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Abstract. In this paper, we study (m, n)-ideals of an £ .¢f -semigroup in detail. We characterize (0, 2)-
ideals of an £ .«f -semigroup S and prove that Ais a (0, 2)-ideal of S if and only if A is a left ideal of some
left ideal of S. We also show that an £ .«/-semigroup S is 0 — (0, 2)-bisimple if and only if S is right
0-simple. Furthermore we study O-minimal (m, n)-ideals in an £ .¢/-semigroup S and prove that if R,
(L) is a O-minimal right (lef t) ideal of S, then either R"L"™ = {0} or R™L" is a 0-minimal (m, n)-ideal
of S for m,n > 3. Finally we discuss (m, n)-ideals in an (m, n)-regular £ ./ -semigroup S and show that
S is (0, 1)-regular if and only if L = SL where L is a (0, 1)-ideal of S.
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1. Introduction

A left almost semigroup (£ .</-semigroup) is a groupoid Ssatisfying the left invertive law
(ab)c = (cb)a for all a,b,c € S. This left invertive law has been obtained by introducing
braces on the left of ternary commutative law abc = cba. The concept of an £ .« -semigroup
was first given by Kazim and Naseeruddin in 1972 [3]. An ¥ .«/-semigroup satisfies the medial
law (ab)(cd) = (ac)(bd) for all a, b,c,d € S. Since ¥ .o/ -semigroups satisfy medial law, they
belong to the class of entropic groupoids which are also called abelian quasigroups [12]. If
an % .¢/-semigroup S contains a left identity (unitary £ .of -semigroup), then it satisfies the
paramedial law (ab)(cd) = (dc)(ba) and the identity a(bc) = b(ac) for all a, b,c,d € S [7].

An ¥ .o/ -semigroup is a useful algebraic structure, midway between a groupoid and a
commutative semigroup. An % .¢/-semigroup is non-associative and non-commutative in gen-
eral, however, there is a close relationship with semigroup as well as with commutative struc-
tures. It has been investigated in [7] that if an £ .« -semigroup contains a right identity, then
it becomes a commutative semigroup. The connection of a commutative inverse semigroup
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with an ¢ ./ -semigroup has been given by Yousafzai et al. in [16] as, a commutative inverse
semigroup (S,-) becomes an .¥.«/-semigroup (S,*) under a* b = ba 'r~!, Ya,b,r €S. An
% o -semigroup S with left identity becomes a semigroup under the binary operation "o,",
defined as x o, y = (xe)y for all x,y € S [17]. An ¥.«/-semigroup is the generalization of
a semigroup theory [7] and has vast applications in collaboration with semigroups like other
branches of mathematics. Khan et al. studied an intra-regular class of an .o/ -semigroup
in [4] and proved some interesting problems by using different ideals. They proved that the
set of all two-sided ideals of intra-regular ./ -semigroup forms a semilattice structure. They
characterized an intra-regular ¥ .</-semigroup by using left, right, two-sided and bi-ideals. An
Y of -semigroup is the generalization of a semigroup theory [7]. Many interesting results on
X of -semigroups have been investigated in [5, 9-11, 15].

Yaqoob, Corsini and Yousafzai [13] extended the concept of LA-semigroups and introduced
a new structure called left almost semihypergroup. Further Yaqoob and Gulistan [14] de-
fined partial ordering on left almost semihypergroups. Gulistan et al. [2] defined H,-%.</-
semigroups which is a new generalization of .¥.«/-semigroups and .¥.«f -semihypergroups.

2. Preliminaries and Examples

If S is an % .o/ -semigroup with product - : S xS — S, then ab - ¢ and (ab)c both denote
the product (a-b)-c.

If there is an element O of an .¥.«/-semigroup (S,-) suchthat x-0=0-x=x Yx €S, we
call 0 a zero element of S.

Example 1. Let S = {a, b, c,d, e} with a left identity d. Then the following multiplication table
shows that (S,-) is a unitary £ .«/-semigroup with a zero element a.

a b ¢ d e
ala a a a a
bla e e ¢ e
cla e e b e
dla b ¢ d e
ela e e e e

Example 2. Let S = {a, b,c,d}. Then the following multiplication table shows that (S,-) is an
X .of -semigroup with a zero element a.

o o Qs

c
a
d
c
c

QO o Q
Q Q Q Q|Q
o o o ala

The above ¢ .«/-semigroup S has commutative powers, thatisaa-a =a-aaforallae S
which is called a locally associative . .</ -semigroup [8]. Note that S has no associative powers
for all a € S because (bb- b)b # b(bb-b) for b €8S.
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Assume that S is an £ .o/ -semigroup. Let us define a' = a, a™*! = a™a and

a™ = ((((aa)a)a)...a)a = a™ 'a for all a € S where m > 1. It is easy to see that
a™ =a™1la =aa™ ! foralla € S and m > 3 if S has a left identity. Also, we can show by
induction, (ab)™ = a™b™ and a™a"™ = a™"™ hold for all a,b € S and m,n > 3.

A subset A of an ¥ .o/ -semigroup S is called a right (left) ideal of S if AS C A (SA C A), and
is called an ideal of S if it is both left and right ideal of S.

A subset A of an ¥ .«/-semigroup S is called an £ .¢f -subsemigroup of S if A> C A.

The concept of (m, n)-ideals of a semigroup and an . .</-semigroup was given in [6] and
[1] respectively.

An % .o/ -subsemigroup A of an ¥ .«/-semigroup S is said to be an (m, n)-ideal of S if A™S -
A" C Awhere m, n are non-negative integers such that m = n # 0. Here A™ or A" are suppressed
if m=0orn=0, that is A°S = S or SA° = S. Note that if m = n = 1, then an (m, n)-ideal A of
an % .o/ -semigroup S is called a bi-ideal of S. If we take m = 0 or n = 0, then an (m, n)-ideal
A of an ¥ .«/-semigroup S becomes a left or a right ideal of S.

An (m,n)-ideal A of an ¥ .</-semigroup S with zero is said to be 0-minimal if A # {0} and
{0} is the only (m, n)-ideal of S properly contained in A.

An ¥ .of -semigroup S with zero is said to be 0-(0, 2)-bisimple if S? # {0} and {0} is the
only proper (0, 2)-bi-ideal of S.

An ¥ .of -semigroup S with zero is said to be nilpotent if S' = {0} for some positive integer
L.

Let m,n be non-negative integers and S be an .¥.«/-semigroup. We say that S is (m, n)-
regular if for every element a € S there exists some x € S such that a = (a™x)a". Note that
a’ is defined as an operator element such that a°y = y and za® = z for any y,z € S.

3. 0-Minimal (0, 2)-Bi-Ideals in Unitary . .«/-Semigroups

If S is a unitary .%.¢/-semigroup, then it is easy to see that S = S, SA?> = A2S and A C SA
VA C S. Note that every right ideal of a unitary £ .«/-semigroup S is a left ideal of S but the
converse is not true in general. Example 1 shows that there exists a subset {a, b, e} of S which
is a left ideal of S but not a right ideal of S. It is easy to see that SA and SA? are the left and
right ideals of a unitary .%.¢f-semigroup S. Thus SA? is an ideal of a unitary £ .¢f-semigroup
S.

Lemma 1. Let S be a unitary &£ .« -semigroup. Then A is a (0, 2)-ideal of S if and only if A is an
ideal of some left ideal of S.

Proof Let Abe a (0,2)-ideal of S, then SA-A=AA-S = SA®> C A and
A-SA=S-AA=SS-AA= SA? C A. Hence A is an ideal of a left ideal SA of S.
Conversely, assume that A is a left ideal of a left ideal L of S, then

SA>=AA-S=SA-ACSL-ACLACA,

and clearly A is an ¥ .</-subsemigroup of S, therefore A is a (0, 2)-ideal of S. O
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Corollary 1. Let S be a unitary £ .o/-semigroup. Then A is a (0,2)-ideal of S if and only if A is
a left ideal of some left ideal of S.

Lemma 2. Let S be a unitary £ .«f/-semigroup. Then A is a (0,2)-bi-ideal of S if and only if A is
an ideal of some right ideal of S.

Proof Let A be a (0,2)-bi-ideal of S, then SA?-A = A%2S-A = AS - A2 C SA? C A and
A-SA? =SS -AA%> = A?A-SS = SA-A? C SA?> C A. Hence A is an ideal of some right ideal SA?
of S.

Conversely, assume that A is an ideal of a right ideal R of S, then

SA’=A-SA=A-(SS)A=A-(AS)SCA-(RS)RCARCA,

and (AS)A C (RS)A € RA C A, which shows that A is a (0, 2)-ideal of S. O

Theorem 1. Let S be a unitary £ .of -semigroup. Then the following statements are equivalent.
(1) Aisa (1,2)-ideal of S;
(ii) A'is a left ideal of some bi-ideal of S;
(iii) As a bi-ideal of some ideal of S;
(iv) Ais a (0,2)-ideal of some right ideal of S;
(v) Ais a left ideal of some (0, 2)-ideal of S.

Proof (i) = (ii). It is easy to see that SA?- S is a bi-ideal of S. Let A be a (1,2)-ideal of
S, then

(SA?-S)A=(SA?-SS)A=(SS-A?S)A=(S-A’S)A=A%S -A
=AS -A% CA,

which shows that A is a left ideal of a bi-ideal SA? - S of S.
(ii) = (iii). Let A be a left ideal of a bi-ideal B of S, then

(A-SA2)A=(S-AA*)AC[S(SA-AA)JA=[S(4AA-AS)]A
=[AA-S(AS)]A=[{S(AS) -AJA]JA=[(AS - A)A]A
C[(BS-B)AJAC BA-ACA,

which shows that A is a bi-ideal of an ideal SA? of S.
(iii) = (iv). Let A be a bi-ideal of an ideal I of S, then

SA%- A% =(A%-AA)S = (A-A*A)S C[A-(AIA]S =AA-S
=SA-ACSI-SCI,

which shows that A is a (0, 2)-ideal of a right ideal SA? of S.



W. Khan, F. Yousafzai, and M. Khan / Eur. J. Pure Appl. Math, 9 (2016), 277-291 281

(iv) = (v). It is easy to see that SA% is a (0, 2)-ideal of S. Let A be a (0, 2)-ideal of a right
ideal R of S, then

A-SA% =A(SS - A%A) = A(AA% - S) C A[(SA-AA)S] =A[(AA-AS)S]
=(AA)[(A-AS)S] =[S - A(AS)]A* = [A- S(AS)]A?
CRS -A%> CRA? C A,

which shows that A is a left ideal of a (0, 2)-ideal SA® of S.
(v) = (i). Let A be a left ideal of a (0, 2)-ideal O of S, then

AS-A%=(AA-SS)A=SA%2-ACSO?-ACOACA,

which shows that Ais a (1, 2)-ideal of S. O

Lemma 3. Let S be a unitary £ .« -semigroup and A be an idempotent subset of S. Then A
is a (1,2)-ideal of S if and only if there exist a left ideal L and a right ideal R of S such that
RLCACRNL.

Proof. Assume that A is a (1, 2)-ideal of S such that A is idempotent. Setting L = SA and
R =SA?, then

RL =SA?-SA=A?S-SA=(SA-SS)A%? =(SS - AS)A?
=[S(AA-SS)]A* = [S(SS - AA)]A® = [S{A(SS - A)}]A?
=[A(S - SA)]JA® CAS - A% CA.

It is clear that ACRN L.
Conversely, let R be a right ideal and L be a left ideal of S such that RL £ A C RN L, then
AS-A*=AS-AACRS-SLCRLCA. O

Assume that S is a unitary £ .«/-semigroup with zero. Then it is easy to see that every left
(right) ideal of S is a (0, 2)-ideal of S. Hence if O is a 0-minimal (0, 2)-ideal of S and A is a left
(right) ideal of S contained in O, then either A= {0} or A= 0.

Lemma 4. Let S be a unitary ¥ .o/ -semigroup with zero. Assume that A is a 0-minimal ideal of
S and O is an £ .o/ -subsemigroup of A. Then O is a (0, 2)-ideal of S contained in A if and only if
02={0}or0O=A

Proof Let O be a (0, 2)-ideal of S contained in a 0-minimal ideal A of S. Then SO? C O C A.
Since SO? is an ideal of S, therefore by minimality of A, SO? = {0} or SO? = A. If SO? = A, then
A= S0? C O and therefore O = A. Let SO? = {0}, then 02S = SO? = {0} C 0?, which shows
that O? is a right ideal of S, and hence an ideal of S contained in A, therefore by minimality of
A, we have 0% = {0} or 0?2 = A. Now if 0?2 = A, then O = A.

Conversely, let 0?2 = {0}, then SO? = 02S = {0}S = {0} = 0%2. Now if O = A, then
S0%? =8S-00 =SA-SA C A= 0, which shows that O is a (0,2)-ideal of S contained in A. [
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Corollary 2. Let S be a unitary ¥ .<f/-semigroup with zero. Assume that A is a 0-minimal left
ideal of S and O is an £ .o/ -subsemigroup of A. Then O is a (0, 2)-ideal of S contained in A if and
only if 0> = {0} or O = A.

Lemma 5. Let S be a unitary £ .« -semigroup with zero and O be a 0-minimal (0, 2)-ideal of S.
Then 0% = {0} or O is a O-minimal right (lef t) ideal of S.

Proof. Let O be a 0-minimal (0, 2)-ideal of S, then
S(0%)? =55 -0%0%=0%0%-5 =50%-0% C00? C 0?,

which shows that 02 is a (0, 2)-ideal of S contained in O, therefore by minimality of O, 0? = {0}
or 02 = 0. Suppose that 0% = O, then 0OS = 00-SS = SO? C O, which shows that O is a right
ideal of S. Let R be a right ideal of S contained in O, then R2S =RR-S CRS-S CR. Thus R is
a (0,2)-ideal of S contained in O, and again by minimality of O, R = {0} or R = O. O

The following Corollary follows from Lemma 4 and Corollary 2.

Corollary 3. Let S be a unitary ¥ .of -semigroup. Then O is a minimal (0, 2)-ideal of S if and
only if O is a minimal left ideal of S.

Theorem 2. Let S be a unitary &£ .of -semigroup. Then Ais a minimal (2, 1)-ideal of S if and only
if Ais a minimal bi-ideal of S.

Proof. Let A be a minimal (2, 1)-ideal of S. Then

[(A%S - A)2S](A%S - A) =[{(A%S - A)(A%S - A)}S](A%S - A)

C[(AS - AS)S](AS - A)

=(A%S - S)(AS - A)

C(AS - S)(AS - A) = (AS - AS)(SA)

=A?S-SA=AS-SA%> = (SA%-S)A

=(A%S - S)A=(SS -AA)A=A%S - A,
and similarly we can show that (A%S -A)? C A%2S-A. Thus A%S-Ais a (2, 1)-ideal of S contained
in A, therefore by minimality of A, A%2S - A= A. Now

AS -A=(AS)(A%S -A) =[(A%S -A)S]A = (SA-A%S)A
=[A%(SA-S)JACA%S-A=A,

It follows that A is a bi-ideal of S. Suppose that there exists a bi-ideal B of S contained in A,
then B2S-B CBS-B C B, so B is a (2,1)-ideal of S contained in A, therefore B = A.
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Conversely, assume that A is a minimal bi-ideal of S, then it is easy to see that Ais a (2, 1)-
ideal of S. Let C be a (2,1)-ideal of S contained in A, then
[(C2%S-C)S](C%S - C)=(SC - C28)(C3S-C)=(SC?-CS)(C?S-C)
=[C(SC?-8)](C?s-C)=[(C?S-C)(SC?-8S)]C
=[(C%S-C)(S-C3S)]C =[(C?S-C)(C?S)]C
=[c*{(c?s-C)s}lccC?s-C.

This shows that C2S - C is a bi-ideal of S, and by minimality of A, C2S - C = A. Thus A =
C2S - C C C, and therefore A is a minimal (2, 1)-ideal of S. O

Theorem 3. Let A be a 0-minimal (0, 2)-bi-ideal of a unitary £ .o/ -semigroup S with zero. Then
exactly one of the following cases occurs:

) A={0,a}, a*=0;

(ii) Ya € A\{0}, Sa®> =A

Proof Assume that A is a 0-minimal (0, 2)-bi-ideal of S. Let a € A\{0}, then Sa? C A. Also
Sa? is a (0,2)-bi-ideal of S, therefore Sa? = {0} or Sa? = A.
Let Sa® = {0}. Since a® € A, we have either a> = a or a®> = 0 or a® € A\{0,a}. If a® = q,

then a® = a?a = a, which is impossible because a® € a®S = Sa? = {0}. Let a® € A\{0,a}, we
have

S -{0,a%}{0,a*} =SS - a?a® = Sa®- Sa® = {0} € {0, a*},
and

[{0,a?}S1{0, a*} = {0,a*S}{0,a*} = aS - a® € Sa® = {0} € {0, a*}.

Therefore {0,a?} is a (0,2)-bi-ideal of S contained in A. We observe that {0,a?} # {0}
and {0,a?} # A. This is a contradiction to the fact that A is a 0-minimal (0, 2)-bi-ideal of S.
Therefore a®> = 0 and A= {0, a}.

If Sa? # {0}, then Sa? = A. O

Corollary 4. Let A be a 0-minimal (0, 2)-bi-ideal of a unitary ¥ .ef -semigroup S with zero such
that A%> # 0. Then A= Sa? for every a € A\{0}.

Lemma 6. Let S be a unitary £ .«/-semigroup. Then every right ideal of S is a (0, 2)-bi-ideal of
S.

Proof. Assume that A is a right ideal of S, then
SA>=AA-SS=AS-AS CAACAS CA, AS-ACA,

and clearly A% C A, therefore A is a (0, 2)-bi-ideal of S. O

The converse of Lemma 6 is not true in general. Example 1 showed that there exists a
(0,2)-bi-ideal A= {a,c, e} of S which is not a right ideal of S.
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Theorem 4. Let S be a unitary £ .of -semigroup with zero. Then Sa? = S Ya € S\{0} if and only
if S is 0-(0, 2)-bisimple if and only if S is right 0-simple.

Proof Assume that Sa? = S for every a € S\{0}. Let A be a (0, 2)-bi-ideal of S such that
A#{0}. Let a € A\{0}, then S = Sa® C SA%? C A. Therefore S =A. Since S = Sa® C SS = §?,
we have $? = § # {0}. Thus S is 0 — (0,2)-bisimple. The converse statement follows from
Corollary 4.

Let R be a right ideal of 0-(0, 2)-bisimple S. Then by Lemma 6, R is a (0, 2)-bi-ideal of S
and soR= {0} orR=S.

Conversely, assume that S is right 0-simple. Let a € S\{0}, then Sa? = S. Hence S is
0-(0, 2)-bisimple. O

Theorem 5. Let A be a 0-minimal (0, 2)-bi-ideal of a unitary £ .«/-semigroup S with zero. Then
either A2 = {0} or A is right O-simple.

Proof Assume that A is 0-minimal (0, 2)-bi-ideal of S such that A% # {0}. Then by using
Corollary 4, Sa® = A for every a € A\{0}. Since a® € A\{0} for every a € A\{0}, we have
a* = (a?)? € A\{0} for every a € A\{0}. Let a € A\{0}, then

(Aa®)S - Aa® =a®A- S(Aa*) = [(S - Aa®)Ala® C [(S - A)A]a>
=(AA-SS)a* = SA? - a* C Ad?,

and

S(Aa?)? =S(Aa? - Aa?) = S(a”A- a?A) = S[a*(a?A- A)]
=(aa)[S(a?A-A)] =[(a?A-A)S]a?
C(AA-SS)a® = SA? - a® C Ad?,

which shows that Aa? is a (0, 2)-bi-ideal of S contained in A. Hence Aa® = {0} or Aa® = A. Since
a* € Aa? and a* € A\{0}, we get Aa? = A. Thus by using Theorem 4, A is right O-simple. ~ [J

4. (m,n)-Ideals in Unitary ¢ .</-Semigroups

In this section, we characterize a unitary .£.«f -semigroup in terms of (m, n)-ideals with the
assumption that m,n > 3. If we take m, n > 2, then all the results of this section can be trivially
followed for a locally associative unitary £ .o -semigroup. If S is a unitary £ .<f -semigroup,
then it is easy to see that SA™ = A™S and A™A" = A"A™ for m,n > 3 such that A® = e if occurs,
where e is a left identity of S.

Lemma 7. Let S be a unitary ¥ .«/-semigroup. If R and L are the right and left ideals of S
respectively, then RL is an (m, n)-ideal of S.
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Proof. Let R and L be the right and left ideals of S respectively, then
(RL)™S - (RL)" =(R™L™-S)(R"L™) = (R™L™-R™)(SL™)
=(L™R™-R™)(SL™) = (R"R™-L™)(SL")
=R™R"-L™)(SL") = (Rm+an)(SLn)
:S(Rm+an . Ll‘l) — S(Lan _Rm+n)
:SS . Lm+an+n — SLm+n . SRHH—TI
:Rm+ns . Lm+nS — SRTYH—H . SLm+n

and

SR™*n . g mtn =(S -Rm+”_1R)(S X Lm+n—1L)
=[S(R™"2R-R)][S(L™" 2L - L)]
=[S(RR-R™")][S(LL - L"*"7?)]
C(SS -RR™"2)(SS - LL™2)
C(SR-SR™™2)(SL-SL™"2)
C(R™" 25 .RS)(L - SL™2)
C(R™™M25.R)(S - LL™™2)

—=(RS - Rm+n—2)(SLm+n—1)
CRRM™2 . gm+n—1

CSRm+H—1 . SLm+n—1
therefore

(RL)™S - (RL)" CSR™M.gLmtn c ggmtl.gpmn—1 c CSR-SL
C(SS-R)L =(RS-S)L CRL,

and also
RL-RL=LR-LR=(LR-R)L =(RR-L)L C (RS -S)L CRL.

This shows that RL is an (m, n)-ideal of S. O

Theorem 6. Let S be a unitary £ .«f -semigroup with zero. If S has the property that it contains
no non-zero nilpotent (m,n)-ideals and R (L) is a 0-minimal right (lef t) ideal of S, then either
RL = {0} or RL is a O-minimal (m, n)-ideal of S.

Proof. Assume that R(L) is a 0-minimal right (lef t) ideal of S such that RL # {0}, then by
Lemma 7, RL is an (m, n)-ideal of S. Now we show that RL is a O-minimal (m, n)-ideal of S.
Let {0} # M C RL be an (m, n)-ideal of S. Note that since RL C RN L, we have M C RN L.
Hence M C R and M C L. By hypothesis, M™ # {0} and M™ # {0}. Since {0} # SM™ =M™S,
therefore

{0} #M™S CR™S =R™ 'R-S =SR-R™ ! =SR-R™?R
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=RR™2-RS CRR™ 2-R=R",
and
R™CSR™=S8S-RR™ ! =R™'R.S =(R™2R-R)S
=(RR-R™2)S =SR™2.RRCSR™2.R
=(SS-R™3R)R=(RR™3-SS)R= (RS -R™3S)R
C(R-R™3S)R=(R™3-RS)RCR™3R-R=R™1,

therefore {0} # M™S CR™ C R™! C ... CR. It is easy to see that M™S is a right ideal of S.
Thus M™S = R since R is O-minimal. Also

{0} £#SM"C{0}#SL"=S -L" 'L =L"'.SLCc L™ 'L=1L",
and
L"CSL"=8S-LL" ' =1L"'L-S=(L"2L-L)S=SL-L"%L
CL-L"2L=L"2.LLCL"?L=L"'C...CL,

therefore {0} # SM™ C L" C L™ ! C ... C L. It is easy to see that SM" is a left ideal of S. Thus
SM™ = L since L is O-minimal. Therefore

M CRL = M™S-SM" = M"S -SM™ = (SM™ - S)M"
=(SM™-SS)M"=(S-M"S)M"=(M™-SS)M"
=M™S-M"CM.
Thus M = RL, which means that RL is a 0O-minimal (m, n)-ideal of S. O

Theorem 7. Let S be a unitary £ .of -semigroup. If R (L) is a O-minimal right (lef t) ideal of S,
then either R™L" = {0} or R™L" is a O-minimal (m, n)-ideal of S.

Proof. Assume that R(L) is a O-minimal right (lef t) ideal of S such that R™L" # {0},
then R™ # {0} and L" # {0}. Hence {0} # R™ C R and {0} # L™ C L, which shows that
R™ =R and L™ = L since R (L) is a O-minimal right (lef t) ideal of S. Thus by Lemma 7,
R™ML™ =RL is an (m, n)-ideal of S. Now we show that R™L" is a 0-minimal (m, n)-ideal of S.
Let {0} #M CR™L" =RL CRN L be an (m, n)-ideal of S. Hence

{0} #SM? =MM -SS=MS-MS CRS-RSCR

and {0} #SM CSL C L. ThusR=SM2=MM-SS=SM -M C SM and SM = L since R (L)
is a 0-minimal right (lef t) ideal of S. Therefore

M CR™L" C (SM)™(SM)" =S™M™-S"M" =SS - M™M"
=M"M™-S=SM™-M"=M"S-M"C M,

Thus M = R™L", which shows that R™L" is a 0-minimal (m, n)-ideal of S. O
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Theorem 8. Let S be a unitary £ .«f -semigroup with zero. Assume that A is an (m, n)-ideal of S
and B is an (m, n)-ideal of A such that B is idempotent. Then B is an (m, n)-ideal of S.

Proof. It is trivial that B is an £ .«/-subsemigroup S. Secondly, since A™S - A" C A and
B™MA-B"™ C B, then
B™S -B" =(B™B™-S)(B"B") = (B"B")(S - B"B™)
=[(S-B™B™)B"]B" = [(B" - B™B™)(SS)]B"
=[(B™-B"B™)(SS)]B" =[S(B"B™ - B™)]B"
=[S(B"B™-B™ 'B)IB" = [S(BB™ ! - B"B")]B"
=[S(B™-B™B")]B" = [B™(SS - B™B")]B"
=[B™(B"B™-SS)]B" = [B™(SB™ - B")]B"
=[B™{(SS-B™ 'B)B"}]B" = [B™(B™S - B")]|B"
C[B™(A™S -A")]B" C B"A-B" C B,

which shows that B is an (m, n)-ideal of S. O
Lemma 8. Let (a)(, ) = a™S - a", then (a)(y n) is an (m,n)-ideal of a unitary £ .<f -semigroup
S.

Proof. Assume that S is a unitary .¥.«/ -semigroup and m, n are non-negative integers, then

({{a) mymyY "H) (@) gmmy " = [{((@"H)a™)} " H]{(a™H)a"}"
=[{(a™"H™)a™}H]{(a""H")a""}
=[a""(a™H")][H{(a""H™)a™"}]
=[[H{(a™H™)a™"}](a™H")]a™
=[a™[[H{(a™"H™)a™"}]H"]]a"™"
g(amnH)ann — (aman)ann

={(a"H)a"}" € ((€)mm)" < (@) mm
and similarly we can show that ((a)(m,n))2 C{a)(m.n)- O

Theorem 9. Let S be a unitary £ .of-semigroup and {(a)(y ) be an (m,n)-ideal of S. Then the
following statements hold:

@ ((@)ap)" S=a"s;
(i) S((a))" =Sa™;

(i) ((@)a0)" S ((@)on)" = (@S)a™
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Proof. (i). As {(a)(; o) = aS, we have
((@)n0)" S =(as)™s = (as)"'(as) - = 5(as) - (as)"™"!

=(as)(as)"" = (aS)[(aS)" *(as)]

=(aS)™2(aS - aS) = (aS)™ ?(a®S)
@S tmD(a™1s) if mis odd
T @ S)(@S)™ ™Y if m is even

=a™s.

Analogously, we can prove (ii) and (iii) is simple. O

Corollary 5. Let S be a unitary £ .of-semigroup and let {a), ,y be an (m,n)-ideal of S. Then
the following statements hold:

@ ((@)q0)" S=5am;
(i) S ((CI)(O’D)H = a”S;

i) ((@)wo) S ((@)o)" = (Sa™(@"s).

Let £ n) Rm,0) and Ay n) denote the sets of (0, n)-ideals, (m, 0)-ideals and (m, n)-ideals of an
< .of -semigroup S respectively.

Theorem 10. If S is a unitary ¥ .«/-semigroup, then the following statements hold:
(i) Sis (0,1)-regular if and only if VL € £ 1), L =SL;
(i) S is (2,0)-regular if and only if VR € R(y0), R = RS such that every R is semiprime;
(iii) S is (0,2)-regular if and only if YU € (g ), U = U?S such that every U is semiprime.

Proof. (i). Let S be (0, 1)-regular, then for a € S there exists x € S such that a = xa. Since
L is (0, 1)-ideal, therefore SL C L. Leta € L, then a = xa € SL C L. Hence L = SL. Converse
is simple.

(ii). Let S be (2,0)-regular and R be (2,0)-ideal of S, then it is easy to see that R = R2S.
Now for a € S there exists x € S such that a = a®x. Let a® €R, then

a=a’x€RS=R?>S-S=SS-R*=R?>S =R,

which shows that every (2, 0)-ideal is semiprime.
Conversely, let R = RS for every R € R(2,0)- Since Sa? is a (2,0)-ideal of S such that
a? € Sa?, therefore a € Sa®. Thus
a €Sa* = (Sa*)*S = (Sa*-Sa*)S = (a*S - a*S)S =[a*(a*S - $)1S
=(a?-Sa?)S = (S -Sa*)a® € Sa® = a?S,

which implies that S is (2, 0)-regular.
Analogously, we can prove (iii). O



W. Khan, E Yousafzai, and M. Khan / Eur. J. Pure Appl. Math, 9 (2016), 277-291 289
Lemma 9. If S is a unitary £ .«f/-semigroup, then the following statements hold:
(i) If S is (0,n)-regular, then VL € £ ), L =SL";
(i) If S is (m,0)-regular, then YR € Ry, 0, R =R"S;
(iii) If S is (m,n)-regular, then YU € 2, ), U = (U™S)U™.

Proof. It is simple. O

Corollary 6. If S is a unitary £ .« -semigroup, then the following statements hold:
(i) If S is (0,n)-regular, then YL € £ ), L = L"S;
(i0) If S is (m,0)-regular, then YR € R, oy, R = SR™;
(ii)) If S is (m,n)-regular; then YU € Ay, ), U = U™"S = SU™™.

Theorem 11. Let S be a unitary (m, n)-regular £ .o/ -semigroup such that m = n. Then for every
ReRyoand L € £, RNL =R"LNRL".

Proof. It is simple. O

Theorem 12. Let S be a unitary (m, n)-regular ¥ .« -semigroup. If M (N) is a O-minimal (m, 0)-
ideal ((0, n)-ideal) of S such that MN € M NN, then either MN = {0} or MN is a 0-minimal
(m, n)-ideal of S.

Proof. Let M (N) be a O-minimal (m, 0)-ideal ((0, n)-ideal) of S. Let O = M N, then clearly
0? C 0. Moreover
0™S-0" =(MN)™S - (MN)" = (M™N™)S - M"N" C (M™S)S - SN"
=SM™-SN"=M™S-SN"C MN =0,
which shows that O is an (m, n)-ideal of S. Let {0} # P C O be a non-zero (m, n)-ideal of S.
Since S is (m, n)-regular, therefore by using Lemma 9, we have
{0} £P = P™S - P = (P™-SS)P™ = (S - P™S)P" = (P" - P™S)(SS)
=(P"S)(P™S-S)=P"S-SP™ =P™S-SP".
Hence P™S # {0} and P™S # {0}. Further P C O = MN € M NN implies that P € M and
P C N. Therefore {0} # P™S C M™S C M which shows that P™S = M since M is 0-minimal.
Likewise, we can show that SP"™ = N. Thus we have
PCO=MN=P"S-SP"=P"S-SP™=(SP™-5S)P"
=(S-P™S)P" = P™S-P"CP,

This means that P = M N and hence MN is O-minimal. O
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Theorem 13. Let S be a unitary (m,n)-regular ¥ .o/ -semigroup. If M (N) is a O-minimal
(m, 0)-ideal ((0,n)-ideal) of S, then either M NN = {0} or M NN is a O-minimal (m, n)-ideal of
S.

Proof. Once we prove that M NN is an (m, n)-ideal of S, the rest of the proof is same as in
Theorem 11. Let O = M NN, then it is easy to see that 0> C O. Moreover
OmS-O"C M™S-N"C MN™CSN"™C N. But, we also have

0™S-0" CM™S-N"=(M™-SS)N" = (S-M™S)N" = (N"- M™S)S
=(M™-N"S)(SS) = (M™S)(N"S -S) = M™S - SN™
=M"S-N"S =N"(M™S-S)=N"-SM™ =N"-M"S
=M™-N"S=M™-SN"CM™N C M™S C M.

Thus O™S - O™ € M NN = O and therefore O is an (m, n)-ideal of S. O
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