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Abstract. The purpose of this paper is to give a new generalization of the operator-valued Poisson
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1. Introduction

Let # be a complex Hilbert space and £(¢) denote the algebra of all bounded linear
operators from # into #. For T € £(¢), its spectrum o (T) is the non-empty compact
subset of the complex plane C consisting of all A € C such that T — AI is non-invertible
in £(5¢), where I is the identity operator on . We write D for the open unit disk in C,
D={z:|z| <1}.

Let A € £(5#). For a complex valued function f analytic on a domain E of the complex
plane containing the spectrum o (A) of A, we recall Riesz-Dunford integral f (A) which is given
by

£y = %ff ()l - ) dz, @
C

where C is a positively oriented simple closed rectifiable contour containing o (A).
By differentiating the integral in equation (1) with respect to A we get

A= —21 . f f @) -A)dz. (2)
Tl
C
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If we differentiate the integral in equation (2) with respect to A, (n — 1) times, we get

£ (4) = _’“ff ()G —A) " Vdz, (n=0,1,2,...). 3)
271
C

Note that, expression (3) is an extension of the Riesz-Dunford integral in equation (1).
For re'' €D, the (scalar) Poisson kernel P, , is defined by

0\ 1—r2
Pﬂf (e ) - (1 _ reite—ie) (1 _ re—iteiQ)
1 1

1—reltem® 1 —reitei®

— Zrneinte—inQ + Zrne—inteine —1. 4)

n=0 n>0
The integral formula of the (scalar) Poisson kernel
27
L(p (e®)do=1
2 | "t v
0

holds, where r is a real parameter satisfying |r| < 1, see[3].
For T € £(5#), o(T) C D and re'* € D, the author in [2], define the operator-valued
Poisson kernel K., (T) as follows
K. (T)=(I— re“T*)_1 +(1- re—“T)_1 —1, (5)
and prove the following theorem.

Theorem 1. For T € £(5¢) such that o (T) C D, we have

Koo (D)= (I1-re 1) (1= r21°T) (1 —reit1) ™

— ZrneintT*n + Zrne—intTn —I.

n=0 n>0
Afterwards, in [1] Bulut proved the following theorem.

Theorem 2. For T € £(#) such that o (T) C D, we have

21

1
—JK”(T)dt:I, (6)
27 ’

0

where r is a real parameter satisfying |r| < 1.



S. Al-Sharif, E Salem, B Frasin / Eur. J. Pure Appl. Math, 6 (2013), 340-351 342

A generalization of the (scalar) Poisson kernel, (4) in [3] is given by
; 9) _ 1—ab

(1 - ae“e‘ig) (1 - be_“eie)
where a and b are complex parameters satisfying |a| < 1 and |b| < 1.

In [1], Bulut introduced a generalization of the operator-valued Poisson kernel K., (T) for
T € £(#), 0 (T) C D and re'* €D in the following way

Qapye (€ 7

Qup (T)= (I—aeT*) " + (I-be 1) ~1, 8)

where a and b are complex parameters satisfying |a| < 1 and |b| < 1 and prove the following
theorem.

Theorem 3 ([1]). Let T € £(¢) such that o (T) C D. Then

27

1
%an,b,t (T)dt =1, 9

0
where a and b are complex parameters satisfying |a| < 1 and |b| < 1.

Remark 1. We note that (8) and (9) are generalizations of (5) and (6), respectively, by taking
a=b=r.

2. A New Generalization of the Operator-Valued Poisson Kernel

In this section, we set the following definition and open problem.

Definition 1. Let T € £ () such that o (T) c D. Forn=0,1,2,..., let
27
1 n+1
I, = defﬁ Qubit (T)dt,
0

where a, b, are complex parameters satisfying |a] < 1 and |b| < 1.

Open Problem: Compute I,,, n=0,1,2,....
In the following theorem we give a partial answer to the open problem to certain class of
operators in £ ().

Theorem 4. Let T € £ () such that o (T) € D and (I — ae'* T*) is self adjoint. Then

27
n+l k

an,a,t (Ty™*de=>>" (": 1) (';) -0', (10)
k

=0[=0
0

forn=0,1,2,... and a complex parameter a satisfying |a| < 1.
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Proof. Let
27 o
I, = JQa,a,t(T)n+1 dt = %J (([ —aeitT*)_l n (I _ae—itT)—l —I)n+1dt
0 0
1 2('7rn+1 n+1 - 1 )
T on I—aetT*) " ((1-@eT) " +(-D) dt
e S ey (e )
1 2f'ﬂn+1 k n+1 k o "
=— it TN it N
- [ 2 (V) () ey amaeny ™ ot
1 2('T[n+1 k n+1 k e "
~ o —aeltT*) " it ¥ 1l
_ZRJ)k:ozZo:( k )(l)(l ac'T) ((1-aet)") " (-Dlar
27
1 n+1 k n+1 k - i
= I —qeltT* _] ld
ZEJ) k:og( k )(Z) ( a ) (=) dt
2
L (S0 n+ 1) (k —(n+1-D)i —i ) —n—1+l
:%i ;);( k )(l)e (et —aT) T (D A an

By the change of variables, with z = e~ (11) becomes

Tl-‘rl k k 141
I—aT*)™ =Dz ldz
n=am b 22 () (e
k=01= 0

|z|=1

n+l k n+1
szZ( f (s1 - aT") "M (1),

=01=0
IZI 1

where the integral along |z|] = 1 is taken in the negative direction. Hence, by the Riesz-
Dunford integral (3), we have

n+1 k k 1
I—ZZ( )(l)(—n, (n=0,1,2,...).

=01=0
Corollary 1. For T € £ () such that o (T) € D and (I — aeitT*) is self adjoint, we have

1 2
7 | Quac (T de=1, (12)
0
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where a is complex parameter satisfying |a| < 1.
Remark 2. By taking n =0 in (10), we obtain (9).

Definition 2. For T € £ () such that o (T) C D, we set a generalization of the operator-valued
Poisson kernel, Q, 1, . (T) in the following way:

. -1 . -1 . — . -1
Ropeac (T)=(I—ae“T*)  +(I—be™T) +(I—ce'T*) g (I-de™™T) " —1, 13)
where a, b, c, and d are complex parameters satisfying |a| <1, |b| <1, |c|] <1, and |d| < 1.
Remark 3. Note that Ry . 4, (T) € £(52).

Lemma 1. For T € £ () such that o (T) € D, we have

Ra,b,c,d,t (T) — Zaneint T* 4 ane—int TN 4+ cheintT*n _ Zdne—intTn —1. (14)

n=0 n>0 n=0 n>0

be‘”T” <1, Hce“T*H <1, and Hde_“TH < 1, we have

ZaneintT*n — (I _ aeitT*)*l ,

Proof. Since Hae”T*H <1,

n=0
~ : -1
D bte T = (I—be T,
n>0
cheintT*n — (I _ CeitT*)_l
n=0
and _ _ .
D dre ™ = (1-de ') .
n>0
By the above four equalities and (13), we get (14). .

S
For an operator T € £() and a polynomial r(z) = Y. azkecC [z]lﬁ ,r(T)e £(s#£)is
k=0
defined by

S

r(T)= chTk.

k=0

Lemma 2. Let T € £ () such that o (T) c D. For r (z) € C [zjlﬁ’ we have

2n
1 it
r(bT)—r(dT)+col = ol (e )Ra’b’c’d’t (T)dt,
0

where a, b, c, and d are complex parameters satisfying |a| <1, |b| <1, |c|] <1, and |d| < 1.
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s 27
Proof Let r(z) = Y. cxz*. By (14), and since fei“dt =0 for | € Z/ {0}, we get

k=0 0
2n
Jr (eit) Ra,b,c,d,t (T) dt
0

27 s Z aneintT*n 4 Z bne—intTn
ikt n>0 n>0
= cre = Ton i dt
JZ k _l_chelntT*n_ Zdne intpn _ g
y k=0 n>0 n>0

s 2 s 2n
=2mcol + chkkakdt +2mcol — ZJckdkadt — 2mcpl
k=0 k=0
0 0

S S
=21 ) ¢ brTk - ZRchdka + 2mcol
k=0 k=0
=2nr(bT)—2nr (dT)+ 27mc,l.

O
Corollary 2. Note that, if r identically equal to 1, then
27
1
% Ra,b,c,d,t (T)dt =1, (15)
0

forlal <1, |bl<1,]c|<1,]|d|<1and T € £(#) such that o (T) C D.

In the next theorem, we give a different proof of equation (15) independent of a polyno-
mial. For this purpose we will use the Riesz-Dunford integral formula.

Theorem 5. Let T € £ () such that o (T) € D. Then

27
1

%JRa,b,c,d,t(T)dt =1,

0
where a, b, c, and d are complex parameters satisfying |a| <1, |b| <1, |c|] <1, and |d| < 1.
Proof. From (13), we have

2n -1 -1
(I - ae“T*) + (I - be_“T) +

27
1 1
— | R (T)Ydt =— , a LN dt. (16)
27Tf @bedt ) 27Tf ( (I _ CeltT*) 1 _ (I _ de—ltT) 1 —1 )

0

0
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We set
27
I, = 1 (I - ae“T*)_1 dt
1= o0 )
0
27
L= (1-be7ir) " dt
2= 50 s
0
27
= (1—cetT*) " dt
3T 5 )
0
27
L= — (I—de_itT)_ldt
4T on ’
0
and
27
1
27
0
Therefore, it follows from (16)- (21) that
27
1
E Ra,b,c,d,t (T)dt = Il +Iz +Ig — 14 — 15.
0
It is clear that
15 =I.

Next, we shall calculate Iy, I, I3 and I,. Firstly, we have

27 27
1

I, =—
1™ on

21
0 0
i

Making substitution z = e'* in the last integral, we get

2mi
|z|=1

-1
I —J (21 —aT*) ' ds,

(I - aeitT*)_1 dt = ! e it (e_itl - aT*)_1 dt.

346

(17)

(18)

(19)

(20)

(2D

(22)

(23)

where the integral along |z|] = 1 is taken in the negative direction. Hence, by the Riesz-

Dunford integral in the equation (1), we have

Ilzl.

24
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Similarly, we get

Secondly, we have

21 21
(1-be 1) "de = % et (e1-bT) " dt.
0 0

1

I,=—
27 on

If we set z = e'!, then the last integral is of the form

1 -1
Ihy=— (2 = bT) " dz,
27l

lz]=1

where the integral along |z| = 1 is taken in the positive direction. Hence, by the Riesz-Dunford
integral (1), we have

I,=1. (26)
Similarly, we get

I,=1. (27)
Therefore, from (22)-(27), we get (15). O

Remark 4. By taking ¢ = 0 and d = 0 in (13) and (15) we find that (13) and (15) are
generalizations of (8) and (9), respectively.

3. The Finite Sum of the Operator- Valued Poisson Kernel

In this section we definite a new generalization of the operator-valued Poisson kernel
M( ab )t (T)in 2(n+ 1) complex parameters. Let us begin by the following definition.
> k=0

Definition 3. For T € £() such that o (T) C D, define the finite sum of the operator-valued
Poisson kernel in the following way.

M ()= (10 T) " (1 b7

+zn: (1-aettr) ™ —zn: (1-bee 1) "~ 1, (28)
k=1

k=1

where a; and by are complex parameters satisfying |ak| < 1and |bk| <1, 0=<k <n, and for
n=0,1,2,...

Remark 5. By taking n =0 and n =1 in (28), we obtain (8) and (13), respectively.

Remark 6. Note that M(ak’bk)::(yt (T)e £(s2).
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Lemma 3. For T € £ () such that o (T) € D, we have

(ak bk)k iy (T) — Z m lmtT*m+ Zb(r)ne—imtTm

m=0 m>0
n . n 4
+ D) e ™™ = YN pre T — . (29)
m=>0k=1 m=>0k=1

Proof. Since Hake“T*H <1, and ||bke_“TH <1,0<k<n,we have

n

Z(I_a eltT ZZ lmtT*m

k=0 m=>0k=0
and
n . . n '
Z (I-bre 1) = ZZb;ﬂe—lme’"
k=0 m=>0k=0
respectively. By the two equalities above and (28), we get (29). O

S
For an operator T € £(5#) and a polynomial r (z) = chzj eC [Zjlﬁ ,r(T)e £(s) is
j=0
defined by

r(T)= Zc TI.
Lemma 4. Let T € £(#) such that o (T) c D. For r(z) € C [z]@. Then

n

27
1 .
r(boT) — Zr (byT) + ncol = ﬁjr (e”) M(a, b )t (T)dt,
0

k=1

where a; and b, are complex parameters satisfying |ak| < 1and |bk| <1, 0=<k <n, and for
n=0,1,2,...

27
Proof. From (29) and since fe”tdt =0 for | € Z/ {0}, we get

0
27 27
S
f My (TdE= 3D e J gy
o B j=0m>0 o

+ ZZCmeTmf G=mtqe

j=0m=0
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Y earr f Gemege

j=0m>0k=1
2 s 2n
SIS e J T Y J e
j=0m=0k=1 j=0
0 0
S . . n
=2mcol +2m ) ;b T7 +27m ) el
j=0 k=1
- ZTEZZC b] T — 2mcyl
j=0k=1
n
= 2nmcyl + 2nr (boT) — 27‘EZT‘ (b T).
k=1
O
Corollary 3. Note that if r identically equal to 1, we have
! M T)dt=1 30
21 (ak’bk)zzo’f( yde=1, (30)
0

for complex parameters a; and by satisfying |ak} < 1and {bk| <1,0<k<nn=0,12,...
and T € £(#) such that o (T) C D.

Now, we give a different proof of equation (30) independent of a polynomial.

Theorem 6. Let T € £ () such that o (T) C D. Then

1
7JM(“k:bk)Z=o:f (T)dt =1,
0

where a; and b, are complex parameters satisfying |ak| <1and |bk| <1,0<k<n,
n=0,1,2,...

Proof. From (28), we have

r (I-ageT*) "+ (1—byeT) " +

1 1
— M n T)dt = — n . n dt.
ZHJ (ak’bk)k:O’t( )dt 277:J )3 (I—ake“T*) - -2 (I_ bke_ltT) o —1 t
0 0 k=1

k=1
(31)
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We set
27
1 it ) "L
11=§ (I—aoe T ) dt,
0
27
1 . -1
Iz = z—f (I - boe_ltT) dt,
T
0
27
1 L . 1
_ _ itk
I;= ZRJZ (I aie''T ) dt,
o k=1
27
1 1 . -1
L= —JZ (1-bre™T) " dt,
21 o)
0
and
27
1
21
0

Therefore, it follows from (32)- (36) that

2n
1
% M(aksbk);z:(yt (T)dt211+12+13—14—15
0

It is clear that
15 = I

Following similarly the proof of Theorem 5, we get
Il =1.
Iz =1.

Next, we shall calculate I3 and I,. First, we have

27 27
1 1 . -1 1 T -1

i in the last integral, we get

n _1 B
Igzg(ﬁf (21 — a, T*) "' d2),

|z|=1

Making substitution z = e~

350

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)
(40)
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where the integral along |z|] = 1 is taken in the negative direction. Hence, by the Riesz-
Dunford integral in the equation (1), we have

n
Iy = I=nl. (41)
k=1

Similarly, we get

2n 2n
1 L . -1 L . . -1
I,=— I—be™T) dt= — | et (eI —b,T) dt).
4 2775ka£ (1— by ) ;( Y ( «T) )
0o - 0
If we set z = e'!, then the last integral is of the form

n 1 B
I“:;(Z_nij (21 — b T) Ldz),
- lz]=1

where the integral along |z| = 1 is taken in the positive direction. Hence, by the Riesz-Dunford

integral (1), we have
n

I,=) I=nl (42)
k=1
Therefore, from (37)-(42) we get (30). O
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