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Abstract. Let (An) be a sequence of bounded linear operators from a separable Banach space X into a
Banach space Y . Suppose that Φ is a countable fundamental set of X and the ideal I of subsets of N has
property (AP). The sequence (An) is said to be b∗I -convergent if it is pointwise I -convergent and there
exists an index set K such that N \ K ∈ I and (Ak x)k∈K is bounded for any x ∈ X . We prove that the
sequence (An) is b∗I -convergent if and only if (‖An‖) is I -bounded and (Anφ) is I -convergent for any
φ ∈ Φ. Applications of this Banach–Steinhaus type theorem are related to some sequence-to-sequence
matrix transformations and to the weak I -convergence in Banach spaces.
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1. Introduction and Preliminaries

Let N = {1,2, . . . } and let X , Y be two normed spaces over the field K of real numbers R
or complex numbers C. A subset Φ of X is called fundamental if the linear span of Φ is dense
in X . By B(X , Y ) we denote the space of all bounded linear operators from X into Y . As usual,
the dual of X is defined by X ′ = B(X ,K). Byω(X )we denote the set of all X -valued sequences.
We write supn, limn and

∑

n instead of supn∈N, limn→∞ and
∑∞

n=1, respectively. By an index

set we mean any infinite set {ki} ⊂ N with ki < ki+1 for each i ∈ N.
Let An ∈ B(X , Y ) (n ∈ N). The following theorems of functional analysis are well known

(see, for example, [11] or [17]).

Theorem 1 (Principle of uniform boundedness). Let X be a Banach space. If supn ‖An x‖<∞
for every x ∈ X , then

sup
n
‖An‖<∞. (1)
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Theorem 2 (Banach–Steinhaus). Let X , Y be two Banach spaces and let Φ be a fundamental

set of X . The limit limn An x exists for any x ∈ X if and only if (1) holds and limn Anφ exists

for every φ ∈ Φ. Moreover, the limit operator A0, A0 x = limn An x is bounded and linear, i.e.,

A0 ∈ B(X , Y ), and ‖A0‖ ≤ supn ‖An‖. If A ∈ B(X , Y ), then limn An x = Ax for any x ∈ X if and

only if (1) holds and limn Anφ = Aφ (φ ∈ Φ).

The first idea of statistical convergence appeared, under the name of almost convergence,
in the first edition (Warsaw, 1935) of the monograph [25] of Zygmund. Since 1951 when
Fast [7] (see also [23] and [22]) introduced statistical convergence of number sequences in
terms of asymptotic density of subsets of N, several applications and generalizations of this
notion have been investigated (for references see [4] and [6]). For instance, Maddox [20]
and Kolk [13] considered the statistical convergence of sequences taking values in a locally
convex space or a normed space, respectively. An another extension of statistical convergence
is related to generalized densities.

Let T = (tnk) be a non-negative regular matrix of scalars (i.e., tnk ≥ 0 (n, k ∈ N) and
limn

∑

k tnkuk = limk uk for any convergent scalar sequence (uk)). A set K ⊂ N is said to have
T-density δT (K) if the limit

δT (K) = lim
n

∑

k∈K

tnk

exists (cf. [9]).
A sequence x = (xk) ∈ ω(X ) is called T-statistically convergent to a point l ∈ X , briefly

stT -lim xk = l, if
δT ({k : ‖xk − l‖ ≥ ǫ}) = 0

for every ǫ > 0 (see [3, Definition 7] and [14, p. 44]).
If T is the identity matrix I , then T -statistical convergence is just the ordinary convergence

in X and if T is the Cesàro matrix C1, then T -statistical convergence is statistical convergence
as defined by Fast [7].

A further extension of statistical convergence was given in [16] by means of ideals. Recall
that a subfamily I of the family 2N of all subsets of N is called an ideal if for each K , L ∈ I
we have K
⋃

L ∈ I and for each K ∈ I and each L ⊂ K we have L ∈ I . An ideal I is called
non-trivial if I 6= ; and N /∈ I . A non-trivial ideal I is called admissible if I contains all finite
subsets of N. Any non-trivial ideal I defines a filter

F (I ) = {K ⊂ N : N \ K ∈ I }.

For example,
IT = {K ⊂ N : δT (K) = 0}

is an admissible ideal and the IT -convergence coincides with the T -statistical convergence.
An admissible ideal I ⊂ 2N is said to have property (AP) if for every countable family

of mutually disjoint sets K1, K2, . . . from I there exist sets L1, L2, . . . from 2N such that the
symmetric differences Ki∆Li (i ∈ N) are finite and L =

⋃

i Li ∈ I .
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Remark 1 ([1], Proposition 1). The property (AP) is equivalent to the property (P): for every

countable family of sets K1, K2, . . . from I there exist a set K ∈ I such that the differences Ki \K

(i ∈ N) are finite.

A sequence x = (xk) ∈ ω(X ) is said to be I -convergent to l ∈ X , briefly I -limk xk = l,
if for each ǫ > 0 the set {k ∈ N : ‖xk − l‖ ≥ ǫ} belongs to I [16, Definition 3.1]. With the
I -convergence are closely related the following two notions. A sequence x = (xk) ∈ ω(X ) is
said to be I ∗-convergent to l ∈ X , briefly I ∗-lim xk = l, if there exists an index set K = (ki)

such that K ∈ F (I ) and limi xki
= l in X [16, Definition 3.2]). A sequence x = (xk) ∈ ω(X )

is said to be I -bounded, briefly xk = OI (1), if there exists an index set K = (ki) such that
K ∈ F (I ) and the sequence (ki) is bounded in X (cf. [10]). In the special case I = IT we
write OstT

(1) instead of OI (1).
We remark that theI ∗-convergence of number sequences was introduced already by Freed-

man [8] as I -near convergence.
It is easy to see that I ∗-convergence implies I -convergence and every I ∗-convergent

sequence is I -bounded.
The following characterization of I -convergence is important for us.

Proposition 1 ([16, Theorem 3.2]). If the ideal I has property (AP), then I -lim xk = l in a

Banach space X if and only if I ∗-lim xk = l.

By cI (X ) we denote the set of all I -convergent X -valued sequences. Let ℓ∞(X ), c(X ) and
c0(X ) be the sets of all bounded, convergent and convergent to zero X -valued sequences,
respectively. For 1 ≤ p < ∞ let ℓp(X ) be the set of sequences (xk) ∈ ω(X ) such that
∑

k ‖xk‖
p <∞.

Using Proposition 1 and Theorem 2, we proved in [15] the following Banach–Steinhaus
type theorem for I -convergence.

Theorem 3 ([15, Theorem 3]). Let X and Y be two Banach spaces, where X has a countable

fundamental set Φ. If the ideal I has property (AP), then the sequence (An) is bI -convergent

(i.e., (An x) ∈ cI (Y )∩ ℓ∞(Y ) for any x ∈ X ) if and only if (1) holds and (Anφ) is I -convergent

for every φ ∈ Φ. Thereby, the limit operator A, Ax = I -lim An x, is bounded and linear, and

‖A‖ ≤ supn ‖An‖.

In this paper we introduce the notion of b∗I -convergence of sequences of bounded lin-
ear operators (An) and give an analogue of Theorem 3 by finding necessary and sufficient
conditions for b∗I -convergence of such sequences (An). As applications of this result we char-

acterize infinite summability matrices A = (Ank) of type A : λ(X )
b∗I
−→ c(Y ) with Ank ∈ B(X , Y )

(n, k ∈ N) and λ ∈ {c, c0, ℓ1}, also consider the weak b∗I -convergence in Banach spaces.

2. Main Theorems

In the following let X , Y be two Banach spaces, An ∈ B(X , Y ) (n ∈ N) and let I ⊂ 2N be a
non-trivial admissible ideal.



E. Kolk / Eur. J. Pure Appl. Math, 8 (2015), 357-367 360

Recall that a sequence (xn) ∈ω(X ) is said to be weakly I -convergent (weakly T-statistically

convergent) to a point l ∈ X if I -lim x ′(xn) = x ′(l) (stT -lim x ′(xn) = x ′(l)) for any x ′ ∈ X ′

[2, 21]. We know that every weakly convergent sequence in a Banach space X is bounded. But
a weakly I -convergent sequence is not necessary I -bounded (cf. [5, Theorem 1]). Example 2
from [5] shows that the Banach sequence space ℓ2 contains a weakly statistically null sequence
(zk) with no bounded subsequences. Thus some results of Bhardwaj and Bala [2, Theorem 3.1
and Lemma 3.2] are incorrect. At it, defining Fn x ′ = x ′(zn) (x

′ ∈ ℓ′2, n ∈ N), we get the
sequence (Fn) of bounded linear functionals Fn : ℓ′2 → R. Since ‖Fn‖ = ‖zn‖ by the classical
Hahn–Banach theorem, the sequence of functionals (Fn) converges statistically to zero for any
x ′ ∈ ℓ′2, but the sequence of norms (‖Fn‖) contains no bounded subsequences. This example
justifies the following definition.

Definition 1. A sequence (An) of operators An ∈ B(X , Y ) (n ∈ N) is said to be b∗I -convergent (to

A∈ B(X , Y )) if I - limn An x exists (I - lim An x = Ax) for any x ∈ X and there is a set K ∈ F (I )
such that (Ak x)k∈K is bounded for every x ∈ X . In the special case I = IT we get the notion

of b∗T-statistical convergence. The b∗I -limit and the b∗T-statistical limit of (An) are denoted,

respectively, by b∗I - limn An and b∗stT - limn An.

In view of Theorem 1 we can say that a sequence (An) is b∗I -convergent if and only if
I -lim An x exists for any x ∈ X and

sup
k∈K

‖Ak‖)<∞ for some K ∈ F (I ). (2)

Theorem 3 shows that bI -convergence implies b∗I -convergence by the suppositions that X

is separable and I satisfies the condition (AP).
To prove our main theorem we need the following lemma.

Lemma 1. Suppose that the ideal I has property (AP) and let zk j ∈ X (k, j ∈ N).
If I -limk zk j = z j for any j ∈ N, then there exists an index set N = (ni) such that N ∈ F (I ) and

limi zni , j = z j for any j ∈ N.

Proof. Assume that I -limk zk j = z j ( j ∈ N). Since I has property (AP), by Proposition 1
there exist index sets K j = {ki( j)} ( j ∈ N) such that

lim
i

zki( j), j = z j ( j ∈ N) (3)

and K ′
j
= N \ K j ∈ I for any j ∈ N. Because of Remark 1 we can find the set N ′ ∈ I such

that the differences K ′
j
\ N ′ ( j ∈ N) are finite. Now, for N = N \ N ′ we have that N ∈ F (I )

and the differences N \K j are finite. Consequently, denoting N = (ni), from (3) it follows that
limi zni , j = z j for any j ∈ N.

Theorem 4. Let X and Y be two Banach spaces, where X has a countable fundamental set Φ. If

the ideal I has property (AP). A sequence (An) of operators An ∈ B(X , Y ) is b∗I -convergent if and

only if (‖An‖) is I -bounded, i.e., (2) holds, and (Anφ) is I -convergent for every φ ∈ Φ. Thereby,

the limit operator A0, A0 x = I -lim An x, is bounded and linear, and ‖A0‖ ≤ supk∈K ‖Ak‖. If

A ∈ B(X , Y ), then b∗I - limn An = A if and only if (‖An‖) is I -bounded and I - limn Anφ = Aφ

(φ ∈ Φ).
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Proof. If (An) is b∗I -convergent (b∗I - limn An = A), then (2) is satisfied and I -lim Anφ

exists (I -lim Anφ = Aφ) for every φ ∈ Φ.
Conversely, assume that (2) holds and I -lim Anφ j exists (or I -lim Anφ j = Aφ j) for every

j ∈ N, where Φ = {φ j}. Applying Lemma 1 to zn j = Anφ j (and z j = Aφ j), we fix an index
set N = (ni) ∈ F (I ) such that limi Ani

φ j exists (limi Ani
φ j = Aφ j) for any j ∈ N. Since the

set M = N ∩ K also belongs to F (I ), denoting M = (mi), we have that limi Ami
φ j exists

(limi Ami
φ j = Aφ j) for any j ∈ N and supi ‖Ami

‖<∞. So, by Theorem 2, the limit
A0 x = limi Ami

x exists (limi Ami
x = Ax) for any x ∈ X , A0 ∈ B(X , Y ) and ‖A0‖ ≤ supi ‖Ami

‖.
The proof is completed if we remark that limi Ami

x = I - lim An x by Proposition 1.

It is known that the ideal IT = {K ⊂ N : δT (K) = 0} defined by a non-negative regular
matrix T has the property (AP) (see [9, Proposition 3.2]). Since IT -convergence coincides
with T -statistical convergence, from Theorem 4 we immediately get the following Banach–
Steinhaus type theorem for b∗T -statistical convergence.

Theorem 5. Suppose that T is a non-negative regular matrix and X has a countable fundamental

set Φ. A sequence (An) of operators An ∈ B(X , Y ) is b∗T-statistically convergent if and only if (2)
holds and stT -lim Anφ exists for any φ ∈ Φ. In this case the limit operator A0, A0 x = stT -lim An x

(x ∈ X ), belongs to B(X , Y ) and ‖A0‖ ≤ supk∈K ‖Ak‖. If A ∈ B(X , Y ), then b∗stT - limn An = A if

and only if (‖An‖) is I -bounded and stT - limn Anφ = Aφ (φ ∈ Φ).

3. Some Applications

Let λ(X ) be a subspace of ω(X ), µ(Y ) a subspaces of ω(Y ) and A = (Ank) an infinite
matrix of operators Ank ∈ B(X , Y ) (n, k ∈ N). We say that A maps λ(X ) into µ(Y ), and write
A : λ(X )→µ(Y ), if for all x = (xk) ∈ λ(X ) the series Anx =

∑

k Ank xk (n ∈ N) converge and
the sequence Ax= (Anx) belongs to µ(Y ).

It is well known that c(X ), c0(X ) and ℓ∞(X ) are Banach spaces with the norm

‖x‖∞ = supk ‖xk‖, and ℓp(X ) is Banach space with the norm ‖x‖p =
�∑

k ‖xk‖
p
�1/p

if
1≤ p <∞.

For x ∈ X and n ∈ N let e(x) = (x , x , . . . ) be constant sequence and ek(x) = (ek
j
(x))

the sequence with ek
j
(x) = x if j = k and ek

j
(x) = 0 otherwise. It is not difficult to see

that if Φ is a (countable) fundamental set in X , then E0(Φ) = {e
k(φ) : k ∈ N, φ ∈ Φ} is

a (countable) fundamental set in Banach spaces c0(X ) and ℓp(X ), and E0(Φ)
⋃

E1(Φ) with
E1(Φ) = {e(φ) : φ ∈ Φ} is a (countable) fundamental set in Banach space c(X ).

Using Theorem 2, Zeller [24] (see also [19]) and Kangro [12] characterized the matrices
A : c(X )→ c(Y ), A : c0(X )→ c(Y ) and A : ℓ1(X )→ c(Y ) as follows.

Theorem 6. Let A= (Ank) be an infinite matrix with Ank ∈ B(X , Y ). Then:

(i) A : c(X )→ c(Y ) if and only if

Gn = sup
r

sup
‖xk‖≤1











r
∑

k=1

Ank xk











<∞ (n ∈ N), (4)
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sup
n

Gn <∞, (5)

∃ lim
n

Ank x (k ∈ N, x ∈ X ), (6)

∃ lim
m

m
∑

k=1

Ank x (n ∈ N, x ∈ X ), (7)

∃ lim
n

∑

k

Ank x (x ∈ X ); (8)

(ii) A : c0(X )→ c(Y ) if and only if (4)–(6) hold;

(iii) A : ℓ1(X )→ c(Y ) if and only if (6) is satisfied and

Hn = sup
k



Ank



<∞ (n ∈ N), (9)

sup
n

Hn <∞,

Remark 2. It is not difficult to see, using Theorem 2, that in Theorem 6 it suffices to require the

fulfillment of conditions (6)–(8) for all elements φ from a fundamental set Φ of X .

The notion of b∗I -convergence of sequences of bounded linear operators leads us to the
definition of new type summability maps.

Definition 2. Let λ(X ) and µ(Y ) be two linear subspaces of ω(X ) and ω(Y ), respectively, and

let I ⊂ 2N be a non-trivial admissible ideal. We say that a matrix A maps λ(X ) in the sense of

b∗I -convergence into µ(Y ), and write A : λ(X )
b∗I
−→µ(Y ), if I - limAnx exists for any x ∈ λ(X )

and there is an index set N = (ni) from F (I ) such that the submatrix A(N) = (ani ,k) maps λ(X )

into ℓ∞(Y ). In the case of I = IT we get the matrices of type A : λ(X )
b∗stT
−→µ(Y ).

Based on Theorems 4 and 5, we describe the matrices A : λ(X )
b∗I
−→ c(Y ) and

A : λ(X )
b∗stT
−→ c(Y ), where λ ∈ {c, c0, ℓp}.

Proposition 2. Let A = (Ank) be an infinite matrix with Ank ∈ B(X , Y ). Suppose that X has a

countable fundamental set Φ and the ideal I has property (AP). Then:

(i) A : c(X )
b∗I
−→ c(Y ) if and only if (4) and (7) hold,

Gn =OI (1), (10)

∃I - lim
n

Ankφ (k ∈ N, φ ∈ Φ), (11)

∃I - lim
n

∑

k

Ankφ (φ ∈ Φ); (12)

(ii) A : c0(X )
b∗I
−→ c(Y ) if and only if (4), (10) and (11) hold;
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(iii) A : ℓ1(X )
b∗I
−→ c(Y ) if and only if (9) is satisfied and (Hn) is I -bounded.

Proof. The equality A(r)n x =
∑r

k=1 Ank xk defines a linear operator A(r)n on c(X ) and c0(X )

for any n, r ∈ N. Since

‖A(r)n ‖=











r
∑

k=1

Ank xk











,

by Theorem 2 we get that the series Anx (n ∈ N) converge for all x ∈ c(X ) and An ∈ B(c(X ), Y )

if and only if (4), (7) are satisfied. Similarly, An ∈ B(c0(X ), Y ) if and only if (4) holds. Now,

applying Theorem 4 to the operators An, we have that A : c(X )
b∗I
−→ c(Y ) (or A : c0(X )

b∗I
−→ c(Y ))

if and only if (10) holds and (Any) is I -convergent for any y ∈ E1(Φ) (respectively, y ∈ E0(Φ)).
But this reduces to (11) and (12) because Anek(φ) = Ankφ and Ane(φ) =

∑

k Ankφ.
Since An ∈ B(ℓ1(X ), Y ) if and only if (9) holds, the statement (iii) also follows by Theo-

rem 4.

The matrix map A : ℓp(X )
b∗I
−→ c(Y )we consider in the special cases Y = K and 1< p <∞.

Then B(X , Y ) = X ′ and so, Ank ∈ X ′ (n, k ∈ N). In this case An ∈ (ℓp(X ))
′ if and only if

(Ank)k∈N ∈ ℓq(X
′), i.e.,
∑

k ‖Ank‖
q <∞, where 1/p + 1/q = 1. Therefore, denoting c = c(K)

and using the same arguments as in the proof of Proposition 2, we get the following result.

Proposition 3. Let A = (Ank) be an infinite matrix with Ank ∈ X ′. Suppose that X has a

countable fundamental set Φ, the ideal I has property (AP) and 1 < p <∞, 1/p + 1/q = 1.

Then A : ℓp(X )
b∗I
−→ c if and only if (11) holds and

∑

k

‖Ank‖
q = OI (1).

If X = Y = K, then the matrix map A reduces to the transformation A : λ→ µ defined by
an infinite scalar matrix A= (ank). Using the fact that for Y = K we have (see [12, p. 114])

sup
‖xk‖≤1











r
∑

k=1

Ank xk











=

r
∑

k=1

‖Ank‖,

from Propositions 2 and 3 we obtain the following corollary.

Corollary 1. Let A= (ank) be an infinite matrix of scalars, 1 < p <∞ and 1/p + 1/q = 1. If

the ideal I has property (AP), then:

(i) A : c
b∗I
−→ c if and only if

∑

k

|ank|= OI (1), (13)

∃I - lim
n

ank (k ∈ N), (14)

∃I - lim
n

∑

k

ank;
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(ii) A : c0
b∗I
−→ c if and only if (13) and (14) hold;

(iii) A : ℓ1
b∗I
−→ c if and only if (14) is satisfied, hn = supk |ank| < ∞ (n ∈ N) and (hn) is

I -bounded;

(iv) A : ℓp

b∗I
−→ c if and only if (14) is satisfied and

∑

k

|ank|
q = OI (1).

Letting I = IT in Propositions 2, 3 and Corollary 1, we get the characterizations of ana-
logical matrix maps in the sense of b∗T -statistical convergence. We also remark that the matrix
maps in the sense of bI - and bstT -convergence were studied in [15].

At the beginning of Section 2 we remarked that a weakly I -convergent sequence is not
necessary I -bounded. This fact leads us to a new variant of weak I -convergence.

Definition 3. A sequence x = (xn) ∈ ω(X ) is said to be weakly b∗I -convergent to l ∈ X , briefly

wb∗I - limn xn = l, if x is weakly I -convergent to l and there is a set K ∈ F (I ) such that the

sequence (x ′(xk))k∈K is bounded for every x ′ ∈ X ′. For I = IT we get the notion of weak

b∗T-statistical convergence, in this case we write wb∗stT - limn xn = l.

Using bounded linear functionals Fz : X ′ → R, Fz x ′ = x ′(z) (x ′ ∈ X ′, z ∈ X ), we can say
that wb∗I - limn xn = l (wb∗stT - limn xn = l) if and only if the sequence (Fxn

) is b∗I -convergent
(b∗T -statistically convergent) to Fl . Thus, since ‖Fz‖ = ‖z‖, by Theorems 4 and 5 we get the
following characterizations of these new types of weak convergence.

Proposition 4. Let x = (xn) ∈ ω(X ) and l ∈ X . Assume that X ′ has a countable fundamental

set Φ′.

(i) If I is an ideal with the property (AP), then wb∗I - limn xn = l if and only if

‖xn‖=OI (1), (15)

I - lim
n
φ′(xn) =φ

′(l) (φ′ ∈ Φ′). (16)

(ii) If T is a regular matrix, then wb∗stT - limn xn = l if and only if (15) and (16) are satisfied

with stT instead of I .

Finally we apply Proposition 4 to Banach sequence spaces c0(X ) and ℓp(X ) with
1 < p <∞. It is known that the dual spaces c0(X )

′ and ℓp(X )
′ are isometrically isomorphic,

respectively, to ℓ1(X
′) and ℓq(X

′), where 1/p + 1/q = 1 (see, for example, [18]). If Φ′ is a
fundamental set of X ′, then E0(Φ

′) is the fundamental set of ℓ1(X
′) and ℓq(X

′). Thus from
Proposition 4 we get the following two corollaries.

Corollary 2. Let xn = (xni) (n ∈ N) and x0 = (x i) be the elements of c0(X ). Assume that the dual

X ′ has a countable fundamental set Φ′.
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(i) If I is an ideal with the property (AP), then wb∗I - limn xn = x0 if and only if

‖xn‖∞ =OI (1), (17)

I - lim
i
φ′(xni) =φ

′(x i) (φ
′ ∈ Φ′, n ∈ N). (18)

(ii) If T is a non-negative regular matrix, then wb∗stT - limn xn = x0 if and only (17) and (18)
hold with stT instead of I .

Corollary 3. Let xn = (xni) (n ∈ N) and x0 = (x i) be the elements of ℓp(X ) (1 < p <∞).
Assume that X ′ has a countable fundamental set Φ′.

(i) If I is an ideal with the property (AP), then wb∗I - limn xn = x0 if and only if (18) is true

and

‖xn‖p = OI (1). (19)

(ii) If T is a non-negative regular matrix, then wb∗stT - limn xn = x0 if and only (18) and (19)
hold with stT instead of I .

Proposition 4(ii) and Corollary 3(ii), for T = C1, may be considered as some corrected
versions, respectively, of Theorem 3.1 and Lemma 3.2 from [2].
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[16] P. Kostyrko, T. S̆alát, and W. Wilczyński. I -convergence, Real Analysis Exchange, 26,
669–686. 2000/2001.

[17] G. Köthe. Topologische Lineare Räume. I, Die Grundlehren der Mathematischen Wis-
senschaften, Band 107, Springer-Verlag, Berlin–Heidelberg–New York, 1966.

[18] I. E. Leonard. Banach sequence spaces, Journal of Mathematical Analysis and Applications,
54, 245–265. 1976.

[19] I.J. Maddox. Infinite Matrices of Operators, Lecture Notes in Mathematics 786, Springer-
Verlag, Berlin–Heidelberg–New York, 1980.

[20] I. J. Maddox. Statistical convergence in a locally convex space, Mathematical Proceedings
of the Cambridge Philosophical Society, 104, 141–145. 1988.
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