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Abstract. In this study, we have constructed a new sequence of positive linear operators by using Szasz-
Mirakyan and Bernstein operators on space of continuous functions on the unit compact interval. We
also find order of this approximation by using modulus of continuity and give the Voronovskaya-type
theorem.

2010 Mathematics Subject Classifications: 41A25, 41A36, 26A48

Key Words and Phrases: Positive linear operators, Korovkin’s Theorem, Szasz-Mirakyan Operators,
Bernstein Operators

1. Introduction

Let N denotes the set of natural numbers and let N, = NU{0}. Let f be real-valued function
defined on the closed interval [0, 1]. The n-th Bernstein operator of f, B, (f) is defined as

B (f5x) =Y pu@f(5), xeloal nen M
k=0

where
n

Pni(x) = (k)x"(l —x)"k, 0<k<n.

The Bernstein polynomials B,,(f) was introduced to prove the Weierstrass approximation the-
orem by S. N. Bernstein [2] in 1912. They have been studied intensively and their connection
with different branches of analysis, such as convex and numerical analysis, total positivity and
the theory of monotone operators have been investigated. Basic facts on Bernstein polynomials
and their generalizations can be found in [5, 7, 9, 10, 12, 14] and references therein.

*Corresponding author.
Email addresses: ttunc77@hotmail.com (T. Tung), simsek.ersin@gmail.com (E. Sim¢ek)

http://www.ejpam.com 419 (©) 2014 EJPAM All rights reserved.



T. Tung, E. Simsek / Eur. J. Pure Appl. Math, 7 (2014), 419-428 420

For the function f which is continuous on [0, 00), the Szasz-Mirakyan operators which are
introduced by G. M. Mirakyan [8] in 1941 and then, are investigated by J. Favard [4] and O.
Szasz [15], are defined as

5,13 = 2 qun@)f (2), xel0,00)neN
m=0

where
(nx)™

m! ’

—nx

qn,m(x) =e m € Nj. (2)

2. Construction of the Generating Operators

Let I is a fixed interval (bounded or not) in R and @, be a sequence of density functions
on the interval I, that is, the functions @, have the following properties:

i. @, non-negative for all x €I and m € N,

i > wu(x)=1forallx el

Let (L,) be a sequence of positive linear operators defined on the set of the continuous func-
tions on the interval I, say C(I). Now we define the generating operators G,, on C(I). For
everyneN, x el and f € C(I)

oo
Go(fsx)= D @u(nx)l, (f;x) meN, 3)
m=0
where @, are density functions on I and ¢, ,, := ¢(n,m) = a,f,, where (a,) is a non-

decreasing and (f3,,,) is a strictly increasing natural sequence. It is easy to check that the
operators G, are positive and linear on C(I).

Taking I =[0,1], B, =m+1, @, =gy and L, =B
(1) and (2) respectively, we can rewrite (3) as

- SIS gy ().

k=0

o, where B, and q,, ,, defined in

The operators E,, defined in (4) is called the Szasz-Mirakyan-Bernstein (SMB) operators. In
this study, we investigate some approximation properties of these operators and find Voronovskya-
type theorem and the order of this approximation by using modulus of continuity.

3. Some Notations and Auxiliary Facts

In this section we will give some basic definitions, theorems and some elementary prop-
erties concerning space of functions and moduli of smoothness of first and second order. For
more information see [1] or [11].
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1. Let C[0,1] be the space of real-valued continuous function on [0,1] equipped with the
uniform norm:

£ 1l := max{|f (x)[ : x €[0,1]}
and C"[0,1], r € Ny, be the set all r-times continuously differentiable functions f € C[0, 1].

2. For the real-valued function f defined on [0,1] and 6 > 0, the modulus of continuity
w(f,6) and the second modulus of smoothness w,(f,d) of f are defined by

o(f,8) = sup {|f(x)—=f(¥I}

lx—yl|<o
wo(f,6):=sup sup {[f(x+2h)—2f(x+h)+f(x)]},

0<h<6 0<x<1-2h

respectively. It is known that, for a function f € C[0, 1], we have lims_,q w(f, ) =0 and,
for any 6 > 0,

F0-5e0] o8 5 41) 5)

3. As usual, a function f € Lipyu, (M >0 and 0 < u < 1), if the inequality
[f(O) =G| <M e —x|" (6)
holds for all t,x € [0, 1]
4. Let e; denote the test functions defined by e;(t) = t!, t € R,i=0,1,2,....

Theorem 1 (Korovkin [6]). Let L,, : C[a, b] — C[a, b] be a sequence of positive linear operators.

If

lim L,(e;;x) =e;(x), i=0,1,2,
n—oo

uniformly on [a, b], then
lim Ly(f32) = £ (x).

uniformly on [a, b], for every continuous function f defined on [a, b].

4. Approximation Properties of E,

In this section we give some classical approximation properties of the operators E,. By
simple calculations, we get the following lemmas.

Lemma 1. For x €[0,1] and n € N, we have

En(eo;x) =1,

Eq(ey;x) =x;

(1—=x)1—e™)
na, ’

Eq(eg; ) =x* +
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5

En(€3§x)=XS+SX(1_Xn)CEl_e_ ) 0= x,)u(xlz ZX)Ze_:Z:;C)m'

6x2(1—X)(1—e‘”") x(1=x)(7=11x) < e (nx)™
; S

na no: —_ m.m!

(1 x) (6x —6x+1) e ™ (nx)™
; 2. -

nad m2m!

Eq(eq; ) =x* +

Lemma 2. For x €[0,1] and n € N, the following holds:

E,(eq —x;x) =0,

Ey((e; —x)%x) = 3= XA =¢™)

na,
Bl =) = L0020 $ T,

3x(1—x)? — e_’“‘(nx)m (1—x)(6x%2—6x +1) = e ™ (nx)™
— )4 —
En(ler =x)5x) = na2 mZ:; m.m! na3 Z m2m!

Lemma 3. For all j € N, we have

ie‘xm J+1)

< — x € (0,00).
m'm! xJ
m=1
Lemma 4. For all n € N, we have
4 1)
E lleg—x) ;x) <c,(x s x€(0,1
2((er=x)"x) n()(nan) (0,1]

where lim,,_, o, ¢,(x) = 6.

Proof. For x € (0,1]. By Lemma 2 and Lemma 3, it results that
3x(1—x)? 2! (1 x) (6x —6x+1) 31
na? nx na3 n2x2

E, ((el—x)4;x) < 2 3

2 2
1 2_ 1 1
na, x“na, na,

Theorem 2. If f € C[0,1], then the sequence of positive linear operators {En} converges uni-
formly to f on [0,1].

O
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Proof. From Lemma 1, we get

[0,1]
E,(e) B¢, i=0,1,2 n—oo.

Then, using Korovkin’s theorem, we can conclude that

[0,1]

En(f)jf, n— oo.

[0,1]
Where, the symbol =3 shows the uniform convergence on [0,1]. O

5. Voronovskaya-Type Theorem

The Voronovskaya theorem for the Bernstein operators is given in [7] or [6]. Also, for the
sequence of positive linear operators can be found in [3, 13].

Theorem 3. If f € C?[0, 1], then
. 1
lim na, (B, (F3%) = £ ()] = 5 =) ()
for every fixed x € [0,1].
Proof. We use the Taylor formula for a fixed point xy € [0,1]. For all t € [0, 1], we have
1 2 2
f(t)=f(xo)+f/(xo)(t—xo)+gf”(xo)(t—xo) + & (£5%0) (£ —x0)

where g(t; x) is the Peano form of the remainder, g(.; x,) € C2[0,1] and

lim g(t;xy)=0.

t—Xg
Because E, (ey; x) =1, then

E, (f;x0)—f (x0) =f (x0) En ((e1 — x0) s X0)

1
+ Ef” (x0) En ((61 —xo)z; xo) +E, (g (- x0) - (ex _XO)Z; Xo)
By Cauchy-Schwartz’s inequality, we have
1/2
na, E, (8 ( >x0) (el - Xo)z; Xo) = [nzaﬁEn ((61 —x0)4; Xo)] ) [En (g2 ( ,Xo); Xo)]1/2

The function ¢(t;x,) = g2(t;x,), t > 0, satisfies the conditions of Teorem 2; therefore

lim E,(g%(t;x0);x0) =0
n—oo
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Moreover, by Lemma 4, we have

na,

It results that lim,,_,, na,E, (g (-, xo) (el — xO)Z; xo) = 0. By the above results and by Lemma 2,
we obtain

lim 1.0, [, (£50) = f (x0)] = 5 (1= x0) £ (o).

[
6. Rates of Convergence
In this section we shall give error estimates, the for f € C[0,1] and f € C'[0,1].
Theorem 4. If f € C[0,1], then
||En(f)—f||§2co(f; W) %

Proof. Let f € C[0,1]. By linearity and positivity of the operators E,, we get, for all n € N
and x € [0, 1], that

|En (F5) = £ )| < B (|f = GO)]5). (8)
Now using (5) in inequality (8) we have, for any 6 > 0, that
|En(f;x)—f(x)|S(1+%En(|e1—x\;x))w(f;5) ©

Applying the Cauchy-Schwartz inequality for positive linear operators it follows from (9) that

5 (F5x) =5 0] = (14 5 /B, ((er = x)'5x) o (5:0)

Using Lemma 1 in the last inequality, we can write

1— 1—e X 1/2 1/2
|En(f;x)—f(x)|s(1+%(( x)rga e )) )w(f;6)§(1+%(m11) )w(f;é).

. 1)1/2 . .
Choosing 6, = (—) , we have the inequality

na,

IEn(f;x)—f(x)|s2w(f; —ian)'
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Theorem 5. For all f € Lipy;u and x € [0,1], we have

1 w/2
Jex () -sl = ()
Proof. Applying E,, to the inequality (6), we have
|Eq (f5) = f )| < E, (|f — f ()] 5x) < ME, (|61 —xj“;x)

If we consider the Holder inequality with p = %, qg= ﬁ and by Lemma 2 for the last inequality,
we get

u/iz

|En (f;x)—f (x)| SM(En ((el —x)z;x)) =M
1 w/2
SM(nan) .

Theorem 6. If f € C1[0,1], then

2 ;1

2 () =11l = m”(f’m)'
Proof. By the mean value theorem, there exists &£ € (t; x):
fO)—f)=(—x)f'(&).

As the operators E,, are linear and positive and on the fact that Lemma 2 it follows immediately
the equality

E,(f;x)=f () =E,((e1—x) f (Een)sx) =En((er —x) (f (Ec) = f/ () 5x)

where &, , € (min{t,x}, max {t, x}). Using the property of modulus of continuity, we get

((1 —x)(1—e) )M/z

na,

(£ @)= 0| (7| @ -x]) s w(1758) (14 5 6 (0 -x])
<w(f’;5) (1 + é |t—x|).

Consequently,
|En(f;x)—f(x)| <w(f’;6)E, ’el—x| 1+l|el—x| ;X
o
:w(f’;S)En(’el—x|+%(61—x)2;x)
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—0o(7'3) (B (Jer —x (e =x)5x))

Using the Cauchy-Schwartz inequality and Lemma 2 for the last inequality, we have
1
|E. (f5%) = f ()] <o (f';5) (\/En (s =)"sx) +=Eo((er —x)z;x))
ot 100
o a,

na, n
11
< 9]
co(f )(1/ o na )
. 1 \1/2 . .
Choosing 6, = (n an) , we have the inequality
2 1
E . _ < /. .
IE, (f;x)—f(0)l < ‘/mw(f ; \/Tan)
L]
Theorem 7. If f € C2[0, 1], then for all n € N the following inequality holds:
||f ‘I
|En(f5x)— f(x)] < (10)
Proof. Using the Taylor formula, we write
f@O)=f0)+f"(x)(t—x)+R, () 1)
where .
Ry, (6)= J(r —V)F () dv.
By the mean value theorem that there exist &, , € (min {x, t} ,max {x, t}), which satisfies
// (g )
Rf,x(r)— — (e —x).
we can rewrite (11) as
(&
FO=FO)+f (x)(t—x)+ ( ”)(t—x)z (12)

2
Applying E,, to the formula (12), by Lemma 2, we have

|Ea (f52) = f ()] SEn( #

(e —X)2§X) < ”z—HEn ((61 —x)?%x)
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_a-o0-em) |

2 na, " 2na,

Theorem 8. If f € C[0, 1], then for all n € N the following inequality holds:

IIEn(f)—fIISSwz(f; ja)

Proof. Let x €[0,1]. ForO<h < %min {x,1—x} we define
h/2 h/2
g (x)= hl—z f J {of (x +t1+t5) = f (xx +2¢1 +2¢,) }dt,dt,.
~h/2 —h/2
Consequently

lg” ()| =[{f (x +2n)—2f (x + ) + f ()} + {f (x —2h) —2f (x —h) + f (x)}|

2

Sﬁwz(f;S)

also ’filah(t) dt’ <2a sup |h(u)|. Therefore
u€[—a,a]

h/2 h/2

|f () — gn (x)| = h%f f {f (x+2t+2¢6)—2f (x + t1+ ) + f (x)}dt,dt,

—h/2 —h)2
h/2 /2

:hl_z J J \f (x+2t;+2t))—2f (x+t;+ )+ f (x)|dt1dt2
—h/2 —h/2

<w,(f;5).

Using these inequalities and (10) we have
1En (F) = £ 1| <[ B (F — n)l| + [[En (0) = &l + [|f — ]
<|Eall {1 = gull + (12 (21) = &ill + {1 — ]

I
=215 = gl +[|Bx (1) - gnl] < 200 (£55) + 5

2na,

) 1
Ssz(f;5)+%§w2(f;5):wz(f§5){2+na 52}

1/2
Choosing 6, = (L) we get the desired estimate. O

na,
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