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Abstract. Left restriction semigroups are a class of semigroups which generalise inverse semigroups

and which emerge very naturally from the study of partial transformations of a set. Consequently,

they have arisen in a variety of different contexts, under a range of names. One of the various guises

under which left restriction semigroups have appeared is that of weakly left E-ample semigroups, as

studied by Fountain, Gomes, Gould and Lawson, amongst others. In the present article, we will survey

the historical development of the study of left restriction semigroups, from the ‘weakly left E-ample’

perspective, and sketch out the basic aspects of their theory.
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Introduction

In the mid-twentieth century, the study of systems of partial one-one mappings (partial

bijections) of a set yielded the abstract notion of an inverse semigroup, as introduced (inde-

pendently) by Wagner [78, 79] and Preston [60–62]. Let X be a nonempty set and let IX
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denote the collection of all partial bijections of X . Then IX forms a monoid, termed a sym-

metric inverse monoid, under the following composition (performed from left to right†): for

α,β ∈ IX ,

domαβ = (imα∩ domβ)α−1 (∗)

where α−1 denotes the preimage under α, and, for x in this domain, x(αβ) = (xα)β . It is

clear that any partial bijection α is invertible on its image, with inverse α−1 : imα→ domα.

Any inverse semigroup may be regarded as a subsemigroup of some IX that is closed under

the unary operation −1. There are a number of different approaches to the study of inverse

semigroups, and these may be embodied in a sequence of structure theorems (for example,

Theorems 1.12, 1.13, 1.17 and 1.19).

More generally, we can study systems of arbitrary partial transformations of a set, not just

the injective ones. At least initially, the study of such systems was guided by analogy with

the above case of partial bijections. It was discovered that if we are to obtain satisfactory

analogues of various results for inverse semigroups, then we must consider so-called left re-

striction semigroups. If we denote by P T X the partial transformation monoid of a set X , i.e.,

the collection of all partial transformations of X , under the (left-to-right) composition (∗),

then a left restriction semigroup may be characterised as a subsemigroup of some P T X that

is closed under the unary operation α 7→ Idomα, where Idomα denotes the identity mapping on

the domain of α. On the other hand, let P T ∗X denote the dual partial transformation monoid

of X : the collection of all partial transformations of X , composed from right to left. A right re-

striction semigroup is a subsemigroup of some P T ∗X that is closed under the unary operation

α 7→ Idomα. A semigroup that is both a left and a right restriction semigroup, with respect to

the same semilattice (see Section 3), is called a two-sided restriction semigroup.

So natural is the notion of a left restriction semigroup that it has appeared in a variety of

different contexts, under a range of different names, to wit:

(1973) in the work of Trokhimenko [76], as a special case of the Menger function systems studied

†We sound a note of caution: the convention in this article will be to compose functions from left to right. However,

we will also have occasion to make brief comments on right-to-left composition.
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by Schweizer and Sklar [66–69], which arose from attempts to axiomatise semigroups

with additional operations embedded in some P T X (see [40,64]);

(1981) as the type SL2 γ-semigroups of Batbedat [2, 3], which arose as a generalisation of in-

verse semigroups whereby the unary operation x 7→ x x−1 was formally replaced by a

function γ : S→ E(S);

(1991) as the idempotent-connected Ehresmann semigroups of Lawson [47], who was draw-

ing connections between semigroup theory and the category-theoretic work of Ehres-

mann [14], with the goal of applying techniques from category theory to semigroup

theory;

(2001) as the twisted LC-semigroups of Jackson and Stokes [39], which arose from considera-

tions of closure operators;

(2006) as the guarded semigroups of Manes [51], which arose via theoretical computer science

from the restriction categories of Cockett and Lack [6].

The term restriction semigroup, inspired by the nomenclature of Cockett and Lack for cate-

gories, is a recent attempt to streamline and harmonise the terminology, and was first used

in [7].

The idempotent-connected Ehresmann semigroups of Lawson [47] are in fact two-sided

restriction semigroups and generalise the ample semigroups of Fountain [22, 24]. For this

reason, they were subsequently known as weakly E-ample semigroups; the ‘E ’ reflects the fact

that these semigroups may be defined in terms of a distinguished subsemilattice E ⊆ E(S),

whereas ample semigroups are defined with respect to the whole of E(S). In the one-sided

case, weakly left/right E-ample semigroups are simply left/right restriction semigroups; these

have been studied by Gomes, Gould, and others of the ‘York-inspired’ school. In the present

article, we will survey the development of restriction semigroups from the ‘York’ perspective.

We will begin with notions from the homological classification of monoids, such as that of

a right PP monoid, which led to the initial definition of a left ample semigroup, before mov-

ing through successive generalisations to arrive at weakly left E-ample semigroups, i.e., left
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restriction semigroups.

The structure of the article is as follows. We begin with an historical survey of the develop-

ment of these semigroups; since this survey is quite lengthy, we break it down into two parts:

Section 1 deals with left ample semigroups, via right PP monoids, whilst Section 2 completes

the story by describing the work leading to the eventual definition of weakly left E-ample

semigroups. Sections 3–5 collate the work of a number of authors, but of El-Qallali [15],

Fountain [22, 24] and Lawson [43, 47] in particular. Much of this material is ‘folklore’, in

that it is difficult to determine where and when it first appeared in print; we have drawn

heavily on the notes of Gould [30]. In Section 3, we expand upon the comments made at the

beginning of this Introduction by defining restriction semigroups by means of partial trans-

formations. We will focus our attention on left restriction semigroups; the right-hand version

may be defined dually. In Section 4 we present the abstract definition of a weakly left E-

ample semigroup and prove that this is in fact equivalent to the concrete description of a left

restriction semigroup, as given in Section 3. We record some of the basic results in the theory

of left restriction semigroups, before moving on to Section 5, where we consider the special

case of left ample semigroups. Since the nomenclature which we will have occasion to wade

through in Sections 1 and 2 can be somewhat torturous, we conclude the article by providing

the reader with an appendix summarising this terminology.

We note that left restriction semigroups form a variety of algebras of type (2,1) and can

therefore be defined by a system of identities first presented in [39]; full left restriction (see

Section 3) and left ample semigroups form quasi-varieties of type (2,1). However, this is not

an approach we will take in the present article; we hope to do so in a future article, as well as

drawing further connections with left restriction semigroups in their various other guises. For

the present, we note that the equivalence of the classes of type SL2 γ-, weakly left E-ample,

left LC-, and guarded semigroups is demonstrated in [35, §2.6].

In [32], the adjective ‘left’ is dropped and left restriction semigroups are termed simply

‘restriction semigroups’, since these are the objects of interest in that paper; in [36], on the

other hand, the term ‘restriction semigroup’ is used to refer to the two-sided case for similar

reasons. In the present article, in the interests of clarity, we will only drop these qualifiers
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when making a statement which applies equally well to left, right and two-sided restriction

semigroups.

For later use, the uninitiated reader should bear in mind the definition of Green’s (equiva-

lence) relation R in a semigroup S: two elements a, b ∈ S are R-related if they generate the

same principal right ideal. Any idempotent is a left identity for its R-class. Green’s relation

L may be defined as the left-right dual of R; the relation H is defined byH =R ∩L . Any

other unexplained semigroup-theoretic terminology or notation may be found in [37].

1. Historical development I: left ample semigroups

We begin by giving a two-part historical survey of the origins of restriction semigroups,

from the point of view of the ‘York’ school. In this section, we deal with left ample semigroups;

weakly left E-ample semigroups follow in Section 2. The present section is based upon the

similar introductory chapters of the D.Phil. theses of El-Qallali [15] and Lawson [43]. An-

other invaluable source, both for this section and the next, was Ample and Left Ample Semi-

groups [26], the extended abstract of a survey talk given by John Fountain in Calgary in June

2006.

As indicated in the Introduction, the most natural way to introduce restriction semigroups

is via the partial transformations of a set. Indeed, this is what we will do in Section 3. How-

ever, our historical summary begins in a rather different place, with the homological classifica-

tion of monoids. We first require the definitions of both S-acts and S-morphisms:

Definition 1.1. [37, §8.1] Let S be a monoid. A set X is called a right S-act (or S-set or

S-system) if S acts on X on the right, i.e., if there is a mapping X ×S→ X , written (x , s) 7→ x ·s

and such that (x · s) · t = x · st, for all x ∈ X and s, t ∈ S, and x · 1 = x , for all x ∈ X . (Left

S-acts are defined dually.)

Let X and Y be two right S-acts. A function ϕ : X → Y is called an S-morphism if (x ·s)ϕ =

xϕ · s, for all x ∈ X and s ∈ S.

If S is a monoid, then any right ideal of S may be regarded as a right S-act, where the

action in question is that by right multiplication. Similarly, any left ideal is a left S-act.
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Just as rings may be studied via their actions on modules [33], so too can monoids be

studied via their S-acts, a study taken up in [71], for example. In the case of rings, two

properties which prove useful are the categorically defined injectivity and projectivity (see [41,

pp. 7, 10]). We define the ‘S-act’ versions of these properties, bearing in mind that in the

category of S-acts and S-morphisms, S-epimorphisms are onto and S-monomorphisms are

one-one:

Definition 1.2. [21] Let S be a monoid and let X be an S-act. We say that X is injective

if, for any S-acts Y and Z with Z ⊆ Y , any S-morphism ϕ : Z → X may be extended to an

S-morphism ϕ′ : Y → X such that the following diagram commutes:

Y

Z

i

6

ϕ
- X

ϕ′

-

where i : Z → Y is inclusion.

Definition 1.3. [22, p. 285] Let S be a monoid and let X be an S-act. We say that X is

projective if, for any pair of S-acts Y and Z , any S-epimorphism ψ : Y → Z and any S-

morphism ϕ : X → Z , there exists an S-morphism π : X → Y such that the following diagram

commutes:

Y

Z

ψ

?
�

ϕ
X

π

�

A monoid for which every right S-act is injective is called a completely right injective

monoid. If, in addition, every left S-act is injective, then the monoid is said to be completely in-

jective. The study of such monoids was initiated by Feller and Gantos [18–20], who obtained

characterisations of those completely injective monoids which are unions of groups, inverse

semigroups, or both. A description for the general case was obtained by Fountain [21]. Fur-
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ther necessary and sufficient conditions for a monoid to be completely right injective were

obtained by Shoji [70].

The study of monoids whose every S-act is projective, on the other hand, is far less fruit-

ful; Isbell [38] showed that the only such monoid is trivial. If one is to study monoids with

projective S-acts, then one must relax the conditions somewhat. For example, one can con-

sider monoids in which all right ideals (regarded as right S-acts) are required to be projective;

these monoids are termed right hereditary monoids and were studied by Dorofeeva [10]. If

we relax the conditions even further and consider those monoids for which only the principal

right ideals are projective as right S-acts, then we obtain so-called right principally projective

(or right PP) monoids. Left PP monoids are defined dually; a monoid which is both right and

left PP is called simply PP. Any regular monoid is necessarily PP, as we will see shortly.

The study of PP monoids was intiated by Kilp in [42], where the commutative case was

considered; Kilp obtained a characterisation of commutative PP monoids as strong semilat-

tices‡ of commutative cancellative monoids. This result was generalised to the case of right

PP monoids with central idempotents by Fountain [23]; such a monoid is exactly a strong

semilattice of left cancellative monoids. A left cancellative monoid is therefore right PP.

It is in fact possible to give a characterisation of right PP monoids which makes no refer-

ence to S-acts. For this, we need a notion introduced by Skornjakov [71] and Dorofeeva [10]:

Definition 1.4. Let S be a monoid and let e ∈ E(S). An element a ∈ S is said to be left

e-cancellable if e is a right identity for a and

ax = a y =⇒ ex = e y,

for all x , y ∈ S.

Then, from [42], we have:

Proposition 1.5. A monoid S is right PP if, and only if, for each element a ∈ S, there is an

ea ∈ E(S) such that a is left ea-cancellable.

‡For the notion of a semilattice of semigroups, see [5, §1.8].
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The notion of left e-cancellability, and hence the definition of a right PP monoid, were

recast once more by Fountain [22]. Before we describe this important development, however,

let us take a step back and consider a definition of Lyapin [50]:

Definition 1.6. [50, Chapter X, §4.2] Let S be a semigroup. A potential property in S is a

property which holds in some oversemigroup T of S.

For example, in [50], Lyapin considered potential invertibility of elements in semigroups.

A range of other potential properties were studied by Šutov in [72–75]. In particular, Šutov

investigated the notion of potential divisibility of elements [73]: elements a, b of a semigroup

S potentially divide each other (on the right) if, and only if, there exist an oversemigroup T

of S and elements s, t ∈ T such that as = b and bt = a in T . In other words, a and b

potentially divide eachother if, and only if, they are R-related in some oversemigroup. Dually

for potential left division.

The notion of potential divisibility arose again in work of both Pastijn [59] and McAlis-

ter [54], though not under that name. In [54], McAlister arrived at the following definition

of a potential property via the study of partial right translations:

Definition 1.7. [54, Definition 1.6] Let S be a semigroup and let a, b ∈ S. We define the

equivalence relation R∗ on S by saying that aR∗ b if, and only if, a and b are R-related in

some oversemigroup T of S.

Through a generalisation of a construction of Schützenberger, Pastijn arrived at the defi-

nition of the dual relation L ∗ [59, p. 239].§ The relations R∗ and L ∗ may be regarded as

generalisations of Green’s relations R and L ; it is clear that R ⊆R∗ and L ⊆L ∗. We note

that the formulation of R∗ which will appear later as our equation (5.1), namely,

aR∗ b⇐⇒∀x , y ∈ S1[xa = ya⇔ x b = y b], (1.1)

is implicit both in [8] and in [50, Chapter X, §1.6].

Returning to right PP monoids, we first have the following, from [22]:

§Pastijn denoted L ∗ by fL — this should not to be confused with the fL of the subsequent theory of weakly right

ample semigroups!
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Lemma 1.8. [22, p. 286] Let S be a semigroup and let a, b ∈ S. Then aL ∗ b if, and only if,

there is an e ∈ E(S) such that a and b are both left e-cancellable.

Consequently:

Proposition 1.9. [22, p. 286] A monoid S is right PP if, and only if, every element isL ∗-related

to an idempotent.

One thing which is immediately apparent from this characterisation of right PP monoids

(and, indeed, from that in Proposition 1.5) is the fact that the presence of an identity is

no longer required. We can therefore define right PP semigroups. Notice also that there

is no longer any reference to S-acts or projectivity. For this reason, right PP semigroups

were renamed right abundant semigroups, since “such a semigroup has a plentiful supply of

idempotents” [25, p. 103]. Similarly, left PP semigroups (in which every element is R∗-

related to an idempotent) became left abundant semigroups; a semigroup which is both left

and right abundant is called simply abundant. Such semigroups were studied extensively

in [15] and [25].

We have already commented that every regular semigroup is abundant. To see this, we

recall that R ⊆ R∗ and L ⊆ L ∗, and note the following characterisation of a regular semi-

group:

Proposition 1.10. [37, Proposition 2.3.2] A semigroup S is regular if, and only if:

(i) every R-class contains an idempotent;

(ii) every L -class contains an idempotent.

We see then that every R∗-class and every L ∗-class of a regular semigroup S contains an

idempotent; S is therefore abundant. Indeed, in a regular semigroup, we have R∗ = R and

L ∗ =L ; we will provide a proof of this in Section 4 (Lemmas 4.1 and 4.14).

We now recall the definition of a Clifford semigroup [37, §4.2] as a regular semigroup with

central idempotents. We recall also the following result, originally due to Clifford [4], and

presented in [37, Theorem 4.2.1]:
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Theorem 1.11. A semigroup S is a Clifford semigroup if, and only if, it is a strong semilattice of

groups.

We see then that the result of Fountain [23] which states that every right abundant

monoid with central idempotents is a strong semilattice of left cancellative monoids provides

a one-sided analogue of this last theorem. Furthermore, in the two-sided case, abundant

semigroups with central idempotents are strong semilattices of cancellative monoids; abun-

dant semigroups with central idempotents may therefore be regarded as analogues of Clifford

semigroups. More generally, abundant semigroups are analogous to regular semigroups. The

validity of this analogy is demonstrated if we compare Proposition 1.9 with Proposition 1.10.

The initial study of abundant semigroups was therefore guided by the existing results for

regular semgroups. One important point to note at this stage is that for regular semigroups,

each of conditions (i) and (ii) in Proposition 1.10 implies the other. The ‘starred’ versions

of these conditions, however, are completely independent. This is why we have one-sided as

well as two-sided analogues of regular semigroups. A left cancellative semigroup which is not

right cancellative is an example of a right abundant semigroup which is not left abundant.

Two special classes of regular semigroups which have seen extensive study are so-called or-

thodox semigroups [37, §6.2], in which the idempotents form a subsemigroup, and, of course,

inverse semigroups, in which the idempotents form a semilattice. This hints at two spe-

cial classes of abundant semigroups whose study may be fruitful. Abundant semigroups in

which the idempotents form a subsemigroup have been studied under the name of quasi-

adequate semigroups [15–17], and a theory has been developed for these which mirrors that

of Hall [34] for orthodox semigroups. An abundant semigroup in which the idempotents

form a subsemilattice is termed an adequate semigroup, “since it contains a sufficient supply

of suitable idempotents” [24, p. 113]. Left adequate and right adequate semigroups are also

easily defined. The study of right adequate semigroups was initiated in [22]; the two-sided

case was considered in [24].

The early study of (left/right) adequate semigroups was guided by the analogy with in-

verse semigroups. In [22], Fountain (who, at this stage, was still working in the monoid case)

sought an analogue for right adequate semigroups of two results of McAlister [52, 53] for
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inverse semigroups:

Theorem 1.12 (McAlister’s Covering Theorem). [49, Theorem 2.2.4] Every inverse semigroup

is the image of a proper inverse semigroup under an idempotent-separating morphism.

Theorem 1.13 (McAlister’s P-Theorem). [49, Theorem 7.2.15] Every E-unitary inverse semi-

group is isomorphic to a ‘P-semigroup’, constructed from a group, a poset and a semilattice.

Fountain determined that if right adequate analogues are to be developed for these theo-

rems, then we must restrict our attention to a particular subclass of right adequate monoids,

which he termed right type A monoids. A right adequate monoid S is right type A if, and only

if,

eS ∩ aS = eaS, for a ∈ S and e ∈ E(S). (1.2)

Similarly, a left adequate monoid S is left type A if, and only if,

Se ∩ Sa = Sea, for a ∈ S and e ∈ E(S); (1.3)

a monoid which is both left and right type A is called simply type A.¶ We note that every inverse

semigroup is (left/right) type A (see Section 5). The terminology ‘type A’ was subsequently

replaced by the term ‘ample’, as we will see.

We have the following analogue of McAlister’s Covering Theorem:

Theorem 1.14. [22, Theorem 3.3] Every right type A monoid is the image of a proper right

type A monoid under an L ∗-morphism, where an L ∗-morphism is a morphism θ for which

sθ = tθ =⇒ sL ∗ t.

Recall that an inverse semigroup S is E-unitary if, and only if, it is proper [37, Proposi-

tion 5.9.1]. However, after defining an appropriate notion of ‘proper’, Fountain observed that

an E-unitary right type A monoid need not be proper in this sense — see [22, Example 3].

Fountain went on to construct a generalisation of McAlister’s P-semigroups, which he termed

McAlister monoids. Using these, we have the following analogue of the P-Theorem:

¶In [22], Fountain used the term ‘type A’ to mean ‘right type A’.
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Theorem 1.15. [22, Theorem 4.3] Every proper right type A monoid is isomorphic to a McAl-

ister monoid.

These theorems are easily adapted to the semigroup case. Two-sided versions appear

in [44] as Theorems 3.8 and 2.11, respectively.

There are two other major approaches to the study of inverse semigroups: that which

connects inverse semigroups with inductive groupoids, and that via the notion of a Munn

semigroup. Each of these methods may be extended to the study of type A semigroups. We

first consider the analogue of Munn’s work [57].

Definition 1.16. [37, p. 162] Let E be a semilattice. The Munn semigroup TE of E is the

inverse subsemigroup of IE which consists of all isomorphisms between principal ideals of E.

We note that E(TE) is isomorphic to E [37, Theorem 5.4.1]. Munn’s major result was the

following:

Theorem 1.17. [37, Theorem 5.4.4] For any inverse semigroup S, there is a morphism S →

TE(S) which maps E(S) isomorphically onto E(TE(S)) and which induces the maximum idempotent-

separating congruence on S.

In [24], Fountain investigated the generalisation of this result to the case of adequate

semigroups. He observed, however, that an adequate semigroup need not have a largest

idempotent-separting congruence. It was therefore necessary to pursue the generalisation

down a slightly different path. As determined by Munn [56], the maximum idempotent-

separating congruence on an inverse semigroup is the largest congruence contained in Green’s

relation H . Fountain therefore investigated the largest congruence contained in H ∗ =

R∗ ∩ L ∗; any congruence contained in H ∗ is idempotent-separating, but the converse is

not necessarily true. Moreover, it once again transpired that if one is to develop a suitable

analogue of Theorem 1.17, then one must once again restrict one’s attention to type A semi-

groups:

Theorem 1.18. [24, Proposition 4.5] For any type A semigroup S, there is a morphism S →

TE(S) which maps E(S) isomorphically onto E(TE(S)) and which induces the largest congruence

contained inH ∗.
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As commented above, another major approach to the study of the structure of inverse

semigroups is that via the notion of an inductive groupoid: a type of small, ordered category in

which all arrows are invertible. Inverse semigroups and inductive groupoids are two solutions

to the problem of finding an abstract version of the pseudogroups of Veblen and Whitehead

[77, p. 38]. The inductive groupoid approach was pioneered by Ehresmann [11, 13], whilst

inverse semigroups were introduced independently by Wagner and Preston, as we have seen.

Thus, given that inverse semigroups and inductive groupoids share a common origin, it is

not surprising that their respective theories can be connected in an extremely natural way.

This linking of theories was pieced together by a number of authors [11, 12, 58, 63, 65] and

is enshrined in the following result, named the Ehresmann-Schein-Nambooripad Theorem to

reflect its disparate origins:

Theorem 1.19. [49, Theorem 4.1.8] The category of inverse semigroups and ∨-premorphisms

is isomorphic to the category of inductive groupoids and ordered functors; the category of inverse

semigroups and morphisms is isomorphic to the category of inductive groupoids and inductive

functors.

(An ordered functor is simply an order-preserving functor; an inductive functor is a special

type of ordered functor. A ∨-premorphism is a function θ : S→ T between inverse semigroups

such that (st)θ ≤ (sθ)(tθ).)

Further details on the Ehresmann-Schein-Nambooripad Theorem can be found in [49],

for which book it provides the main focus.

With this connection between inverse semigroups and inductive groupoids established,

it was natural to seek generalisations. The regular case, for example, was considered by

Nambooripad [58]. But what of the non-regular generalisations of inverse semigroups, such

as type A semigroups? Furthermore, since a groupoid is a very specialised type of category,

we might ask what type of semigroup may be associated with a more general category, or

even with an arbitrary category. This question has indeed been answered, via a succession of

generalisations of the Ehresmann-Schein-Nambooripad Theorem. We note here that since a

category is an inherently ‘two-sided’ object (every object has a domain and a range), then it is
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two-sided type A semigroups which must be studied in this context.

The first of the generalisations of Theorem 1.19 is due to Armstrong [1] and is rooted

firmly in the work of Meakin [55]. Meakin had studied the structure of an inverse semi-

group S by means of so-called ‘structure mappings’, that is, mappings betweenR-classes of S.

Armstrong generalised this approach to the study of type A semigroups by considering map-

pings betweenR∗- andL ∗-classes. In her Theorem 3.9, Armstrong extended the Ehresmann-

Schein-Nambooripad Theorem to the case of type A semigroups and inductive cancellative

categories:

Theorem 1.20. [1] The category of type A semigroups and (2,1,1)-morphisms is isomorphic to

the category of inductive cancellative categories and inductive functors.

Note, however, that Armstrong did not give such a category-theoretic formulation. Since

the definition of an inductive cancellative category is somewhat complicated, we will not go

into further detail here; a summary appears in [35, Chapter 7].

In [24, p. 115], Fountain gave an alternative characterisation of (left/right) type A semi-

groups; this is the definition which is most often used in current papers (and which will

appear in Section 5). It should also be noted that type A semigroups are now known as am-

ple semigroups, a term which was introduced in [31]; as interest in these semigroups grew,

it was decided that they needed a more exciting name — the name ‘ample’ was chosen not

only for its alliterational value, but also because such semigroups contain an ‘ample’ supply of

idempotents. We will consider left ample semigroups in more detail in Section 5.

2. Historical development II: weakly left E-ample semigroups

We continue our journey through the historical development of restriction semigroups by

considering a generalisation of ample semigroups whose study (within the ‘York’ school) was

initiated by El-Qallali [15]. El-Qallali began the final chapter of his thesis by recalling an

alternative characterisation of L ∗ and R∗ which appears in [25] for abundant semigroups:

Proposition 2.1. [25, Corollary 1.10] Let S be an abundant semigroup. Then, for any e ∈ E(S),
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aL ∗ e (aR∗ e) if, and only if, a ∈ Se (a ∈ eS) and Se (eS) is contained in every idempotent-

generated left (right) ideal which contains a.

Inspired by this last result, El-Qallali investigated a more general class of semigroups in

which every element is contained in a minimum idempotent-generated left (right) ideal. Such

semigroups are termed semiabundant semigroups. El-Qallali introduced equivalence relations

fL and eR with L ∗ ⊆ fL and R∗ ⊆ eR , and demonstrated that a semigroup is semiabundant

if, and only if, each element is both fL - and eR-related to an idempotent. It is therefore

clear that any abundant semigroup is semiabundant. Left semiabundant semigroups are easily

defined as semigroups in which every element is eR-related to an idempotent. Dually for right

semiabundant semigroups.

By analogy with abundant semigroups, El-Qallali [15] investigated semiabundant semi-

groups in which the idempotents form a subsemigroup (Q-semigroups), and in which the

idempotents form a subsemilattice (semiadequate semigroups). Pursuing the analogy further,

El-Qallali realised that whilst L ∗ is always a right congruence andR∗ is always a left congru-

ence, fL and eR need not be right and left congruences, respectively. Since these are particu-

larly useful properties to have, El-Qallali restricted his attention to those Q- and semiadequate

semigroups in which

(CL) eR is a left congruence, and

(CR) fL is a right congruence.

In Chapter VIII of [15], a structure theory was obtained for Q-semigroups which mirrored

that already obtained for quasi-adequate semigroups in Chapter V. Towards the end of the

thesis, El-Qallali obtained structural results for so-called idempotent-connected semiadequate

semigroups with (CL) and (CR), or type T semigroups, as he called them. The ‘idempotent-

connected’ conditions are equivalent to the conditions (1.2) and (1.3) previously imposed on

an adequate semigroup in order to make it type A. Thus type T semigroups generalise type A

semigroups. El-Qallali proved an analogue of Theorem 1.18 for type T semigroups [15].

Given a left semiadequate semigroup, it is possible to define a left type T semigroup by im-

posing an appropriate one-sided version of the idempotent-connected condition (equivalent
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to (1.3)), and by only insisting that (CL) hold. Dually for right type T semigroups. (Left/right)

type T semigroups came to be known as weakly (left/right) ample semigroups, owing to their

being a generalisation of ample semigroups. Weakly left ample analogues of McAlister’s Cov-

ering and P-Theorems were developed in [27–29], whilst Lawson [43] obtained the following

generalisation of Theorem 1.20:

Theorem 2.2. [43] The category of weakly ample semigroups and (2,1,1)-morphisms is iso-

morphic to the category of inductive unipotent categories and inductive functors.

(A unipotent category is a category whose only idempotents are its identities.)

Note that, just like Armstrong, Lawson did not formulate the above theorem in category-

theoretic terms.

In [47], Lawson began to follow up on the earlier work in his thesis [43] by drawing

connections between the study of semiabundant semigroups and the category-theoretic work

of Ehresmann [14]. The goal of this linking of theories was the application of techniques

from category theory to semigroup theory; Lawson gave such an approach for inverse semi-

groups in [45, 48]. A significant innovation introduced by Lawson was the realisation that

the relations fL and eR need not be defined with respect to the whole set of idempotents of

a semigroup. Recall that El-Qallali defined a semigroup to be semiabundant if every element

is contained in a minimum idempotent-generated left (right) ideal; Lawson, inspired by some

work of de Barros [9], extended this definition by insisting that every element be contained in

a minimum left (right) ideal generated not by an arbitrary idempotent, but by an idempotent

from some distinguished subset U ⊆ E(S). Such a semigroup was termed a U-semiabundant

semigroup [47, p. 425]. These semigroups first appeared in [46], in which a certain special

class of U-semiabundant semigroups, called Rees semigroups, provided an abstract model for

Rees matrix semigroups over an arbitrary monoid. It is clear that a U-semiabundant semi-

group with U = E(S) is semiabundant. Lawson wrote down new versions of the relations of

fL and eR , which were defined in terms of U; we will denote these by fLU and eRU . Thus a

semigroup is U-semiabundant if every element is both fLU - and eRU -related to an idempotent

in U . As one might expect, given all the terminology thus far, U-semiabundant semigroups in
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which U forms a subsemilattice were called U-semiadequate [47, p. 434].

As has been observed, Lawson’s goal was to draw connections between particular classes

of semigroups and small ordered categories. To this end, he defined an Ehresmann category

to be a small category equipped with two partial order relations, satisfying certain conditions.

He then showed that every such category gives rise to a particular type of semigroup, which

was given the appropriate name of Ehresmann semigroup. Furthermore, he demonstrated the

converse: that to every Ehresmann semigroup there is associated an Ehresmann category [47,

§4]. Ehresmann semigroups are, in fact, precisely those U-semiadequate semigroups in which

(CL) and (CR) hold. Lawson generalised the ‘morphisms’ part of Theorem 1.19 to give an

isomorphism between the category of Ehresmann semigroups and certain morphisms, and

the category of Ehresmann categories and certain functors.

In the final section of [47], Lawson considered a number of special cases of Ehresmann

semigroups. Amongst these were idempotent-connected Ehresmann semigroups; these, in fact,

were none other than (two-sided) weakly E-ample semigroups, where we have exchanged

Lawson’s ‘U ’ for the subsequently more usual ‘E ’. It is very easy to write down the one-sided

definitions for weakly left E-ample (left restriction) and weakly right E-ample (right restriction)

semigroups. Lawson specialised the above isomorphism of categories (for Ehresmann semi-

groups) to this special case, thereby providing the following generalisation of Theorem 1.20,

a ‘weakly E-ample’ version of the ‘morphisms’ part of Theorem 1.19:‖

Theorem 2.3. [47] The category of weakly E-ample semigroups and (2,1,1)-morphisms is

isomorphic to the category of inductive categories and inductive functors.

In [47, Example 3.21], Lawson presented a number of examples of the various classes of

U-semiabundant semigroups. Amongst these appeared the example of the partial transforma-

tion monoid P T X on a set X , which, as we have seen, is a left restriction semigroup. In fact,

as we have also seen, any left restriction semigroup arises in an extremely natural way as a

(2,1)-subalgebra of some P T X ; in the following section, we will introduce the specifics of

the theory of left restriction semigroups via partial transformation monoids.

‖A ‘weakly E-ample’ generalisation of the ‘∨-premorphisms’ part can be found in [36].
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3. Partial transformations

Restriction semigroups arise very naturally from partial transformation monoids in much

the same way that inverse semigroups arise from symmetric inverse monoids. We therefore

begin by expanding upon our comments on partial transformations in the Introduction.

A partial transformation of a set X is a function A→ B, where A, B ⊆ X . The collection

of all partial transformations of X is denoted P T X . Under the (left-to-right) composition

(∗) from the Introduction, P T X forms a monoid — the partial transformation monoid on X .

The partial mapping with domain ;, called the empty transformation, is denoted by ǫ. It is

clear that IX , the symmetric inverse monoid on X , is an inverse submonoid of P T X . The full

transformation monoid TX is also a submonoid of P T X , since any mapping X → X qualifies

as a ‘partial transformation’ of X .

Amongst the elements of P T X , there are certain idempotents which will be vital to our

definition of restriction semigroups. These are the idempotents of the form IZ , for Z ⊆ X , i.e.,

those idempotents which are identities on their domains. We will refer to such idempotents

as partial identities. Let EX ⊆ E(P T X ) be the set of partial identities of P T X . We note that

E(IX ) = EX . We stress, however, that, in general, P T X will have idempotents other than

those in EX . For example, for any fixed element x ∈ X , the constant mapping cx : X → X

which sends every element of X to x , is an idempotent of P T X which is not a partial identity.

We consider the following unary operation on partial transformations:

α 7→ Idomα.

In P T X , we will denote this operation by +, whilst in P T ∗X , it will be denoted by ∗. Let S be

a subsemigroup of P T X . We put

S+ = {α+ : α ∈ S} ⊆ E(S).

Definition 3.1. Let S be a subsemigroup of some P T X . If S is closed under +, i.e., if S+ ⊆ S,

then we call S a left restriction semigroup with respect to S+.

Now let T be a subsemigroup of some P T ∗X . We put

T ∗ = {α∗ : α ∈ T} ⊆ E(T ).
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Definition 3.2. Let T be a subsemigroup of some P T ∗X . If T is closed under ∗, i.e., if T ∗ ⊆ T ,

then we call T a right restriction semigroup with respect to T ∗.

Definition 3.3. Let S be a semigroup. If S is simultaneously isomorphic to a subsemigroup of

some P T X that is closed under +, and to a subsemigroup of some P T ∗Y that is closed under

∗, and if, in addition, the (images of the) semilattices S+ and S∗ coincide, then we call S a

two-sided restriction semigroup with respect to S+ = S∗.

A semigroup S that forms a left/right/two-sided restriction semigroup with respect to the

whole of E(S) will be termed a full left/right/two-sided restriction semigroup.

It is clear that P T X is a left restriction semigroup. Furthermore, a left restriction semi-

group may be regarded as a (2,1)-subalgebra of P T X .

Observe that in any IX , + can be expressed as follows, for α ∈ IX :

α+ = αα−1. (3.1)

Therefore, the fact that IX is closed under composition and inverses ensures that it is closed

under +. Furthermore, (IX )
+ = EX . Thus, IX is a full left restriction semigroup. Moreover,

by the Wagner-Preston Representation Theorem [49, Theorem 1.5.1], any inverse semigroup

is a full left restriction semigroup. In the following section, we will prove this explicitly in an

abstract setting.

Note that IX is left-right dual and must therefore also be a full right restriction semigroup,

hence a full two-sided restriction semigroup. In IX , the unary operation ∗ can be written as

α∗ = α−1α. (3.2)

By way of concluding this section, we note that a partial transformation monoid possesses

an obvious partial order:

α≤ β ⇐⇒ α = β |domα. (3.3)

This partial order is natural, in the sense that it is compatible with composition and restricts

to the usual partial order on EX . In TX , the ordering of (3.3) becomes trivial. Note also that

when this ordering is applied in the inverse case, it yields, for example, the ordering in an

inductive groupoid, as per Theorem 1.19.
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4. The abstract characterisation

We have seen that restriction semigroups arise very naturally from partial transformation

monoids; they also have a useful abstract characterisation. Harking back to the terminology

we saw unfold in Section 2, we will introduce the abstract definition under the name weakly

left E-ample semigroup and then prove that these are in fact precisely the left restriction semi-

groups that we defined via partial transformations in the previous section. Note that we will

focus our attention on the left-hand versions of these semigroups; the right-hand version is

dual.

Let S be a semigroup and let E ⊆ E(S) be a distinguished subset of idempotents of S. We

define the relation eRE on S by the rule that

a eRE b⇐⇒∀e ∈ E[ea = a⇔ eb = b], (4.1)

for a, b ∈ S. Thus, two elements a, b are eRE -related if, and only if, they have the same left

identities in E. It is easy to see that eRE is an equivalence relation. If E = E(S), then we denote

eRE by eR . Note that eR ⊆ eRE , for any E.

As indicated in Section 2, the relation eRE is a generalisation of Green’s relation R; we

now prove that this is the case. We also take this opportunity to make the connection between

eRE and the relation R∗ which we saw in Section 1 (as equation (1.1)) and will see again in

the following section.

Lemma 4.1. If S is a semigroup with subset E ⊆ E(S), then R ⊆R∗ ⊆ eR ⊆ eRE in S.

Proof. Suppose that aR b in S1. Then there exist c, d ∈ S with a = bc and b = ad . For

any x , y ∈ S1, it is clear that if xa = ya, then xad = yad , whence x b = y b. Similarly, the

converse, hence aR∗ b.

Now suppose that aR∗ b. We can set y = 1 and x = e in (1.1), for any e ∈ E(S), to obtain

ea = a⇔ eb = b.

Hence R∗ ⊆ eR. We observed above that eR ⊆ eRE .
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We note the following simpler condition for an element a ∈ S to be eRE-related to an

idempotent e ∈ E:

a eRE e⇐⇒ ea = a and ∀g ∈ E[ga = a⇒ ge = e]. (4.2)

Harking back to the discussion of minimal idempotent-generated ideals in Section 2, we note

that (4.2) tells us that a eRE e if, and only if, aS1 ⊆ eS1, where eS1 is the smallest principal

right ideal to be generated by an idempotent from E and to contain aS1.

Lemma 4.2. Let S be a semigroup with subset E ⊆ E(S). Then e eRE f if, and only if, eR f .

Proof. Let e, f ∈ S and suppose that e eRE f . Then, by (4.2), e f = f and f e = e, hence

eR f . The converse follows from Lemma 4.1.

In the special case where E is a semilattice, we have the following easy consequence of

Lemma 4.2:

Lemma 4.3. Let S be a semigroup with subsemilattice E ⊆ E(S). Each element of S is eRE-related

to at most one idempotent from E.

Indeed, we are most interested in the case when E is a semilattice.

We now give an abstract definition for a weakly left E-ample semigroup; we will ultimately

prove that this is equivalent to a left restriction semigroup.

Definition 4.4. A semigroup S with subsemilattice E ⊆ E(S) is called a weakly left E-ample

semigroup if

1. every element a is eRE-related to an idempotent a+ ∈ E;

2. eRE is a left congruence;

3. for all a ∈ S and all e ∈ E, ae = (ae)+a.

A weakly left E-ample monoid is defined analogously; in this instance, we require 1 ∈ E.
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Thus, in a weakly left E-ample semigroup, a eRE b if, and only if, a+ = b+. The idempotent

a+ is well-defined, thanks to Lemma 4.3, and is a left identity for a. It is also clear that e+ = e

and (a+)+ = a+, for any e ∈ E and any a ∈ S. A weakly left E-ample semigroup may be

regarded (and, indeed, defined [32]) as an algebra of type (2,1).

The identity in condition (3) of Definition 4.4 will be referred to throughout as the ‘left

ample identity’. This identity is equivalent to the ‘idempotent connected’ condition of (1.3).

With regard to the last part of Definition 4.4, we note that if S is a weakly left E-ample

semigroup and we adjoin an identity 1 to S, then S1 is a weakly left E1-ample monoid.

A semigroup S which is weakly left E-ample for E = E(S) is called simply a weakly left

ample semigroup; in this instance, Definition 4.4 can of course be rewritten in terms of eR .

Once we have completed the proof that weakly left E-ample semigroups are precisely left

restriction semigroups, we will see as an easy corollary that weakly left ample semigroups are

precisely full left restriction semigroups.

Our first step towards proving that Definitions 3.1 and 4.4 are equivalent is the following:

Proposition 4.5. A partial transformation monoid P T X is weakly left EX -ample.

We first note the following lemma:

Lemma 4.6. For α,β ∈ P T X ,

α eREX
β ⇐⇒ domα = domβ . (4.3)

Proof. From (4.1), we have

α eREX
β ⇐⇒∀IY ∈ EX [IYα= α⇔ IYβ = β].

We observe that dom IYα= Y ∩ domα, so that

α eREX
β ⇐⇒∀Y ⊆ X [domα⊆ Y ⇔ domβ ⊆ Y ].

The result now follows.

We can now proceed with the following proof:
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Proof. [Proof of Proposition 4.5] Let α ∈ P T X . It follows immediately from Lemma 4.6

that α eREX
Idomα. By Lemma 4.3, Idomα is the only idempotent in EX to which α is eREX

-related.

The ‘weakly left E-ample’ + of Defintion 4.4 therefore coincides with the ‘left restriction’ + of

Definition 3.1.

Now suppose that α eREX
β , i.e., domα = domβ , and let γ ∈ P T X . We will show that

γα eREX
γβ by using (4.3). We have

domγα= (imγ∩ domα)γ−1 = (imγ∩ domβ)γ−1 = domγβ .

Thus eREX
is a left congruence.

It only remains to verify that the left ample identity holds. Let α ∈ P T X and IA ∈ EX .

Then

domαIA = (imα∩ dom IA)α
−1 = (imα∩ A)α−1 ⊆ domα.

Note also that im(αIA)
+ = dom(αIA)

+ = domαIA. We have

dom(αIA)
+α =
�

im(αIA)
+ ∩ domα
��
(αIA)

+
�−1

= domαIA∩ domα= domαIA,

as required. For any x in this domain: x(αIA)
+α = xα= xαIA.

It is clear that the details of the proof of Proposition 4.5 apply equally well to any sub-

semigroup of P T X that is closed under +, i.e., to any left restriction semigroup.

Corollary 4.7. Let S be a left restriction semigroup with respect to a subsemilattice E ⊆ E(S).

Then S is weakly left E-ample.

It remains to show that a given weakly left E-ample semigroup S is a left restriction semi-

group with respect to E. Before we do so, however, we first record some additional properties

of weakly left E-ample semigroups, including the following useful characterisation of condi-

tion (2) of Definition 4.4:

Lemma 4.8. Let S be a semigroup in which every element a is eRE-related to an idempotent a+ ∈

E, for some subsemilattice E ⊆ E(S). Then eRE is a left congruence if, and only if, (st)+ = (st+)+,

for all s, t ∈ S.
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Proof. Suppose that eRE is a left congruence. It then follows immediately from t eRE t+ that

st eRE st+, i.e., (st)+ = (st+)+.

Conversely, suppose that (st)+ = (st+)+, for all s, t ∈ S. Then st eRE st+. For any u ∈ S

with u eRE t, we have (st+)+ = (su+)+ = (su)+, hence

st eRE st+ eRE su+ eRE su.

Thus eRE is a left congruence.

A weakly left E-ample semigroup possesses a (natural) partial order analogous to that in

an inverse semigroup; this is, of course, an abstract version of the ordering of (3.3):

a ≤ b⇐⇒ a = eb, (4.4)

for some e ∈ E. Equivalently,

a ≤ b⇐⇒ a = a+b.

To see this equivalence, we start with a = eb and use Lemma 4.8 to obtain

a+ = (eb)+ = (eb+)+ = eb+,

so that a = eb = eb+b = a+b, as required. The converse is clear.

The partial order in a weakly left E-ample semigroup is compatible with multiplication

(thanks to the left ample identity) and, in E, restricts to the ‘usual’ ordering of idempotents:

e ≤ f if, and only if, e = e f .

Lemma 4.9. Let S be a weakly left E-ample semigroup with partial order ≤. If s ∈ S and e ∈ E,

then se ≤ s.

Proof. If we apply the left ample identity, then we have se = (se)+s ≤ s, by (4.4).

We observed earlier that a+ is a left identity for a in a weakly left E-ample semigroup; we

can now say a little more:

Lemma 4.10. With respect to ≤, a+ is the least left identity for a.
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Proof. This follows from (4.2).

Lemma 4.11. [24, Proposition 1.6] Let S be a weakly left E-ample semigroup with partial

order ≤, and let s, t ∈ S. Then (st)+ ≤ s+.

Proof. We make the easy observation that s+ is a left identity for st. The result then follows

from Lemma 4.10.

The following representation theorem, which first appeared in [76], completes the proof

that left restriction and weakly left E-ample semigroups are indeed one and the same by

providing a representation of a given weakly left E-ample semigroup as a (2,1)-subalgebra of

a partial transformation monoid. We note that if we regard a weakly left E-ample semigroup

as a subsemigroup of P T X , as per the following theorem, then Lemmas 4.9–4.11 follow

easily from (3.3).

Theorem 4.12. Let S be a weakly left E-ample semigroup, regarded as an algebra of type (2,1).

Then the mapping φ : S→P T S given by

dom sφ = Ss+ and x(sφ) = xs, ∀x ∈ dom sφ,

is a representation of S as a (2,1)-subalgebra of P T S .

Proof. We must show that φ is an injective (2,1)-morphism. Note that the ‘1’ part of ‘(2,1)-

morphism’ indicates that φ should send the ‘weakly left E-ample’ + to the ‘left restriction’ +.

We first show that φ respects + in this way. For s ∈ S, we have (sφ)+ = Idom sφ , so

dom(sφ)+ = dom sφ = Ss+ = S(s+)+ = dom s+φ.

Let x belong to this domain. Then x = ys+, for some y ∈ S, so

x(s+φ) = xs+ = ys+s+ = ys+ = x = x(sφ)+.

We now show that φ respects multiplication. Let s, t ∈ S. Then dom(sφ)(tφ) is the set of

all those elements x ∈ dom sφ such that x(sφ) = xs ∈ dom tφ:

dom(sφ)(tφ) = {x ∈ Ss+ : xs ∈ St+}. (4.5)
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Let x ∈ dom(sφ)(tφ). We deduce from (4.5) that

xs+ = x ; (4.6)

xst+ = xs. (4.7)

Then

x = xs+, by (4.6)

= (xs+)+x , by the left ample identity

= (xs)+x , by Lemma 4.8

= (xst+)+x , by (4.7)

= (xst)+x , by Lemma 4.8

= (x(st)+)+x , by Lemma 4.8

= x(st)+, by the left ample identity.

Hence x ∈ S(st)+ = dom(st)φ.

Conversely, suppose that x ∈ dom(st)φ = S(st)+. Then

x(st)+ = x , (4.8)

so

xs+ = x(st)+s+

= x(st)+, by Lemma 4.11

= x ,

in which case, x ∈ Ss+ = dom sφ. Next,

x(sφ) = xs = x(st)+s, by (4.8)

= x(st+)+s, by Lemma 4.8

= xst+, by the left ample identity.

Thus x(sφ) ∈ St+ = dom tφ. We conclude that x ∈ dom(sφ)(tφ). Therefore, dom(sφ)(tφ) =

dom(st)φ. It is clear that x(sφ)(tφ) = x(st)φ, for x in this domain, hence (sφ)(tφ) = (st)φ.

Finally, we must show that φ is one-one. Suppose that sφ = tφ, for some s, t ∈ S. Then

Ss+ = dom sφ = dom tφ = St+, whence s+ = ut+ and t+ = vs+, for some u, v ∈ S, i.e.,
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s+L t+. It follows that s+ = t+. Finally, we have s+ = t+ ∈ dom sφ = dom tφ, so

s+(sφ) = t+(tφ)⇒ s+s = t+ t ⇒ s = t,

as required.

Thus:

Theorem 4.13. Weakly left E-ample semigroups are precisely left restriction semigroups; weakly

left ample semigroups are precisely full left restriction semigroups.

From here on, we will use the term ‘left restriction semigroup’.

In the previous section, we observed that left restriction semigroups generalise inverse

semigroups. We now prove this explicitly in the abstract setting. First note the following:

Lemma 4.14. In a regular semigroup, R = eR .

Proof. Let S be a regular semigroup. We know from Lemma 4.1 that R ⊆ eR . It remains

to show the reverse inclusion. Let a, b ∈ S and suppose that a eR b. Since S is regular, there

exists a′ ∈ S with aa′a = a, so that aa′ is a left identity for a. Consequently, aa′ is a left

identity for b also: aa′b = b, whence b ≤R a. Similarly, there exists a b′ ∈ S with bb′a = a.

We conclude that aR b.

Lemma 4.15. Every inverse semigroup is a full two-sided restriction semigroup with a+ = aa−1

and a∗ = a−1a, for each a ∈ S.

Proof. Let S be an inverse semigroup. We will show that S is a left restriction semi-

group; the proof that S is a right restriction semigroup (as per the abstract description in

Definition 4.16 below, where, moreover, ∗ is defined) is dual. We know that E(S) forms a

semilattice and that aR aa−1. It therefore follows from Lemma 4.14 that every element a of

S is eR-related to an idempotent, namely aa−1. We also know that R is a left congruence. It

therefore only remains to show that the left ample identity holds:

(ae)+a = (ae)(ae)−1a = aeea−1a = aea−1a = aa−1ae = ae,
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as required.

Note that any monoid can be regarded as a left restriction monoid with respect to {1},

with a+ = 1, for all elements a. A unipotent monoid (i.e., a monoid whose only idempotent

is its identity) is therefore a full left restriction monoid.

By way of concluding this section, and for completeness, we record the definition of the

dual equivalence relation fLE and, consequently, that of a right restriction semigroup (weakly

right E-ample semigroup).

Definition 4.16. Let S be a semigroup and let E ⊆ E(S) be a distinguished subsemilattice of

S. We define the relation fLE on S by the rule that

a fLE b⇐⇒∀e ∈ E[ae = a⇔ be = b],

for a, b ∈ S. We call S a right restriction semigroup with respect to E if

1. every element a is fLE-related to an idempotent a∗ ∈ E;

2. fLE is a right congruence;

3. for all a ∈ S and all e ∈ E, ea = a(ea)∗.

All the results of this section have right-hand analogues in terms of fLE and ∗.

5. Left ample semigroups

As we saw in Sections 1 and 2, left restriction semigroups generalise the left ample semi-

groups of Fountain [22,24]. As in the more general case, left ample semigroups have both a

characterisation as semigroups of partial transformations (this time, one-one partial transfor-

mations), and also an abstract description. We present both points of view here, but we do

not prove their equivalence; the proof is easily achieved by adapting those of Corollary 4.7

and Theorem 4.12.

Let IX be the symmetric inverse monoid on a set X . There are three natural unary oper-

ations which we can consider on IX : the operations + and ∗, given in (3.1) and (3.2), and
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inversion α 7→ α−1. Let S be a subsemigroup of IX . We know that if S is closed under −1, then

S is an inverse semigroup, which may be regarded as a (2,1)-subalgebra of IX , with unary

operation −1. In contrast, if S is closed under +, say, then we call S a left ample semigroup. It is

clear that such an S is also a (2,1)-subalgebra of IX , this time with unary operation +. Since

IX ⊆ P T X , it is immediate that a left ample semigroup is a full left restriction semigroup.

Right ample semigroups may be defined in a similar way by considering closure under ∗. Note

that there is no need to introduce the intermediate notion of a ‘left E-ample’ semigroup’: such

a semigroup is necessarily left ample, since it can contain idempotents only from EX .

Just as we did for left restriction semigroups, we now provide an abstract characterisation

of left ample semigroups. Recall from Section 1 that the equivalence relation R∗ is defined

on a semigroup S by saying that aR∗ b if, and only if, aR b in some oversemigroup T . Con-

sequently, R ⊆ R∗. Fountain [24, Lemma 1.1] proved that R∗ has the following equivalent

description:

aR∗ b⇐⇒∀x , y ∈ S1[xa = ya⇔ x b = y b]. (5.1)

It is clear thatR∗ is a left congruence. As with eRE , we have a simpler condition for an element

a of a semigroup S to be R∗-related to an idempotent e ∈ E(S):

aR∗ e⇐⇒ ea = a and ∀x , y ∈ S1[xa = ya⇒ xe = ye].

(Cf. Definition 1.4.)

Lemma 5.1. Let S be an arbitrary semigroup. For e, f ∈ E(S), eR∗ f if, and only if, eR f .

Proof. Similar to Lemma 4.2.

The following is an immediate consequence of Lemma 5.1:

Lemma 5.2. Let S be a semigroup whose idempotents form a subsemilattice E(S). Each element

of S is R∗-related to at most one idempotent.

Left ample semigroups have the following abstract description:

Definition 5.3. A semigroup S is left ample if
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1. every element a is R∗-related to an idempotent, denoted by a†;

2. for all a ∈ S and all e ∈ E(S), ae = (ae)†a.

By Lemma 4.1 and the fact that R∗ is a left congruence, it is easy to see that every left

ample semigroup is a full left restriction. Indeed, we have the following:

Lemma 5.4. In a left ample semigroup, a† = a+, for all elements a.

Proof. Observe that if aR∗ e ∈ E(S), then a eR e, by Lemma 4.1. It follows that a† = a+.

From here on, we will drop the notation ‘a†’ in favour of ‘a+’.

Lemma 5.5. Let S be a left restriction semigroup with respect to some E ⊆ E(S). Then S is left

ample if, and only if, R∗ = eRE .

Proof. Let S be a left ample semigroup. We know that R∗ ⊆ eRE , so we prove the reverse

inclusion. Let a eRE b, for a, b ∈ S. Then a+ = b+. Hence aR∗ a+ = b+R∗ b.

Conversely, suppose that R∗ = eRE . Then S is clearly left ample.

Lemma 5.6. Let S be a left restriction semigroup with respect to some E ⊆ E(S), and let φ be

the function of Theorem 4.12. Then S is left ample if, and only if, imφ ⊆ IS.

Proof. Let S be a left ample semigroup. Let x , y ∈ dom sφ, for some s ∈ S, and suppose

that x(sφ) = y(sφ), i.e., xs = ys. By Lemma 5.5, R∗ = eRE , so xs+ = ys+, since sR∗ s+.

Then

xs+ = ys+⇔ x(s+φ) = y(s+φ)⇔ x(sφ)+ = y(sφ)+⇔ x = y.

Therefore sφ is one-one, i.e., sφ ∈ IS .

Conversely, suppose that imφ ⊆ IS . Then, since φ is a (2,1)-morphism, imφ is a (2,1)-

subalgebra of IS . By the remarks in the opening paragraphs of this section, S is left ample.

We see from Lemmas 4.1 and 4.14 that R = R∗ = eR in a regular semigroup. It is clear

from Lemmas 4.15 and 5.6 that every inverse semigroup is left ample. It is also clear that a

right cancellative semigroup is left ample.

Once again, for completeness, we conclude this section by recording the definition of the

dual equivalence relation L ∗ and, consequently, that of a right ample semigroup.
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Definition 5.7. We define the equivalence relation L ∗ on a semigroup S by the rule that

aL ∗ b⇐⇒∀x , y ∈ S1[ax = a y⇔ bx = b y],

for a, b ∈ S. We call S right ample if

1. every element a is L ∗-related to an idempotent, denoted by a∗;

2. for all a ∈ S and all e ∈ E(S), ea = a(ea)∗.

All the results of this section have right-hand analogues in terms of L ∗ and ∗.

Appendix: Summary of terminology

As we saw in Sections 1 and 2, when approached from the point of view of S-acts, the

terminology associated with the class of semigroups which we are now calling ‘left restriction

semigroups’ has had a somewhat torturous history, with a number of changes along the way.

Unfortunately, if one is to study the earlier papers on this subject, then one must be familiar

with all of the former names of these semigroups. We therefore provide a short summary of

the various terms found in this area of study. We will restrict our attention to the left-hand

versions of these various classes of semigroups; the right-hand version may be defined dually.

Let S be a semigroup with a distinguished subset E ⊆ E(S). We will call S

• left E-semiabundant if every element is eRE-related to an idempotent from E, and

• left E-abundant if every element is R∗-related to an idempotent from E.

In either case, if E = E(S), then we will omit the ‘E ’. These terms will serve as our basic

terminology: everything else will be defined in terms of these. Let (CL) denote the condition

that eRE be a left congruence, and (LA) denote the left ample identity: ae = (ae)+a, for

all a ∈ S and all e ∈ E. Table 1 summarises the various classes of semigroups mentioned

in Sections 1 and 2. Observe that there have been two conventions for the naming of these

semigroups: in most cases, the switch from semigroups defined in terms ofR∗ to those defined

in terms of eRE has been denoted by the addition of the prefix ‘semi-’, whilst in one case, it has
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been signified by the inclusion of the word ‘weakly’. The latter convention is the more recent.

At the risk of causing further confusion, left E-semiabundant semigroups, for example, would

probably now be called ‘weakly left E-abundant semigroups’!

As a final comment, we note that Lawson’s Ehresmann semigroups appear only in their

two-sided form in [47] but it is easy to see that we can write down one-sided versions also.

We have omitted Lawson’s Rees semigroups [46] from Table 1, as they cannot be defined

in a single line; suffice it to say that they are a special class of (two-sided) E-semiabundant

semigroups.

Name Definition

left Ehresmann left E-semiadequate with (CL)

left idempotent-connected Ehresmann = weakly left E-ample

left adequate left abundant with E(S) a semilattice

left E-adequate left E-abundant with E a semilattice

left ample left adequate with (LA)

left E-semiadequate left E-semiabundant with E a semilattice

left PP = left abundant

left Q- left semiabundant with E(S) a band

left quasi-adequate left abundant with E(S) a band

left restriction = weakly left E-ample

left semiadequate left semiabundant with E(S) a semilattice

left type A = left ample

left type T = weakly left ample

weakly left ample left semiadequate with (CL) and (LA)

weakly left E-ample left Ehresmann with (LA)Table 1: Guide to the terminology of Se
tions 1 and 2
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