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Abstract. In this paper, for all real quadratic fields K = Q(
p

d) such that d is a positive square free
integer congruent to 2 or 3 modulo 4 and the period kd of the continued fraction expansion of the
quadratic irrational number ωd =

p
d is equal to 7, we describe Td , Ud explicitly in the fundamental

unit εd = (
Td+Ud

p
d

2
)(> 1) of Q(

p
d) and d itself by using five parameters appearing in the continued

fraction expansion of ωd .

2010 Mathematics Subject Classifications: 11A55, 11R11, 11R27

Key Words and Phrases: Continued Fraction, Quadratic Extensions, Fundamental Unit

1. Introduction

Explicit form of the fundamental units of real quadratic fieldsQ(
p

d) where d is congruent
to 1 modulo 4 and the period kd in the continued fraction expansion of the quadratic irrational
number ωd in Q(

p
d) is equal to 3 and 4, 5 was described in [5, 6] respectively. Later in [3],

explicit form of the fundamental units of all real quadratic fields Q(
p

d) such that the period
in the continued fraction expansion of the quadratic irrational number ωd in Q(

p
d) is equal

to 6 was obtained.
In this paper, for all real quadratic fields Q(

p
d) such that d is congruent to 1 modulo

4 and the period kd in the continued fraction expansion of the quadratic irrational number
ωd =

1+
p

d
2

is equal to 7, we described Td , Ud explicitly in the fundamental unit εd of Q(
p

d)
and d itself by using five parameters appearing in the continued fraction expansion of ωd .

In this paper, we consider all real quadratic fields Q(
p

d) where d ≡ 2,3(mod4) and the
period kd of the continued fraction expansion ofωd =

p
d is equal to 7 and describe explicitly

coefficients Td and Ud in the fundamental unit εd = (
Td+Ud

p
d

2
)(> 1) of Q(

p
d) and d itself by

using five parameters appearing in the continued fraction expansion of ωd .
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Let I(d) be the set of all quadratic irrational numbers in Q(
p

d). For an element ξ of I(d)
if ξ > 1, −1 < ξ

′
< 0 then ξ is called reduced, where ξ

′
is the conjugate of ξ with respect to

Q. More information on reduced irrational numbers may be found in [2, 7]. We denote by
R(d) the set of all reduced quadratic irrational numbers in I(d). It is well known that if an
element ξ of I(d) is in R(d) then the continued fractional expansion of ξ is purely periodic.
Moreover, the denominator of its modular automorphism is equal to fundamental unit εd of
Q(
p

d) and the norm of εd is (−1)kd [4]. In this paper [x]means the greatest integer less than
or equal to x and continued fraction with period k is generally denoted by [a0, a1, a2, . . . , ak].

2. Preliminaries

In this section some of the important required preliminaries and lemmas are given.
For any square-free positive integer d, we can put d = a2 + b with a, b ∈ Z, 0 < b ≤ 2a.

Here, since
p

d − 1 < a <
p

d the integers a and b are uniquely determined by d. In this
paper we will concern with all real quadratic fields Q(

p
d) such that d is congruent to 2 or 3

modulo 4 and the period kd is equal to 7.
Let d = a2+ b ≡ 2, 3(mod4), then we consider the following three cases:

Case 1. If b is congruent to 1 modulo 4, then d can only be congruent to 2 modulo 4. And
for this case it is obvious that a is odd.

Case 2. If b is congruent to 2 modulo 4, then d can be congruent to 2 or 3 modulo 4. In this
case, a is even when d is congruent to 2 modulo 4 and a is odd when d is congruent
to 3 modulo 4.

Case 3. If b is congruent to 3 modulo 4, then d can only be congruent to 3 modulo 4. And
for this case it is obvious that a is even.

Lemma 1. For a square-free positive integer d congruent to 2 or 3 modulo 4, we put
ωd =

p
d, q0 = [ωd], ωR = q0 +ωd . Then ωd /∈ R(d), but ωR ∈ R(d) holds. Moreover, for the

period k of ωR, we get ωR = [2q0, q1, . . . , qk−1] and ωd = [q0, q1, . . . , qk−1, 2q0]. Furthermore,
let ωR =

(Pk−1ωR+Pk−2)
(Qk−1ωR+Qk−2)

= [2q0, q1, . . . , qk−1,ωR] be a modular automorphism of ωR, then the

fundamental unit εd of Q(
p

d) is given by the following formula:

εd = (
Td + Ud

p
d

2
)> 1, Td = 2q0Qk−1+ 2Qk−2, Ud = 2Qk−1

where Q i is determined by Q−1 = 0, Q0 = 1, Q i+1 = qi+1Q i +Q i−1, (i ≥ 0).

Proof. See [5, Lemma 1].

Lemma 2. For a square-free positive integer d, we put d = a2 + b (0 < b ≤ 2a), a, b ∈ Z.
Moreover let ωi = `i +

1
ωi+1

(`i = [ωi], i ≥ 0) be the continued fraction expansion of ω = ω0
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in R(d). Then each ωi is expressed in the form ωi =
a−ri+

p
d

ci
(ci , ri ∈ Z), and `i , ci , ri can be

obtained from the following recurrence formula:

ω0 =
a− r0+

p
d

c0
,

2a−ri = ci`i + ri+1,

ci+1 =ci−1+ (ri+1− ri)`i (i ≥ 0), where 0≤ ri+1 < ci , c−1 =
(b+ 2ar0− r0

2)
c0

.

Moreover for the period k ≥ 1 of ω0, we get

`i =`k−i (1≤ i ≤ k− 1),

ri =rk−i+1, ci = ck−i (1≤ i ≤ k).

Proof. See [1, Proposition 1].

Lemma 3. For a square-free positive integer d congruent to 2 or 3 modulo 4, we put ωd =
p

d,
q0 = [ωd] and ωR = q0+ωd .

If we put ω=ωR in Lemma 2 , then we have the following recurrence formula:

r0 =r1 = 0,

c0 =1, c1 = b,

`0 =2q0,`i = qi (1≤ i ≤ k− 1).

Proof. The proof follows easily from Lemma 2.

3. Main Results

Theorem 1. For a positive square-free integer d congruent to 2 modulo 4, we assume kd = 7.
Then, if b is congruent to 1 modulo 4, we get

ωd = [a,`1,`2,`3,`3,`2,`1, 2a]

for three positive integers `1, `2, `3 such that `i ≥ 1 (i = 1,2, 3) and then

(Td , Ud) = (2[a(A
2+ B2) + BC + A`2], 2(A2+ B2))

and
d = A2r2+ 2rD+ E

hold. Moreover r and s are positive integers determined uniquely by

a =Ar + `1s

A2+B2− C2− `2
2 = 2rB− 2s(A+ B`3)
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where A, B, C, D and E are determined uniquely as follows:

A=`1`2+ 1

B =`1+ A`3

C =`2`3+ 1

D =A`1s+ `2

E =`1
2s2+ 2s+ 1

Proof. In the case of b ≡ 1(mod4), it can be easily seen that a is an odd integer since d
is congruent to 2 modulo 4. We can put b = 4m+ 1 for a non-negative integer m satisfying
0 ≤ 4m < 2a. Since q0 = [ωd] = [

p
d] = a and ωR = a+

p
d, it follows from Lemma 3 that

r0 = r1 = 0, c0 = 1, c1 = 4m+ 1 and `0 = 2a. Since kd = 7, we get `1 = `6, `2 = `5 and
`3 = `4 from Lemma 2. Then we have

ωd = [a,`1,`2,`3,`3,`2,`1, 2a]

for three positive integers `1, `2, `3 such that `i ≥ 1 (i = 1, 2,3). From Lemma 2 we get

2a = (4m+ 1)`1+ r2 (1)

since r1 = 0 and c1 = 4m+ 1. From (1), we obtain (4m+ 1)`1 + r2 ≡ 0 (mod 2). So there
exists a positive integer r such that r2 = 2r − `1. By substitution of r2 in (1) we get

a = 2m`1+ r. (2)

Here since a is odd, r must be an odd integer, too. It follows from Lemma 2 that c2 = 1+ r2`1
and 2a = c2`2+ r3+ r2. Thus,

2a = (1+ r2`1)`2+ r3+ r2 (3)

is obtained. Then
(4m+ 1)`1 = (1+ r2`1)`2+ r3 (4)

holds from (1) and (3). Thus we get `2 + `3 ≡ 0 (mod `1). There exists a positive integer t
such that r3 = `1 t − `2. By substitution of r3 in (4), we get 4m= t + 2r`2− `1`2− 1. Thus if
we put A= `1`2+1, then we get t−A= 4m−2r`2. Since t−A is even, we can put t−A= 2s
for a positive integer s. Hence, 4m = 2s + 2r`2 is obtained. Therefore we get a = Ar + `1s
from (2). On the other hand,

c3 = 4m+ 1+ (r3− r2)`2 (5)

is obtained from Lemma 2. By substitution of r2 = 2r − `1 and r3 = `1 t − `2 in (5), we get
c3 = At − `2

2. Moreover from Lemma 2, we get 2a = c3`3+ r3+ r4. Thus

r4 = (2r − `1− t`3)A+ `2(`2`3+ 1) (6)
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is obtained because of (3) and c3 = At − `2
2. Furthermore, c3 = At − `2

2 and
c4 = (1+ r2`1) + (r4− r3)`3 imply At − `2

2 = 1+ r2`1+ r4`3− r3`3 since c3 = c4 . Thus,

At − `2
2 = (1+ `2`3)

2+ 2r(`1+ A`3)− t`3(`1+ A`3)− `1(`1+ A`3)

is obtained since r2 = 2r − `1, r3 = `1 t − `2 and r4 = (2r − `1 − t`3)A+ `2(`2`3 + 1). Thus
if we put B = `1 + A`3 and C = `2`3 + 1, we get A2 + B2 − C2 − `2

2 = 2rB − 2s(A+ B`3)
since t − A= 2s. If we assume that the integers r and s are not uniquely determined, we get
A2+ B2 = 0 which is a contradiction. Therefore, the integers r and s are uniquely determined
by a = Ar + `1s and A2+ B2− C2− `2

2 = 2rB− 2s(A+ B`3).
Now, since ωd = [a,`1,`2,`3,`3,`2,`1, 2a] implies Q5 = BC + A`2 and Q6 = A2 + B2 by

Lemma 1, we obtain

(Td , Ud) = (2[a(A
2+ B2) + BC + A`2], 2(A2+ B2)).

Furthermore, if we put D = A`1s+ `2 and E = `1
2s2+2s+1, then we get d = A2r2+2rD+ E

because b = 2s+ 2r`2+ 1. Thus, the theorem is proved.

As an application of this theorem, we can practically determine ωd where
d = 314 = 172 + 25. Since q0 = a and `0 = 2a, it follows that q0 = 17 and `0 = 34. On the
other hand, we get m= 6, since b = 4m+1. From a = 2m`1+ r, we obtain `1 = 1 and r = 5.
Thus we get r2 = 9 immediately. Since 2a = (1+ r2`1)`2+ r2+ r3, c3 = 4m+ 1+ (r3− r2)`2
and 2a = c3`3+ r3+ r4, we obtain `2 = 2, r3 = 5, c3 = 17, `3 = 1 and r4 = 12. Hence ωd can
be determined as follows:

ωd = [17, 1,2, 1,1, 2,1, 34]

Moreover fundamental unit of Q(
p

314) can be easily determined as

εd =
886+ 50

p
314

2

since A= 3, B = 4, C = 3. Furthermore by using r3 = `1 t − `2 and t − A= 2s, we get t = 7
and s = 2. Thus D = 8 and E = 9 is obtained easily.

Theorem 2. Let d = a2+b ≡ 2,3 (mod 4) be a positive square-free integer with b ≡ 2 (mod 4).
If kd = 7, then we get

ωd = [a,`1,`2,`3,`3,`2,`1, 2a]

for the three positive integers `1, `2, `3 such that `i ≥ (i = 1,2, 3) and then

(Td , Ud) = (2[a(A
2+ B2) + BC + A`2], 2(A2+ B2))

and
d = A2r2+ 2rD+ E

hold. Moreover, r and s are positive integers determined uniquely by

a =Ar + `1s
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−`2[`2+ `3(C + 1)]− 1= 2r(`2+ A`3)− 2s(B`3+ A)

where A, B, C, D and E are determined uniquely as follows:

A=`1`2+ 1

B =A`3+ `1

C =`2`3+ 1

D =A`1s+ `2

E =`1
2s2+ 2s.

Proof. In the case of b ≡ 2 (mod 4), we put b = 4m+ 2 for a positive integer m satisfying
0 < 2m+ 1 ≤ a. Since q0 = [ωd] = [

p
d] = a, it follows from Lemma 3 that r0 = r1 = 0,

c0 = 1, c1 = 4m+ 2, `0 = 2a. Since kd = 7, we get `1 = `6, `2 = `5 and `3 = `4 by Lemma 2.
Then we have

ωd = [a,`1,`2,`3,`3,`2,`1, 2a]

for three integers `1, `2, `3 such that `i ≥ 1 holds. From Lemma 2 we get

2a = (4m+ 2)`1+ r2 (7)

since r1 = 0, c1 = 4m+ 2. From (7), we have (4m+ 2)`1 + r2 ≡ 0 (mod 2) and we can put
r2 = 2r for an integer r such that r ≥ 0. Hence, it follows from (7)

a = (2m+ 1)`1+ r. (8)

It follows from Lemma 2 that
c2 = 1+ `1r2 (9)

and
2a = c2`2+ r2+ r3. (10)

Then from (7), (9) and (10) we have

(4m+ 2)`1 = c2`2+ r3. (11)

Moreover, we can write `2 + r3 ≡ 0 (mod `1) from (9) and (11). So there exists a positive
even integer t such that r3 = `1 t−`2. Since t is even, we can put t = 2s for a positive integer
s. Thus r3 = 2s`1− `2 is obtained. By substitution of r3 in (11), we get

4m= 2s+ 2r`2− 2. (12)

It follows from (8) and (12) that a = r(`1`2+ 1) + s`1 is written. Thus if we put
A = `1`2 + 1, then we get a = Ar + s`1. On the other hand, we get 2a = c3`3 + r3 + r4 and
c3 = 4m+ 2+ (r3 − r2)`2 from Lemma 2. It follows from a = Ar + `1s, 2a = c3`3 + r3 + r4,
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c3 = 4m+ 2+ (r3 − r2)`2 and (12) that r4 = 2Ar − 2s`3A+ `2(`2`3 + 1). Thus, if we put
C = `2`3+ 1 then we get

r4 = 2Ar − 2s`3A+ C`2. (13)

Moreover, c3 = 4m+ 2+ (r3− r2)`2 and c4 = 1+ r2`2+ (r4− r3)`3 imply

4m= 2r2`2+ r4`3− r3`3− r3`2− 1 (14)

since c3 = c4. Then by substitution r3 = 2s`1− `2, (12) and (13) in (14) we obtain

−`2
2− `2`3(C + 1)− 1= 2r(`2+ A`3)− 2s[(`1+ A`3)`3+ A].

Then if we put B = `1+ A`3 we get −`2
2− `2`3(C + 1)− 1= 2r(`2+ A`3)− 2s(B`3+ A).

If we assume that the integers r and s are not determined uniquely from a = Ar + `1s and
−`2

2 − `2`3(C + 1)− 1 = 2r(`2 + A`3)− 2s(B`3 + A) we get A(A+ B`3) + `1(A`3 + `2) = 0
which is a contradiction. Therefore, the integers r and s are uniquely determined.

Now, since ωd = [a,`1,`2,`3,`3,`2,`1, 2a] implies Q5 = BC + A`2 and Q6 = A2 + B2

by Lemma 1, we obtain Td = 2[a(A2 + B2) + BC + A`2] and Ud = 2(A2 + B2), respectively.
Moreover if we put D = A`1s+ `2 and E = `1

2s2 + 2s, then we get d = A2r2 + 2rD+ E since
b = 2s+ r`2. Thus, the theorem is proved completely.

As an application of this theorem, we can easily determine ωd where d = 202 = 142 + 6.
Since q0 = a and `0 = 2a, we get q0 = 14 and `0 = 28. On the other hand, we get m= 1 since
b = 4m+ 2. Then we get `1 = 4 and r = 2 from a = (2m+ 1)`1 + r and r < 2m+ 1. Hence
r2 = 4 is obtained. It follows from 4m = 2s+ 2r`2 − 2 that `2 = 1 and s = 1. Moreover, we
get r3 = 7 since r3 = 2s`1 − `2. Since c3 = 4m+ 2+ (r3 − r2)`2 we obtain c3 = 9. By using
2a = c3`3 + r3 + r4 and r4 < c3, we get `3 = 2 and r4 = 3. Hence ωd can be determined as
follows:

ωd = [14, 4,1, 2,2, 1,4, 28]

Furthermore the fundamental unit of Q(
p

202) can be easily determined as

εd =
6282+ 442

p
202

2

since A= 5, B = 14, C = 3. Moreover it is easily seen that D = 21 and E = 18.

Theorem 3. For a positive square-free integer d congruent to 3 modulo 4, we assume kd = 7.
Then, if b is congruent to 3 modulo 4, we get

ωd = [a,`1,`2,`3,`3,`2,`1, 2a]

for three positive integers `1, `2, `3 such that `i ≥ 1 (i = 1,2, 3), and then

(Td , Ud) = (2[a(A
2+ B2) + BC + A`2], 2(A2+ B2))

and
d = A2r2+ 2rD+ E
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hold where A, B, C, D and E are determined uniquely as follows:

A=`1`2+ 1

B =`1+ A`3

C =`2`3+ 1

D =A`1s+ `2

E =`1
2s2+ 2s+ 3.

Moreover, r is an odd integer and s is a positive integer determined uniquely by

a =Ar + `1s

3(A2+ B2)− C2− `2
2 = 2rB− 2s(A+ B`3).

Proof. In the case of b ≡ 3 (mod 4), it can be easily seen that a is an even integer since d
is congruent to 3 modulo 4. We can put b = 4m+ 3 for a non-negative integer m satisfying
0 ≤ 4m < 2a− 2. Since q0 = [ωd] = [

p
d] = a and ωR = a+

p
d, it follows from Lemma 3

that r0 = r1 = 0, c0 = 1, c1 = 4m+ 3 and `0 = 2a. Since kd = 7, we get `1 = `6, `2 = `5 and
`3 = `4 from Lemma 2. Then we have

ωd = [a,`1,`2,`3,`3,`2,`1, 2a]

for three positive integers `1, `2, `3 such that `i ≥ 1 (i = 1, 2,3). From Lemma 2 we get

2a = (4m+ 3)`1+ r2 (15)

since r1 = 0 and c1 = 4m+3. From (15), we obtain (4m+3)`1+r2 ≡ 0(mod2). So there exists
a positive integer r such that r2 = 2r−3`1. By substitution of r2 in (15) we get a = 2m`1+ r.
Here r is an even integer, since a is even. It follows from Lemma 2 that c2 = 1+ r2`1 and
2a = c2`2+ r3+ r2. Thus, 2a = (1+ r2`1)`2+ r3+ r2 is obtained. Then

(4m+ 3)`1 = (1+ r2`1)`2+ r3 (16)

holds from (15). Thus we get `2 + `3 ≡ 0 (mod `1). So there exists a positive integer t such
that r3 = `1 t − `2. By substitution of r3 in (16), we get 4m = t + 2r`2 − 3(`1`2 + 1). Thus
if we put A = `1`2 + 1, then we get t − 3A = 4m− 2r`2. Since t − 3A is even, we can put
t − 3A = 2s for a positive integer s. Hence, 4m = 2s + 2r`2 is obtained. Therefore we get
a = Ar + `1s since a = 2m`1+ r. On the other hand,

c3 = 4m+ 3+ (r3− r2)`2 (17)

is obtained from Lemma 2. Thus we get from (17) c3 = At − `2
2 since r2 = 2r − 3`1 and

r3 = `1 t − `2. Moreover, from Lemma 2 we get 2a = c3`3+ r3+ r4. Thus
r4 = (2r − 3`1 − t`3)A+ `2(`2`3 + 1) is obtained because of 2a = (1+ r2`1)`2 + r2 + r3 and
c3 = At − `2

2.
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Furthermore, c3 = At − `2
2 and c4 = (1+ r2`1) + (r4− r3)`3 imply

At − `2
2 = 1+ r2`1+ r4`3− r3`3 since c3 = c4. Thus,

At − `2
2 = (1+ `2`3)

2+ 2r(`1+ A`3)− t`3(`1+ A`3)− 3`1(`1+ A`3)

is obtained since r2 = 2r − `1, r3 = `1 t − `2 and r4 = (2r − 3`1− t`3)A+ `2(`2`3+ 1). Thus,
if we put B = `1 + A`3 and C = `2`3 + 1, we get 3(A2 + B2)− C2 − `2

2 = 2rB − 2s(A+ B`3)
since t − 3A= 2s. If we assume that the integers r and s are not uniquely determined, we get
A2+ B2 = 0 which is a contradiction. Therefore, the integers r and s are uniquely determined
by a = Ar + `1s and 3(A2+ B2)− C2− `2

2 = 2rB− 2s(A+ B`3).
Now, since ωd = [a,`1,`2,`3,`3,`2,`1, 2a] implies Q5 = BC + A`2 and Q6 = A2 + B2 by

Lemma 1, we obtain Td = 2[a(A2+B2)+BC+A`2] and Ud = 2(A2+B2). Moreover, if we put
D = A`1s+`2 and E = `1

2s2+2s+3, then we get d = A2r2+2rD+ E since b = 2s+2r`2+3.
Thus, the proof is completed.

4. Conclusion

In this paper, some results are presented in order to determine the fundamental units of
certain quadratic fields Q(

p
d) with the period kd of the continued fraction expansion of the

quadratic irrational number ωd is equal to 7. These results provide us a practical method in
order to determine both the continued fraction expansion of the quadratic irrational number
ωd and the fundamental units of certain real quadratic fields. By using these results both
the continued fraction expansion of the quadratic irrational number ωd and the fundamental
units of certain real quadratic fields can be rapidly determined without using long algorithms.

The similar results can be proved for all real quadratic fields with the period kd of the
continued fraction expansion of the quadratic irrational number ωd is higher than 7.
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