clearly go ⊆ gσ ⊆ g0T . Now we show that
go = gσ = g0T . Suppose that there is a vector X ∈ g0T − go. Then X ′ = π∗(X) is
a non-zero vector of To(M). On the other hand, T i(X) = 0 for some i, and from (2)
we obtain (I − So)iX ′ = 0 for some i. Because (I − S0) is invertible, we get X ′ = 0, a
contradiction. Hence go = gσ = g0T . Consequently (G,Go, σ) is a regular homogeneous
s−manifold. Because g ∈ G is a symmetry preserving diffeomorphism we get

sπ(g) = sg(o) = g ◦ so ◦ g−1

�
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