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Abstract. In this paper we develop a novel tree based radial basis function neural networks (RBF-NNs)
model incorporating logistic regression. We aim to improve the classification performance of logistic
regression method by pre-processing the input data in RBF-NN frame. Although the scope of our pro-
posed method is binary classification in this paper, it is easy to generalize it for multi-class classification
problems. Furthermore, our model is very convenient to adapt for n < p classification problem that is
very popular yet difficult topic in statistics. We show the generalization and classification performance
of our model using simulated data. We have also applied our model on a real life data set gathered
from hydraulic fracturing in Oil & Gas wells. The results show the high classification performance of
our model that is superior to logistic regression. We have coded our model on R software. Logistic
Regression applications were carried out using IBM SPSS Version 20.
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1. Introduction

Radial basis function (RBF) neural networks (NNs) [5] are one of the techniques to handle

binary classification problems. Using fewer assumptions to compare parametric statistical

techniques is one of the reasons that RBF-NNs has become very popular for applications for

real life data [6]. However, there are some problems accompanying RBF networks such as

over fitting, randomness in parameter detection, and using a gradient approach that might

lead networks to fixate on a local optimum. Furthermore, there is no theoretical justification

for determining the number of hidden neurons in the network. In this paper, we develop

a novel tree-based RBF-NN model incorporating logistic regression in order to avoid such

problems as well as to improve the classification performance of the logistic regression.
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There are several studies in the literature combining RBF networks with other statistical

techniques to improve its performance. Kubat [11] introduced the idea of initializing RBF net-

works with decision trees. Following Kubat [11], Orr [12] used classification and regression

trees to determine the center and radius parameters of RBF functions. Akbilgic and Bozdogan

[2, 3] improved Orr’s [12] work by bringing ridge regression and variable selection scheme

into the RBF-NN frame.

In our model, we use classification and regression trees (CART) [4] to determine the

center and radius parameters of radial basis functions taking place in the hidden layer of RBF

networks. Each terminal node obtained by CART corresponds to a hidden neuron in the RBF

network [11, 12]. Thus the number of hidden neurons on a hidden layer is automatically

determined. At this point, each hidden neuron carries out a nonlinear transformation of

predictors via RBFs into the hidden layer.

Usage of the new data that is a nonlinear transformation of original data by the hidden

layer, as predictors highly tends to cause singularity problem of design matrix. To be able

to handle the possible singularity problem, we reduce the dimensionality of the hidden layer

by using the AIC [1] based stepwise technique for logistic regression. By doing so, not only

do we handle the singularity problem in logistic regression, but we also reduce the size of

the RBF-NN model, which prevents the model from the over fitting problem. Furthermore,

the proposed model leads us to obtain completely continuous predictors in hidden layer by

processing original categorical predictors via tree-based RBFs. Hence, the data become very

suitable to be processed using logistic regression in terms of continuity assumption of predic-

tors.

In Section 2, we described our proposed method right after giving brief definitions of

RBF-NNs, CART, and the logistic regression. Section 3 is to show our proposed model’s clas-

sification and generalization performance. To do so, we apply our model on simulated data

and a real life data set derived from hydraulic fracturing operations in Oil & Gas wells. We

discuss our model and the results in the Conclusions section.

2. Tree Based Logistic RBF Network Model with Logistic Regression

In this paper we developed a novel approach for binary classification problems by embed-

ding the classification, regression trees, and the logistic regression into the RBF-NN frame.

Brief definitions of the techniques used, as well as their role in RBF-NN frame, are described

in following subsections.

2.1. Radial Basis Function Neural Networks

Radial basis function neural networks are special types of neural networks. RBF-NNs are

distinguished by having only one hidden layer using RBFs as an activation function of hidden

neurons. Furthermore, input data is directly sent to the hidden layer without being weighted

unlike the other multi layer feed forward neural network models [7]. The simple presentation

of RBF-NN is given by (1) where the outputs are modeled as a sum of m weighted radial basis
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Figure 1: Radial Basis Function Neural Network.

functions h(·) with centers c j , radii r j , and weights wj ( j = 1 . . . m):

ŷi = f (x; w, c, r) =

m
∑

j=1

wjh(
xi − c j

r j

) i = 1, . . . , n (1)

In (1), hj(x) are RBFs, transferring input space nonlinearly to hidden layer, and w are

the parameters connecting hidden layer to output layer. The Figure 1 simply presents the

structure of RBF-NN.

Radial basis functions produce monotonically increasing or decreasing values by moving

away from a center which is a parameter in RBF-NN model. By the strong localization property

of RBFs, the RBF-NN model possesses the properties of best approximation [13]. Although

there are several RBFs seen in the literature, in this study we use the most common one,

Gaussian RBF in 2 [9].

h(x; c, r) = e−
"

x−c
r

#2

(2)

During the RBF learning, there are basically three parameters to be determined; w, c, and

r. Furthermore, the number of hidden neurons (m) in the hidden layer can be considered

as another parameter. As explained in the following subsections, m, c, and r parameters are

determined by classification and regression trees while the w is determined by using logistic

regression.

2.2. Classification and Regression Trees for the Proposed Model

Classification and Regression Trees (CART) [4] is one of the tree-based statistical tech-

niques for prediction and classification problems depending on the type of target variables,

either continuous or categorical. The idea of the CART algorithm is based on recursively split-

ting input space into two hyper rectangles, minimizing a fitness value such as prediction or
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classification error, and turning input space to smaller hyper-rectangles including data points.

The end nodes, called terminal nodes, are the hyper-rectangles where there is no more split.

Following Kubat [11], and Orr [12], we obtained center and radius parameters of RBFs from

terminal nodes. At this point, each terminal node corresponds to a hidden neuron in RBF-NN

structure that solves the problem of determining the number of hidden neurons in the hid-

den layer of the network. Center coordinates of the terminal nodes correspond to the center

parameters (c) of RBFs while the widths (s) of the terminal nodes are used to obtain radius

parameter (r) of RBFs by scaling with a α parameter, r = αs. Here, α is another parameter

of our model that needs to be optimized. Figure 2 illustrates how the two-dimensional input

space is split into hyper-rectangles including data points. The beauty of classification and re-

gression trees is to be able to handle the different input-output relationships in different sub

spaces of overall input space as can be seen in Figure 2.

Figure 2: Splitting the data space into sub-spaces using CART

2.3. Logistic Regression for the Proposed Model

Logistic regression is one of the most commonly used classification methods in the litera-

ture. For a given input variables X , the logistic regression function is given by (3) [14], where

the regression parameters β are determined by numerical optimization, such as in Newton’s

Method.

y =
1

1+ e−
∑

Xβ
(3)

We use logistic regression to estimate the hidden layer weights wj , and for classification
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in the output layer of the RBF-NN frame. In our model, the H matrix, which is the nonlinear

transformation of predictors under the RBF-NN frame, replaces X in (3).

Hn×(m+1) =
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(4)

2.4. Proposed Model: Data Flow Algorithm

Our proposed method is based on pre-processing data by using classification and regres-

sion trees before applying logistic regression in the RBF-NN frame. The data flow of proposed

method is explained step by step. Note that there are two conditional steps depending on the

problem specifications.

Step 1 Use CART to split the original p-dimensional input space into m hyper-rectangles.

Step 2 (Conditional) If n < p and/or n < m, prune the tree until m is small enough to avoid

a design matrix that is rank deficient.

Step 3 From each terminal node, compute c j and r j = αs j , and place them in the m neurons

of the RBF hidden layer.

Step 4 With the weights initialized to 1, transform the original n× p matrix X to the n×m

matrix H using the parameterized radial basis functions.

Step 5 Using the initial H matrix and the original n × 1 matrix of binary class labels, y ,

perform logistic regression to estimate the optimal weight parameters, wj .

Step 6 (Conditional) Use stepwise logistic regression to avoid singularity of the design matrix

and to avoid over fitting.

Step 7 Obtain the final classifier ŷ by combining (3) and (4), with the weights from Step 5.

Following the given steps of the proposed model, the final output of the model is given by

(5).

y =
1

1+ e
−

m
∑

j=0

H(x;c,r)w

(5)

As can be seen from the steps of the proposed method, our model gives us options to solve

n< p classification problems that is one of the popular and most difficult problems in statistics

and machine learning.

Applications of our models on simulated and real data are documented in the following

section.
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3. Applications

In this section we first apply our method on simulated data in order to show the general-

ization performance of the proposed method. We compare our results with classical logistic

regression. After showing the generalization performance of our method, we applied it using

real data. All calculations for the proposed model are carried out using R [8] while for the

logistic regression, SPSS 20 is used.

3.1. Application of Proposed Method on Simulated Data

We aimed to explore the generalization performance of our proposed method on simulated

data. Simulation data included a mixture of two bivariate normal distribution, N(µ,Σ), which

are highly overlapped as it is seen in Figure 3. The number of observations of each group are

specified as 250 each, and parameters of the distributions for each group are defined below.

We ran our model for generated data by chancing the α parameter from the set

{.15, .20, .25, . . . , 2.5}. We find best α parameter as alpha = 0.9 giving the highest classifica-

tion accuracy. The confusion matrix obtained for alpha = 0.9 is shown in Table 1.

µ1 =

+

2.0

1.0

,

Σ1 =

+

1.2 0.1

0.1 0.25

,

,

µ2 =

+

3.0

2.0

,

Σ2 =

+

0.5 −0.1

−0.1 0.3

,

Figure 3: Highly Overlapped Structure of Simulated Data.
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Table 1: Confusion Matrix for Log-RBF-NN Model

Group Label 0 1 Total Accuracy

0 219 31 250 87.60%

1 18 232 250 92.80%

Total 500 90.20%

Table 2: Confusion Matrix for Logistic Regression

Group Label 0 1 Total Accuracy

0 215 35 250 86.00%

1 26 224 250 89.60%

Total 500 87.80%

Table 3: Confusion Matrix for Train Data

Group Label 0 1 Total Accuracy

0 174.33 25.61 199.94 87.19%

1 15.85 184.21 200.06 92.07%

Total 400.00 89.64%

Table 4: Confusion Matrix for Test Data

Group Label 0 1 Total Accuracy

0 42.99 7.07 50.06 85.85%

1 4.71 45.23 49.94 90.47%

Total 100.00 88.22%

As is seen from Table 1, the proposed model shows high classification accuracy, although

the groups are highly overlapped. We ran logistic regression for the same data set and show

the confusion matrix in Table 2 comparing our results. Comparing Table 1 and Table 2, we can

see that the proposed method is superior to the Logistic Regression in terms of classification

accuracy.

Although our model uses the RBF-NN frame, there is no random process to determine the

network parameters. At this point, it is a question of whether the proposed model requires

cross validation as the classical neural network methods or not. To make sure about the

generalization performance of our model, we randomly split data into train (80%) and test

(20%). We repeated this splitting process 100 times and document the average results in

Table 3 and Table 4.

During the cross validation process, we determined network parameters using train data

and carried out classification for test data with pre-determined parameters. At this point,
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classification accuracy should not be decreased for test data to be able to claim that the pro-

posed method offers good generalization performance. Table 3 and Table 4 show the high

generalization performance of our model in terms of classification accuracy where there is no

significant drop off in test data. Moreover, the classification accuracy for train and test data

is very close to that obtained without splitting data. The small difference between classifi-

cation accuracy between “with and without” splitting can be explained with the number of

observations which are obviously more for non-split data.

3.2. Pre-Determination of Hydraulic Fracturing Failure for Oil & Gas Wells

Hydraulic fracturing (fracking) is an unconventional Oil & Gas extraction technique [10,

15]. Fracking operation is basically injecting a high-pressured solution of chemicals into the

ground around the walls of oil or gas wells [5, 6]. Fracking operations are not allowed in

some countries because of the chemicals injected into ground, which contain very hazardous

elements. Furthermore, fracking is a very costly operation costing approximately $500,000 or

more for each operation. Due to these two reasons, it is crucial to make an educated decision

regarding applying a fracking operation within a specific zone.

In this study, we applied our proposed method on historical data obtained from an interna-

tional oil company operating in Turkey under a non-disclosure agreement. Our data includes

50 hydraulic fracturing operations from 38 different natural gas wells. For each fracking op-

eration, our input data contains 18 different well-log measurements, such as Gamma Ray,

Resistivity Logs, Porosity Logs, etc. We also have the results from fracking operations as to

whether gas was produced or not. The goal is to find a classification model to determine,

before the operation, which zones are going to produce gas by fracking. Thus, the companies

can avoid the unnecessary cost of the operation as well as ensuring that hazardous chemicals

would not unnecessarily affect the environment.

We performed our tree based Log-RBF-NN model to carry out classification on hydraulic

fracturing data. Again, we ran the proposed model for different α parameters from the set

{.15, .20, .25, . . . , 2.5}. We found the best performing α value as α = 0.85 which is very close

for the best operating α parameter for simulated data. Note that, the classification accuracy

of the model was increasing until the best performing α values while it was decreasing with

the larger values for both simulated and real data.

Table 5 shows the results of the confusion matrix for the classification of hydraulic frac-

turing data. Since our sample size is very small, we did not divide our data into train and test.

Instead, we pruned the classification and regression tree so that it produced only five terminal

nodes returning five hidden neurons in the hidden layer considering the number of obser-

vations, n = 50. Note that the pruning operation is basically selecting the best performing

hidden neurons in the hidden layer using the AIC-based variable selection scheme for logistic

regression.

Table 5 shows the high classification accuracy of our proposed method on fracking data.

Using this model as a decision support system in the Oil & Gas industry might result in saving

time and potentially millions of dollars. Furthermore, the environment would be protected

from the hazardous effects of chemicals used in fracking operations. Note that classification
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accuracy obtained by logistic regression for same data is 78.00%, which is very low compared

to our method’s accuracy of 94.00%. On the other hand, the accuracy of the engineers who

are decision makers making decisions on hydraulic fracturing operations is 66%.

Table 5: Confusion Matrix for Hydraulic Fracturing Data Set

Group Label 0 1 Total Accuracy

0 15 2 17 88.24%

1 1 32 33 96.97%

Total 50 94.00%

4. Conclusions

In this paper we developed a novel tree-based logistic RBF-NN model for binary classifi-

cation problems. We avoided using any techniques using random process during the deter-

mination of network parameters. As a result, our model reflects very good generalization

properties, which are supported by an example using highly overlapping simulation data.

Furthermore, our model gives high classification accuracy using real life data as well.

Since our model is a novel approach it is open for improvement in different ways. Al-

though there are no examples taking place in the paper, we have applied our model on n < p

classification problems and obtained promising results. We have also tested our model on

classification problems with more than two classes and again our results were encouraging

in terms of classification accuracy. An additional benefit to using our model is that it is pos-

sible to reduce dimension by excluding the predictors that are not used in splitting data by

classification and regression trees algorithms.

While the real data used in this study is related to obtaining natural gas by hydraulic

fracturing, this data does not clearly indicate the true economic value. While the fracking

may be deemed successful, it may cost more to extract than the value of the gas obtained or

produced. If we were to define successful fracking as obtaining economical natural gas, the

success of the company decreases from 66% to slightly less than 40%. This opens up new

areas to examine, which we will be focusing on in our future studies.
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