EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 8, No. 3, 2015, 357-367 ISSN 1307-5543 – www.ejpam.com

On Statistical and Ideal Convergence of Sequences of Bounded Linear Operators

Enno Kolk

Institute of Mathematics, University of Tartu, 50090 Tartu, Estonia

Abstract. Let (A_n) be a sequence of bounded linear operators from a separable Banach space X into a Banach space Y. Suppose that Φ is a countable fundamental set of X and the ideal \mathscr{I} of subsets of \mathbb{N} has property (AP). The sequence (A_n) is said to be $b^*\mathscr{I}$ -convergent if it is pointwise \mathscr{I} -convergent and there exists an index set K such that $\mathbb{N} \setminus K \in \mathscr{I}$ and $(A_k x)_{k \in K}$ is bounded for any $x \in X$. We prove that the sequence (A_n) is $b^*\mathscr{I}$ -convergent if and only if $(||A_n||)$ is \mathscr{I} -bounded and $(A_n\phi)$ is \mathscr{I} -convergent for any $\phi \in \Phi$. Applications of this Banach–Steinhaus type theorem are related to some sequence-to-sequence matrix transformations and to the weak \mathscr{I} -convergence in Banach spaces.

2010 Mathematics Subject Classifications: 40A35; 40C05, 40J05, 46B15, 46B45

Key Words and Phrases: Banach space, bounded linear operator, ideal, \mathscr{I} -convergence, \mathscr{I} -boundedness, matrix method of summability, sequence space, statistical convergence, weak \mathscr{I} -convergence, weak statistical convergence

1. Introduction and Preliminaries

Let $\mathbb{N} = \{1, 2, ...\}$ and let X, Y be two normed spaces over the field \mathbb{K} of real numbers \mathbb{R} or complex numbers \mathbb{C} . A subset Φ of X is called fundamental if the linear span of Φ is dense in X. By B(X, Y) we denote the space of all bounded linear operators from X into Y. As usual, the dual of X is defined by $X' = B(X, \mathbb{K})$. By $\omega(X)$ we denote the set of all X-valued sequences. We write \sup_n , \lim_n and \sum_n instead of $\sup_{n \in \mathbb{N}}$, $\lim_{n \to \infty}$ and $\sum_{n=1}^{\infty}$, respectively. By an *index* set we mean any infinite set $\{k_i\} \subset \mathbb{N}$ with $k_i < k_{i+1}$ for each $i \in \mathbb{N}$.

Let $A_n \in B(X, Y)$ $(n \in \mathbb{N})$. The following theorems of functional analysis are well known (see, for example, [11] or [17]).

Theorem 1 (Principle of uniform boundedness). Let *X* be a Banach space. If $\sup_n ||A_n x|| < \infty$ for every $x \in X$, then

$$\sup_{n} \|A_{n}\| < \infty. \tag{1}$$

http://www.ejpam.com

© 2015 EJPAM All rights reserved.

Email address: enno.kolk@ut.ee

Theorem 2 (Banach–Steinhaus). Let X, Y be two Banach spaces and let Φ be a fundamental set of X. The limit $\lim_{n} A_n x$ exists for any $x \in X$ if and only if (1) holds and $\lim_{n} A_n \phi$ exists for every $\phi \in \Phi$. Moreover, the limit operator A_0 , $A_0 x = \lim_{n} A_n x$ is bounded and linear, i.e., $A_0 \in B(X, Y)$, and $||A_0|| \leq \sup_n ||A_n||$. If $A \in B(X, Y)$, then $\lim_{n} A_n x = Ax$ for any $x \in X$ if and only if (1) holds and $\lim_{n} A_n \phi = A\phi$ ($\phi \in \Phi$).

The first idea of statistical convergence appeared, under the name of almost convergence, in the first edition (Warsaw, 1935) of the monograph [25] of Zygmund. Since 1951 when Fast [7] (see also [23] and [22]) introduced statistical convergence of number sequences in terms of asymptotic density of subsets of \mathbb{N} , several applications and generalizations of this notion have been investigated (for references see [4] and [6]). For instance, Maddox [20] and Kolk [13] considered the statistical convergence of sequences taking values in a locally convex space or a normed space, respectively. An another extension of statistical convergence is related to generalized densities.

Let $T = (t_{nk})$ be a non-negative regular matrix of scalars (i.e., $t_{nk} \ge 0$ $(n, k \in \mathbb{N})$ and $\lim_{n} \sum_{k} t_{nk} u_{k} = \lim_{k} u_{k}$ for any convergent scalar sequence (u_{k})). A set $K \subset \mathbb{N}$ is said to have *T*-density $\delta_{T}(K)$ if the limit

$$\delta_T(K) = \lim_n \sum_{k \in K} t_{nk}$$

exists (cf. [9]).

A sequence $\mathfrak{x} = (x_k) \in \omega(X)$ is called *T*-statistically convergent to a point $l \in X$, briefly st_T -lim $x_k = l$, if

$$\delta_T(\{k: \|x_k - l\| \ge \varepsilon\}) = 0$$

for every $\varepsilon > 0$ (see [3, Definition 7] and [14, p. 44]).

If *T* is the identity matrix *I*, then *T*-statistical convergence is just the ordinary convergence in *X* and if *T* is the Cesàro matrix C_1 , then *T*-statistical convergence is statistical convergence as defined by Fast [7].

A further extension of statistical convergence was given in [16] by means of ideals. Recall that a subfamily \mathscr{I} of the family $2^{\mathbb{N}}$ of all subsets of \mathbb{N} is called an *ideal* if for each $K, L \in \mathscr{I}$ we have $K \bigcup L \in \mathscr{I}$ and for each $K \in \mathscr{I}$ and each $L \subset K$ we have $L \in \mathscr{I}$. An ideal \mathscr{I} is called *non-trivial* if $\mathscr{I} \neq \emptyset$ and $\mathbb{N} \notin \mathscr{I}$. A non-trivial ideal \mathscr{I} is called *admissible* if \mathscr{I} contains all finite subsets of \mathbb{N} . Any non-trivial ideal \mathscr{I} defines a *filter*

$$\mathscr{F}(\mathscr{I}) = \{ K \subset \mathbb{N} : \mathbb{N} \setminus K \in \mathscr{I} \}.$$

For example,

$$\mathscr{I}_T = \{ K \subset \mathbb{N} : \delta_T(K) = 0 \}$$

is an admissible ideal and the \mathscr{I}_T -convergence coincides with the *T*-statistical convergence.

An admissible ideal $\mathscr{I} \subset 2^{\mathbb{N}}$ is said to have *property* (AP) if for every countable family of mutually disjoint sets K_1, K_2, \ldots from \mathscr{I} there exist sets L_1, L_2, \ldots from $2^{\mathbb{N}}$ such that the symmetric differences $K_i \Delta L_i$ ($i \in \mathbb{N}$) are finite and $L = \bigcup_i L_i \in \mathscr{I}$.

Remark 1 ([1], Proposition 1). The property (AP) is equivalent to the property (P): for every countable family of sets K_1, K_2, \ldots from \mathscr{I} there exist a set $K \in \mathscr{I}$ such that the differences $K_i \setminus K$ $(i \in \mathbb{N})$ are finite.

A sequence $\mathfrak{x} = (x_k) \in \omega(X)$ is said to be \mathscr{I} -convergent to $l \in X$, briefly \mathscr{I} -lim_k $x_k = l$, if for each $\varepsilon > 0$ the set $\{k \in \mathbb{N} : ||x_k - l|| \ge \varepsilon\}$ belongs to \mathscr{I} [16, Definition 3.1]. With the \mathscr{I} -convergence are closely related the following two notions. A sequence $\mathfrak{x} = (x_k) \in \omega(X)$ is said to be \mathscr{I}^* -convergent to $l \in X$, briefly \mathscr{I}^* -lim $x_k = l$, if there exists an index set $K = (k_i)$ such that $K \in \mathscr{F}(\mathscr{I})$ and $\lim_i x_{k_i} = l$ in X [16, Definition 3.2]). A sequence $\mathfrak{x} = (x_k) \in \omega(X)$ is said to be \mathscr{I} -bounded, briefly $x_k = O_{\mathscr{I}}(1)$, if there exists an index set $K = (k_i)$ such that $K \in \mathscr{F}(\mathscr{I})$ and the sequence (k_i) is bounded in X (cf. [10]). In the special case $\mathscr{I} = \mathscr{I}_T$ we write $O_{st_T}(1)$ instead of $O_{\mathscr{I}}(1)$.

We remark that the \mathscr{I}^* -convergence of number sequences was introduced already by Freedman [8] as \mathscr{I} -near convergence.

It is easy to see that \mathscr{I}^* -convergence implies \mathscr{I} -convergence and every \mathscr{I}^* -convergent sequence is \mathscr{I} -bounded.

The following characterization of *I*-convergence is important for us.

Proposition 1 ([16, Theorem 3.2]). If the ideal \mathscr{I} has property (AP), then \mathscr{I} -lim $x_k = l$ in a Banach space X if and only if \mathscr{I}^* -lim $x_k = l$.

By $c_{\mathscr{I}}(X)$ we denote the set of all \mathscr{I} -convergent *X*-valued sequences. Let $\ell_{\infty}(X)$, c(X) and $c_0(X)$ be the sets of all bounded, convergent and convergent to zero *X*-valued sequences, respectively. For $1 \le p < \infty$ let $\ell_p(X)$ be the set of sequences $(x_k) \in \omega(X)$ such that $\sum_k ||x_k||^p < \infty$.

Using Proposition 1 and Theorem 2, we proved in [15] the following Banach–Steinhaus type theorem for \mathscr{I} -convergence.

Theorem 3 ([15, Theorem 3]). Let X and Y be two Banach spaces, where X has a countable fundamental set Φ . If the ideal \mathscr{I} has property (AP), then the sequence (A_n) is $b\mathscr{I}$ -convergent (i.e., $(A_n x) \in c_{\mathscr{I}}(Y) \cap \ell_{\infty}(Y)$ for any $x \in X$) if and only if (1) holds and $(A_n \phi)$ is \mathscr{I} -convergent for every $\phi \in \Phi$. Thereby, the limit operator A, $Ax = \mathscr{I}$ -lim $A_n x$, is bounded and linear, and $||A|| \leq \sup_p ||A_n||$.

In this paper we introduce the notion of $b^*\mathscr{I}$ -convergence of sequences of bounded linear operators (A_n) and give an analogue of Theorem 3 by finding necessary and sufficient conditions for $b^*\mathscr{I}$ -convergence of such sequences (A_n) . As applications of this result we characterize infinite summability matrices $\mathfrak{A} = (A_{nk})$ of type $\mathfrak{A} : \lambda(X) \xrightarrow{b^*\mathscr{I}} c(Y)$ with $A_{nk} \in B(X, Y)$ $(n, k \in \mathbb{N})$ and $\lambda \in \{c, c_0, \ell_1\}$, also consider the weak $b^*\mathscr{I}$ -convergence in Banach spaces.

2. Main Theorems

In the following let *X*, *Y* be two Banach spaces, $A_n \in B(X, Y)$ ($n \in \mathbb{N}$) and let $\mathscr{I} \subset 2^{\mathbb{N}}$ be a non-trivial admissible ideal.

Recall that a sequence $(x_n) \in \omega(X)$ is said to be *weakly* \mathscr{I} -convergent (weakly T-statistically convergent) to a point $l \in X$ if \mathscr{I} -lim $x'(x_n) = x'(l)$ (st_T -lim $x'(x_n) = x'(l)$) for any $x' \in X'$ [2, 21]. We know that every weakly convergent sequence in a Banach space X is bounded. But a weakly \mathscr{I} -convergent sequence is not necessary \mathscr{I} -bounded (cf. [5, Theorem 1]). Example 2 from [5] shows that the Banach sequence space ℓ_2 contains a weakly statistically null sequence (z_k) with no bounded subsequences. Thus some results of Bhardwaj and Bala [2, Theorem 3.1 and Lemma 3.2] are incorrect. At it, defining $F_n x' = x'(z_n)$ ($x' \in \ell'_2$, $n \in \mathbb{N}$), we get the sequence (F_n) of bounded linear functionals $F_n : \ell'_2 \to \mathbb{R}$. Since $||F_n|| = ||z_n||$ by the classical Hahn–Banach theorem, the sequence of functionals (F_n) converges statistically to zero for any $x' \in \ell'_2$, but the sequence of norms ($||F_n||$) contains no bounded subsequences. This example justifies the following definition.

Definition 1. A sequence (A_n) of operators $A_n \in B(X, Y)$ $(n \in \mathbb{N})$ is said to be $b^*\mathscr{I}$ -convergent (to $A \in B(X, Y)$) if \mathscr{I} -lim $_nA_nx$ exists $(\mathscr{I}$ -lim $A_nx = Ax)$ for any $x \in X$ and there is a set $K \in \mathscr{F}(\mathscr{I})$ such that $(A_kx)_{k\in K}$ is bounded for every $x \in X$. In the special case $\mathscr{I} = \mathscr{I}_T$ we get the notion of b^*T -statistical convergence. The $b^*\mathscr{I}$ -limit and the b^*T -statistical limit of (A_n) are denoted, respectively, by $b^*\mathscr{I}$ -lim $_nA_n$ and b^*st_T -lim $_nA_n$.

In view of Theorem 1 we can say that a sequence (A_n) is $b^* \mathscr{I}$ -convergent if and only if \mathscr{I} -lim $A_n x$ exists for any $x \in X$ and

$$\sup_{k \in K} ||A_k||) < \infty \text{ for some } K \in \mathscr{F}(\mathscr{I}).$$
(2)

Theorem 3 shows that $b\mathscr{I}$ -convergence implies $b^*\mathscr{I}$ -convergence by the suppositions that *X* is separable and \mathscr{I} satisfies the condition (AP).

To prove our main theorem we need the following lemma.

Lemma 1. Suppose that the ideal \mathscr{I} has property (AP) and let $z_{kj} \in X$ $(k, j \in \mathbb{N})$. If \mathscr{I} -lim_k $z_{kj} = z_j$ for any $j \in \mathbb{N}$, then there exists an index set $N = (n_i)$ such that $N \in \mathscr{F}(\mathscr{I})$ and $\lim_i z_{n_i,j} = z_j$ for any $j \in \mathbb{N}$.

Proof. Assume that \mathscr{I} -lim_k $z_{kj} = z_j$ ($j \in \mathbb{N}$). Since \mathscr{I} has property (AP), by Proposition 1 there exist index sets $K_j = \{k_i(j)\}$ ($j \in \mathbb{N}$) such that

$$\lim_{i} z_{k_i(j),j} = z_j \quad (j \in \mathbb{N})$$
(3)

and $K'_j = \mathbb{N} \setminus K_j \in \mathscr{I}$ for any $j \in \mathbb{N}$. Because of Remark 1 we can find the set $N' \in \mathscr{I}$ such that the differences $K'_j \setminus N'$ $(j \in \mathbb{N})$ are finite. Now, for $N = \mathbb{N} \setminus N'$ we have that $N \in \mathscr{F}(\mathscr{I})$ and the differences $N \setminus K_j$ are finite. Consequently, denoting $N = (n_i)$, from (3) it follows that $\lim_i z_{n_i,j} = z_j$ for any $j \in \mathbb{N}$.

Theorem 4. Let X and Y be two Banach spaces, where X has a countable fundamental set Φ . If the ideal \mathscr{I} has property (AP). A sequence (A_n) of operators $A_n \in B(X, Y)$ is $b^*\mathscr{I}$ -convergent if and only if $(||A_n||)$ is \mathscr{I} -bounded, i.e., (2) holds, and $(A_n\phi)$ is \mathscr{I} -convergent for every $\phi \in \Phi$. Thereby, the limit operator A_0 , $A_0x = \mathscr{I}$ -lim A_nx , is bounded and linear, and $||A_0|| \leq \sup_{k \in K} ||A_k||$. If $A \in B(X, Y)$, then $b^*\mathscr{I}$ -lim $_nA_n = A$ if and only if $(||A_n||)$ is \mathscr{I} -bounded and \mathscr{I} -lim $_nA_n\phi = A\phi$ $(\phi \in \Phi)$.

Proof. If (A_n) is $b^* \mathscr{I}$ -convergent $(b^* \mathscr{I} - \lim_n A_n = A)$, then (2) is satisfied and $\mathscr{I} - \lim_n A_n \phi$ exists $(\mathscr{I} - \lim_n A_n \phi = A\phi)$ for every $\phi \in \Phi$.

Conversely, assume that (2) holds and \mathscr{I} -lim $A_n \phi_j$ exists (or \mathscr{I} -lim $A_n \phi_j = A \phi_j$) for every $j \in \mathbb{N}$, where $\Phi = \{\phi_j\}$. Applying Lemma 1 to $z_{nj} = A_n \phi_j$ (and $z_j = A \phi_j$), we fix an index set $N = (n_i) \in \mathscr{F}(\mathscr{I})$ such that $\lim_i A_{n_i} \phi_j$ exists ($\lim_i A_{n_i} \phi_j = A \phi_j$) for any $j \in \mathbb{N}$. Since the set $M = N \cap K$ also belongs to $\mathscr{F}(\mathscr{I})$, denoting $M = (m_i)$, we have that $\lim_i A_{m_i} \phi_j$ exists ($\lim_i A_{m_i} \phi_j = A \phi_j$) for any $j \in \mathbb{N}$ and $\sup_i ||A_{m_i}|| < \infty$. So, by Theorem 2, the limit $A_0 x = \lim_i A_0 x = \lim_i A_0 x = A x$) for any $x \in X$, $A_0 \in B(X, Y)$ and $||A_0|| \leq \sup_i ||A_0||$

 $A_0 x = \lim_i A_{m_i} x$ exists $(\lim_i A_{m_i} x = Ax)$ for any $x \in X$, $A_0 \in B(X, Y)$ and $||A_0|| \le \sup_i ||A_{m_i}||$. The proof is completed if we remark that $\lim_i A_{m_i} x = \mathscr{I} - \lim_i A_{m_i} x$ by Proposition 1.

It is known that the ideal $\mathscr{I}_T = \{K \subset \mathbb{N} : \delta_T(K) = 0\}$ defined by a non-negative regular matrix *T* has the property (AP) (see [9, Proposition 3.2]). Since \mathscr{I}_T -convergence coincides with *T*-statistical convergence, from Theorem 4 we immediately get the following Banach–Steinhaus type theorem for b^*T -statistical convergence.

Theorem 5. Suppose that *T* is a non-negative regular matrix and *X* has a countable fundamental set Φ . A sequence (A_n) of operators $A_n \in B(X, Y)$ is b^*T -statistically convergent if and only if (2) holds and st_T -lim $A_n\phi$ exists for any $\phi \in \Phi$. In this case the limit operator A_0 , $A_0x = st_T$ -lim A_nx $(x \in X)$, belongs to B(X, Y) and $||A_0|| \leq \sup_{k \in K} ||A_k||$. If $A \in B(X, Y)$, then b^*st_T -lim $_nA_n = A$ if and only if $(||A_n||)$ is \mathscr{I} -bounded and st_T -lim $_nA_n\phi = A\phi$ ($\phi \in \Phi$).

3. Some Applications

Let $\lambda(X)$ be a subspace of $\omega(X)$, $\mu(Y)$ a subspaces of $\omega(Y)$ and $\mathfrak{A} = (A_{nk})$ an infinite matrix of operators $A_{nk} \in B(X, Y)$ $(n, k \in \mathbb{N})$. We say that \mathfrak{A} maps $\lambda(X)$ into $\mu(Y)$, and write $\mathfrak{A} : \lambda(X) \to \mu(Y)$, if for all $\mathfrak{x} = (x_k) \in \lambda(X)$ the series $\mathfrak{A}_n \mathfrak{x} = \sum_k A_{nk} x_k$ $(n \in \mathbb{N})$ converge and the sequence $\mathfrak{A}\mathfrak{x} = (\mathfrak{A}_n\mathfrak{x})$ belongs to $\mu(Y)$.

It is well known that c(X), $c_0(X)$ and $\ell_{\infty}(X)$ are Banach spaces with the norm $\|\|\mathbf{x}\|_{\infty} = \sup_k \|x_k\|$, and $\ell_p(X)$ is Banach space with the norm $\|\|\mathbf{x}\|_p = \left(\sum_k \|x_k\|^p\right)^{1/p}$ if $1 \le p < \infty$.

For $x \in X$ and $n \in \mathbb{N}$ let $\mathfrak{e}(x) = (x, x, ...)$ be constant sequence and $\mathfrak{e}^k(x) = (e_j^k(x))$ the sequence with $e_j^k(x) = x$ if j = k and $e_j^k(x) = 0$ otherwise. It is not difficult to see that if Φ is a (countable) fundamental set in X, then $\mathscr{E}_0(\Phi) = {\mathfrak{e}^k(\phi) : k \in \mathbb{N}, \phi \in \Phi}$ is a (countable) fundamental set in Banach spaces $c_0(X)$ and $\ell_p(X)$, and $\mathscr{E}_0(\Phi) \bigcup \mathscr{E}_1(\Phi)$ with $\mathscr{E}_1(\Phi) = {\mathfrak{e}(\phi) : \phi \in \Phi}$ is a (countable) fundamental set in Banach space c(X).

Using Theorem 2, Zeller [24] (see also [19]) and Kangro [12] characterized the matrices $\mathfrak{A} : c(X) \rightarrow c(Y), \mathfrak{A} : c_0(X) \rightarrow c(Y)$ and $\mathfrak{A} : \ell_1(X) \rightarrow c(Y)$ as follows.

Theorem 6. Let $\mathfrak{A} = (A_{nk})$ be an infinite matrix with $A_{nk} \in B(X, Y)$. Then:

(i) $\mathfrak{A}: c(X) \rightarrow c(Y)$ if and only if

$$G_n = \sup_r \sup_{\|x_k\| \le 1} \left\| \sum_{k=1}^r A_{nk} x_k \right\| < \infty \quad (n \in \mathbb{N}),$$
(4)

$$\sup_{n} G_n < \infty, \tag{5}$$

$$\exists \lim_{n} A_{nk} x \quad (k \in \mathbb{N}, \ x \in X), \tag{6}$$

$$\exists \lim_{m} \sum_{k=1}^{m} A_{nk} x \quad (n \in \mathbb{N}, x \in X),$$
(7)

$$\exists \lim_{n} \sum_{k} A_{nk} x \quad (x \in X);$$
(8)

(ii) $\mathfrak{A}: c_0(X) \rightarrow c(Y)$ if and only if (4)–(6) hold;

(iii) $\mathfrak{A}: \ell_1(X) \rightarrow c(Y)$ if and only if (6) is satisfied and

$$H_n = \sup_k \left\| A_{nk} \right\| < \infty \quad (n \in \mathbb{N}),$$

$$\sup_n H_n < \infty,$$
(9)

Remark 2. It is not difficult to see, using Theorem 2, that in Theorem 6 it suffices to require the fulfillment of conditions (6)–(8) for all elements ϕ from a fundamental set Φ of X.

The notion of $b^* \mathscr{I}$ -convergence of sequences of bounded linear operators leads us to the definition of new type summability maps.

Definition 2. Let $\lambda(X)$ and $\mu(Y)$ be two linear subspaces of $\omega(X)$ and $\omega(Y)$, respectively, and let $\mathscr{I} \subset 2^{\mathbb{N}}$ be a non-trivial admissible ideal. We say that a matrix \mathfrak{A} maps $\lambda(X)$ in the sense of $b^*\mathscr{I}$ -convergence into $\mu(Y)$, and write $\mathfrak{A} : \lambda(X) \xrightarrow{b^*\mathscr{I}} \mu(Y)$, if \mathscr{I} -lim $\mathfrak{A}_n \mathfrak{x}$ exists for any $\mathfrak{x} \in \lambda(X)$ and there is an index set $N = (n_i)$ from $\mathscr{F}(\mathscr{I})$ such that the submatrix $\mathfrak{A}_{(N)} = (a_{n_i,k})$ maps $\lambda(X)$ into $\ell_{\infty}(Y)$. In the case of $\mathscr{I} = \mathscr{I}_T$ we get the matrices of type $\mathfrak{A} : \lambda(X) \xrightarrow{b^*s_T} \mu(Y)$.

Based on Theorems 4 and 5, we describe the matrices $\mathfrak{A} : \lambda(X) \xrightarrow{b^* \mathscr{I}} c(Y)$ and $\mathfrak{A} : \lambda(X) \xrightarrow{b^* \mathscr{I}_T} c(Y)$, where $\lambda \in \{c, c_0, \ell_p\}$.

Proposition 2. Let $\mathfrak{A} = (A_{nk})$ be an infinite matrix with $A_{nk} \in B(X, Y)$. Suppose that X has a countable fundamental set Φ and the ideal \mathscr{I} has property (AP). Then:

(i) $\mathfrak{A}: c(X) \xrightarrow{b^*\mathscr{I}} c(Y)$ if and only if (4) and (7) hold,

$$G_n = O_{\mathscr{I}}(1), \tag{10}$$

$$\exists \mathscr{I} - \lim_{n} A_{nk} \phi \quad (k \in \mathbb{N}, \ \phi \in \Phi), \tag{11}$$

$$\exists \mathscr{I} - \lim_{n} \sum_{k} A_{nk} \phi \quad (\phi \in \Phi);$$
(12)

(ii) $\mathfrak{A}: c_0(X) \xrightarrow{b^* \mathscr{I}} c(Y)$ if and only if (4), (10) and (11) hold;

362

(iii) $\mathfrak{A}: \ell_1(X) \xrightarrow{b^*\mathscr{I}} c(Y)$ if and only if (9) is satisfied and (H_n) is \mathscr{I} -bounded.

Proof. The equality $\mathfrak{A}_n^{(r)}\mathfrak{x} = \sum_{k=1}^r A_{nk} x_k$ defines a linear operator $\mathfrak{A}_n^{(r)}$ on c(X) and $c_0(X)$ for any $n, r \in \mathbb{N}$. Since

$$\|\mathfrak{A}_n^{(r)}\| = \left\|\sum_{k=1}^r A_{nk} x_k\right\|,\,$$

by Theorem 2 we get that the series $\mathfrak{A}_n\mathfrak{x}$ $(n \in \mathbb{N})$ converge for all $\mathfrak{x} \in c(X)$ and $\mathfrak{A}_n \in B(c(X), Y)$ if and only if (4), (7) are satisfied. Similarly, $\mathfrak{A}_n \in B(c_0(X), Y)$ if and only if (4) holds. Now, applying Theorem 4 to the operators \mathfrak{A}_n , we have that $\mathfrak{A} : c(X) \xrightarrow{b^*\mathscr{I}} c(Y)$ (or $\mathfrak{A} : c_0(X) \xrightarrow{b^*\mathscr{I}} c(Y)$) if and only if (10) holds and $(\mathfrak{A}_n\mathfrak{y})$ is \mathscr{I} -convergent for any $\mathfrak{y} \in \mathscr{E}_1(\Phi)$ (respectively, $\mathfrak{y} \in \mathscr{E}_0(\Phi)$). But this reduces to (11) and (12) because $\mathfrak{A}_n\mathfrak{e}_k(\phi) = A_{nk}\phi$ and $\mathfrak{A}_n\mathfrak{e}(\phi) = \sum_k A_{nk}\phi$.

Since $\mathfrak{A}_n \in B(\ell_1(X), Y)$ if and only if (9) holds, the statement (iii) also follows by Theorem 4.

The matrix map $\mathfrak{A}: \ell_p(X) \xrightarrow{b^* \mathscr{I}} c(Y)$ we consider in the special cases $Y = \mathbb{K}$ and 1 .Then <math>B(X,Y) = X' and so, $A_{nk} \in X'$ $(n,k \in \mathbb{N})$. In this case $\mathfrak{A}_n \in (\ell_p(X))'$ if and only if $(A_{nk})_{k \in \mathbb{N}} \in \ell_q(X')$, i.e., $\sum_k ||A_{nk}||^q < \infty$, where 1/p + 1/q = 1. Therefore, denoting $c = c(\mathbb{K})$ and using the same arguments as in the proof of Proposition 2, we get the following result.

Proposition 3. Let $\mathfrak{A} = (A_{nk})$ be an infinite matrix with $A_{nk} \in X'$. Suppose that X has a countable fundamental set Φ , the ideal \mathscr{I} has property (AP) and 1 , <math>1/p + 1/q = 1. Then $\mathfrak{A} : \ell_p(X) \xrightarrow{b^* \mathscr{I}} c$ if and only if (11) holds and

$$\sum_{k} \|A_{nk}\|^q = O_{\mathscr{I}}(1).$$

If $X = Y = \mathbb{K}$, then the matrix map \mathfrak{A} reduces to the transformation $A : \lambda \to \mu$ defined by an infinite scalar matrix $A = (a_{nk})$. Using the fact that for $Y = \mathbb{K}$ we have (see [12, p. 114])

$$\sup_{\|x_k\|\leq 1} \left\| \sum_{k=1}^r A_{nk} x_k \right\| = \sum_{k=1}^r \|A_{nk}\|,$$

from Propositions 2 and 3 we obtain the following corollary.

Corollary 1. Let $A = (a_{nk})$ be an infinite matrix of scalars, 1 and <math>1/p + 1/q = 1. If the ideal \mathscr{I} has property (AP), then:

(i)
$$A: c \xrightarrow{b^{+} g} c$$
 if and only if

$$\sum_{k} |a_{nk}| = O_{\mathscr{I}}(1), \tag{13}$$

$$\exists \mathscr{I}-\lim_{n} a_{nk} \quad (k \in \mathbb{N}), \tag{14}$$

$$\exists \mathscr{I}-\lim_n\sum_k a_{nk};$$

- (ii) $A: c_0 \xrightarrow{b^* \mathscr{I}} c$ if and only if (13) and (14) hold;
- (iii) $A: \ell_1 \xrightarrow{b^*\mathscr{I}} c$ if and only if (14) is satisfied, $h_n = \sup_k |a_{nk}| < \infty$ $(n \in \mathbb{N})$ and (h_n) is \mathscr{I} -bounded;
- (iv) $A: \ell_p \xrightarrow{b^*\mathscr{I}} c$ if and only if (14) is satisfied and

$$\sum_{k} |a_{nk}|^q = O_{\mathscr{I}}(1).$$

Letting $\mathscr{I} = \mathscr{I}_T$ in Propositions 2, 3 and Corollary 1, we get the characterizations of analogical matrix maps in the sense of b^*T -statistical convergence. We also remark that the matrix maps in the sense of $b\mathscr{I}$ - and bst_T -convergence were studied in [15].

At the beginning of Section 2 we remarked that a weakly \mathscr{I} -convergent sequence is not necessary \mathscr{I} -bounded. This fact leads us to a new variant of weak \mathscr{I} -convergence.

Definition 3. A sequence $\mathfrak{x} = (x_n) \in \omega(X)$ is said to be weakly $b^*\mathscr{I}$ -convergent to $l \in X$, briefly $wb^*\mathscr{I}$ - $\lim_n x_n = l$, if \mathfrak{x} is weakly \mathscr{I} -convergent to l and there is a set $K \in \mathscr{F}(\mathscr{I})$ such that the sequence $(x'(x_k))_{k \in K}$ is bounded for every $x' \in X'$. For $\mathscr{I} = \mathscr{I}_T$ we get the notion of weak b^*T -statistical convergence, in this case we write wb^*st_T - $\lim_n x_n = l$.

Using bounded linear functionals $F_z : X' \to \mathbb{R}$, $F_z x' = x'(z)$ $(x' \in X', z \in X)$, we can say that $wb^* \mathscr{I}$ -lim_n $x_n = l$ ($wb^* st_T$ -lim_n $x_n = l$) if and only if the sequence (F_{x_n}) is $b^* \mathscr{I}$ -convergent ($b^* T$ -statistically convergent) to F_l . Thus, since $||F_z|| = ||z||$, by Theorems 4 and 5 we get the following characterizations of these new types of weak convergence.

Proposition 4. Let $\mathfrak{x} = (x_n) \in \omega(X)$ and $l \in X$. Assume that X' has a countable fundamental set Φ' .

(i) If \mathscr{I} is an ideal with the property (AP), then $wb^*\mathscr{I}$ -lim_n $x_n = l$ if and only if

$$\|x_n\| = O_{\mathscr{I}}(1), \tag{15}$$

$$\mathscr{I}-\lim_{n}\phi'(x_{n})=\phi'(l)\quad (\phi'\in\Phi').$$
(16)

(ii) If T is a regular matrix, then $wb^*st_T - \lim_n x_n = l$ if and only if (15) and (16) are satisfied with st_T instead of \mathscr{I} .

Finally we apply Proposition 4 to Banach sequence spaces $c_0(X)$ and $\ell_p(X)$ with $1 . It is known that the dual spaces <math>c_0(X)'$ and $\ell_p(X)'$ are isometrically isomorphic, respectively, to $\ell_1(X')$ and $\ell_q(X')$, where 1/p + 1/q = 1 (see, for example, [18]). If Φ' is a fundamental set of X', then $\mathcal{E}_0(\Phi')$ is the fundamental set of $\ell_1(X')$ and $\ell_q(X')$. Thus from Proposition 4 we get the following two corollaries.

Corollary 2. Let $\mathfrak{x}_n = (x_{ni})$ $(n \in \mathbb{N})$ and $\mathfrak{x}_0 = (x_i)$ be the elements of $c_0(X)$. Assume that the dual X' has a countable fundamental set Φ' .

(i) If \mathscr{I} is an ideal with the property (AP), then $wb^*\mathscr{I}$ - $\lim_n \mathfrak{x}_n = \mathfrak{x}_0$ if and only if

$$\|\mathfrak{x}_n\|_{\infty} = O_{\mathscr{I}}(1),\tag{17}$$

$$\mathscr{I}-\lim_{i}\phi'(x_{ni})=\phi'(x_{i})\quad(\phi'\in\Phi',\,n\in\mathbb{N}).$$
(18)

(ii) If T is a non-negative regular matrix, then $wb^*st_T - \lim_n \mathfrak{x}_n = \mathfrak{x}_0$ if and only (17) and (18) hold with st_T instead of \mathscr{I} .

Corollary 3. Let $\mathfrak{x}_n = (x_{ni})$ $(n \in \mathbb{N})$ and $\mathfrak{x}_0 = (x_i)$ be the elements of $\ell_p(X)$ $(1 . Assume that X' has a countable fundamental set <math>\Phi'$.

(i) If \mathscr{I} is an ideal with the property (AP), then $wb^*\mathscr{I}$ - $\lim_n \mathfrak{x}_n = \mathfrak{x}_0$ if and only if (18) is true and

$$\|\mathfrak{x}_n\|_p = O_{\mathscr{I}}(1). \tag{19}$$

(ii) If T is a non-negative regular matrix, then $wb^*st_T - \lim_n \mathfrak{x}_n = \mathfrak{x}_0$ if and only (18) and (19) hold with st_T instead of \mathscr{I} .

Proposition 4(ii) and Corollary 3(ii), for $T = C_1$, may be considered as some corrected versions, respectively, of Theorem 3.1 and Lemma 3.2 from [2].

ACKNOWLEDGEMENTS The author is thankful for the support by institutional research funding IUT20-57 of the Estonian Ministry of Education and Research.

References

- M. Balcerzak, K. Dems, and A. Komisarski. Statistical convergence and ideal convergence for sequences of functions, Journal of Mathematical Analysis and Applications, 328, 715– 729. 2007.
- [2] V.K. Bhardwaj and I. Bala. On weak statistical convergence, International Journal of Mathematics and Mathematical Sciences, Art. ID 38530, 9, 2007
- [3] J. Connor. On strong matrix summability with respect to a modulus and statistical convergence, Canadian Mathematical Bulletin, 32, 194–198. 1989.
- [4] J. Connor. *A topological and functional analytic approach to statistical convergence*, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, pp. 403–413.
- [5] J. Connor, M. Ganichev, and V. Kadets. A characterization of Banach spces with separable duals via weak statistical convergence, Journal of Mathematical Analysis and Applications, 244, 251–261. 2000.
- [6] G. Di. Maio and Lj. D. R. Kočinac. Statistical convergence in topology, Topology and its Applications, 156, 28–45. 2008.

- [7] J. Fast. Sur la convergence statistique, Colloquium Mathematicum, 2, 241–244. 1951.
- [8] A. R. Freedman. *Generalized limits and sequence spaces*, Bulletin of the London Mathematical Society, 13, 224–228. 1981.
- [9] A. R. Freedman and J. J. Sember. *Densities and summability*, Pacific Journal of Mathematics, 95, 293–305. 1981.
- [10] J. A. Fridy and C. Orhan. *Statistical limit superior and limit inferior*, Proceedings of the American Mathematical Society, 125, 3625–3631. 1997.
- [11] H. Heuser. Funktionalanalysis, B. G. Teubner, Stuttgart, 1986.
- [12] G. Kangro. On matrix transformations of sequences in Banach spaces, Izvestiya Akademii Nauk Éstonskoi SSR. Seriya Tehnicheskikh i Fiziko-Matematicheskikh Nauk, 5, 108–128. 1956. (in Russian)
- [13] E. Kolk. Statistically convergent sequences in normed spaces, Reports of conference "Methods of Algebra and Analysis" (September 21–23, 1988, Tartu, Estonia), 63–66. 1988. (in Russian)
- [14] E. Kolk. The statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928:41–52 1991.
- [15] E. Kolk. Banach-Steinhaus type theorems for statistical and I-convergence with applications to matrix maps, The Rocky Mountain Journal of Mathematics, 40, 279–289. 2010.
- [16] P. Kostyrko, T. Šalát, and W. Wilczyński. *I*-convergence, Real Analysis Exchange, 26, 669–686. 2000/2001.
- [17] G. Köthe. *Topologische Lineare Räume. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 107, Springer-Verlag, Berlin–Heidelberg–New York, 1966.
- [18] I. E. Leonard. Banach sequence spaces, Journal of Mathematical Analysis and Applications, 54, 245–265. 1976.
- [19] I.J. Maddox. Infinite Matrices of Operators, Lecture Notes in Mathematics 786, Springer-Verlag, Berlin–Heidelberg–New York, 1980.
- [20] I. J. Maddox. *Statistical convergence in a locally convex space*, Mathematical Proceedings of the Cambridge Philosophical Society, 104, 141–145. 1988.
- [21] S. Pehlivan, C. Şençimen and Z. H. Yaman. *On weak ideal convergence in normed spaces*, Journal of Interdisciplinary Mathematics, 13, 153–162. 2010.
- [22] I. J. Schoenberg. *The integrability of certain functions and related summability methods*, The American Mathematical Monthly, 66, 361–375. 1959.

- [23] H. Steinhaus. *Sur la convergence ordinarie et la convergence asymptotique*, Colloquium Mathematicum, 2, 73–74. 1951.
- [24] K. Zeller. *Verallgemeinerte Matrixtransformationen*, Mathematische Zeitschrift, 56, 18–20. 1952.
- [25] A. Zygmund. *Trigonometric Series*, Cambridge University Press, Cambridge, 1979.