Vol. 9, No. 2, 2016, 231-239 ISSN 1307-5543 – www.ejpam.com

(-1)-Weak Amenability of Unitized Banach Algebras

S. Alireza Hosseinioun¹, Arezou Valadkhani^{2,*}

¹ University of Arkansas, Department of Mathematical sciences, Fayetteville, AR 72703, USA

² Department of Mathematics, Shahid Beheshti University, Tehran, Iran

Abstract. For a Banach algebra *A*, its second dual A'' is (-1)-weakly amenable if A' is a Banach A''bimodule and the first cohomology group of A'' with coefficients in A' is zero i.e. $H^1(A'', A') = \{0\}$. We first show that under certain conditions A' is a Banach A''-bimodule. We then consider the relationships between (-1)-weak amenability of *A* and $A^{\#}$, where $A^{\#}$ is the unitization of *A*.

2010 Mathematics Subject Classifications: 46H25

Key Words and Phrases: Banach algebra, (-1)-Weak amenability, Arens products Unitization.

1. Introduction

Let *A* be a Banach algebra and *E* be a Banach *A*-bimodule, then a bounded derivation from *A* into *E* is a bounded linear mapping $D : A \longrightarrow E$ such that $D(a \cdot b) = Da \cdot b + a \cdot Db$, for each $a, b \in A$. For example let $x \in X$ and define $\delta_x : A \longrightarrow E$ by $\delta_x a = a \cdot x - x \cdot a$, then δ_x is a bounded derivation which is called an inner derivation. Let $Z^1(A, E)$ be the space of all bounded derivations from *A* into *E*, $N^1(A, E)$ be the space of all inner derivations from *A* into *E* and the first cohomology group of *A* with coefficients in *E* be the quotient space $H^1(A, X) = Z^1(A, X)/N^1(A, X)$.

A Banach algebra *A* is amenable if $H^1(A, E') = \{0\}$ for each Banach *A*-bimodule *E*, this concept was introduced by B. E. Johnson in [8].

The notion of weak amenability for commutative Banach algebras was introduced by W. G. Bade, P. C. Curtis and H. G. Dales in [2]. Later Johnson defined weak amenability for arbitrary Banach algebras in [9], in fact a Banach algebra A is weakly amenable if $H^1(A, A') = \{0\}$.

In [10], A. Medghalchi and T. Yazdanpanah introduced the notion of (-1)-weak amenability. A Banach algebra *A* is (-1)-weakly amenable if *A*' is a Banach *A*''-bimodule and $H^1(A'', A') = \{0\}.$

There are some examples of non (-1)-weakly amenable Banach algebras. For instance, in [7] we proved that $(Lip_{\alpha}K)''$ for $\alpha \in (0, 1)$ and infinite compact metric space *K* is not

http://www.ejpam.com

231

© 2016 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: ahosseinioun@yahoo.com (S. Hosseinioun), arezou.valadkhani@yahoo.com (A. Valadkhani)

(-1)-weakly amenable. The space l^p for $1 is reflexive and weakly amenable, so is (-1)-weakly amenable which is not amenable since it doesn't factor. Furthermore, the second dual of a <math>C^*$ -algebra is (-1)-weakly amenable and in the case A'' is a non-nuclear C^* -algebra, we can conclude that A'' is (-1)-weakly amenable which is not amenable. Therefore, the notion of (-1)-weak amenability is different from amenability. For more examples see [7] and [9].

Although there are some main theorems and examples which may suggest that the notion of (-1)-weak amenability is close to the notion of weak amenability, there are some examples which prove that these two notions are different, see [8].

Let *A* be a Banach algebra and *A*^{''} be its second dual, for each *a*, *b* \in *A*, *f* \in *A*['] and *F*, *G* \in *A*^{''} we define *f* \cdot *a*, *a* \cdot *f* and *F* \cdot *f*, *f* \in *F* \in *A*['] by

$$f \cdot a(b) = f(a \cdot b), \quad a \cdot f(b) = f(b \cdot a)$$

$$F \cdot f(a) = F(f \cdot a), \quad f \cdot F(a) = F(a \cdot f).$$

Now we define $F \cdot G$, $F \times G \in A''$ as follows

$$F \cdot G(f) = F(G \cdot f), \quad F \times G(f) = G(f \cdot F).$$

Then A'' is a Banach algebra with respect to either of the products \cdot and \times . These products are called the first and the second Arens products on A'', respectively. *A* is called Arens regular if $F \cdot G = F \times G$, for all $F, G \in A''$.

Let *E* be a Banach *A*-bimodule, then the iterated conjugates of *E*, denoted by E', E'', E''', \ldots are Banach *A*-bimodules, and the map $\rho : E''' \longrightarrow E'$ with $\rho(\Gamma) = \Gamma \mid_{\hat{A}}$ is an *A*-bimodule homomorphism which is called natural projection.

All concepts and definitions which are not defined in this paper may be found in [4].

2. When *A*['] is a Banach *A*^{''}-bimodule?

In the notion of (-1)-weak amenability, a necessary condition is that "A' is a Banach A''bimodule". Throughout this paper, we shall consider the second dual A'' with the first Arens product. For the relations between (-1)-weak amenability of (A'', \cdot) and (A'', \times) , see [9].

Theorem 1. Let A be a Banach algebra. Then in each of the following cases, A' is a Banach A''-bimodule:

- (1) A is Arens regular;
- (2) \hat{A} is a left ideal in A'';
- (3) \hat{A} is a right ideal in A'' and $A'' = A'' \cdot A$.

Proof. (1) and (2) are proved in [6].

(3) Let \hat{A} be a right ideal in A'' and $A'' \cdot A = A''$. Let $a \in A$, $F, G \in A''$ and $f \in A'$, then there exist $F_1 \in A''$ and $b, c \in A$ such that $F = F_1 \cdot b$ and $b \cdot G = \hat{c}$, so we have

$$(f \cdot F) \cdot G(a) = (f \cdot (F_1 \cdot b)) \cdot G(a) = (f \cdot F_1) \cdot (b \cdot G)(a) = (f \cdot F_1) \cdot \hat{c}(a)$$

S. Hosseinioun, A. Valadkhani / Eur. J. Pure Appl. Math, 9 (2016), 231-239

$$=\hat{c}(a \cdot (f \cdot F_1)) = f \cdot F_1(c \cdot a) = F_1 \cdot c(a \cdot f)$$
$$= (F_1 \cdot (b \cdot G))(a \cdot f) = F \cdot G(a \cdot f) = f \cdot (F \cdot G)(a)$$

So A' is a right A''-module.

On the other hand, there exists $d \in A$ such that $a \cdot F = \hat{d}$ and we have

$$(F \cdot f) \cdot G(a) = G(a \cdot (F \cdot f)) = G((a \cdot F) \cdot f) = G(d \cdot f)$$
$$= \hat{d}(f \cdot G) = (a \cdot F)(f \cdot G) = F \cdot (f \cdot G)(a).$$

Therefore A' is a Banach A''-bimodule.

Remark 1. Dales, Rodrigues-palacios and Velasco in [5] proved that for a Banach algebra A, A' is an A''-submodule of A''' if and only if A is Arens regular. So under the condition "A' is a Banach A''-bimodule" we can consider a larger class of Banach algebras.

Example 1. In each of the following cases by using Theorem 1, A' is a Banach A''-bimodule.

- (1) Let A be a C^* -algebra, then A is Arens regular and A' is a Banach A''-bimodule [3].
- (2) Let $A = l^1(\mathbb{N})$ with product $f \cdot g = f(1)g$. Then A is a Banach algebra with l^1 -norm and A is a left ideal in A''. So A' is a Banach A''-bimodule [6].
- (3) Let S be an infinite set with product $s \cdot t = t$ for all $s, t \in S$. Then $l^1(S)$ is a left ideal in $(l^1(S))''$ and so $(l^1(S))'$ is a Banach $(l^1(S))''$ -bimodule. But $l^1(S)$ is not a right ideal in $(l^1(S))''$ [6] (so the third condition in Theorem 1 is not a necessary condition).
- (4) We know that for each semisimple annihilator Banach algebra A, A is an ideal in A" [13].
 So A' is a Banach A"-bimodule and we have the following assertion:
 - Let G be an infinite compact group, then L¹(G) is not Arens regular but L¹(G) is an ideal in (L¹(G))["]. So (L¹(G))['] is a Banach (L¹(G))["]-bimodule, whereas L¹(G) is not Arens regular (so the first condition in Theorem 1 is not a necessary condition).
 - Let G be an finite group then M(G) is an ideal in M(G)". So M(G)' is a Banach M(G)"-bimodule [11] and [12].
- (5) Let X be a reflexive Banach space and KL(X) be the algebra of compact operators on X. Then KL(X) is an ideal in KL(X)" and so (KL(X))' is a Banach (KL(X))"-bimodule. Note that in the case X has not approximation property KL(X) is not an annihilator algebra [1].

Now we give an example of a Banach algebra A for which A' is not a Banach A''-bimodule.

Example 2. Consider $A = (l^1, *)$ for $n, m \in \mathbb{N}$. Set $a_n = \delta_{2^{2n}}$, $b_m = \delta_{2^{2m+1}-1}$ and $x = \delta_1$ that $(a_n)_n$, $(b_m)_m$ are bounded sequences in l^1 . There are $F, G \in A''$ for which $F = w^* - \lim_n \hat{a}_n$, $G = w^* - \lim_m \hat{b}_m$. Now, let

$$S = \left\{ 2^{2n} + 2^{2m+1} : n, m \in \mathbb{N}, n < m \right\}$$

233

and set $\lambda = \chi_S$, where χ_S is characteristic function on S. So $(b_m * x) * a_n = \delta_{2^{2n}+2^{2m+1}}$ and we have

$$\lim_{n\to\infty}\lambda(b_m*x*a_n)=0,\quad \lim_{m\to\infty}\lambda(b_m*x*a_n)=1$$

So,

$$(F \cdot \lambda) \cdot G(x) = G(x \cdot (F \cdot \lambda)) = \lim_{m} F(\lambda \cdot (b_m * x))$$
$$= \lim_{m} \lim_{n} \lambda(b_m * x * a_n) = 0.$$

On the other hand,

$$F \cdot (\lambda \cdot G)(x) = F((\lambda \cdot G) \cdot x) = \lim_{n} \lambda \cdot G(x * a_n)$$
$$= \lim_{n} \lim_{m} \lambda (b_m * x * a_n) = 1.$$

Therefore A' is not a Banach A''-bimodule and so A'' is not (-1)-weakly amenable.

Question. Is there any Banach algebra A such that A is amenable but A' is not A''-bimodule?

3. Unitization

Let *A* has not unit element and $A^{\#} = A \oplus \mathbb{C}e$ be the unitization of *A*.

For $e \in A^{\#}$, by Hahn-Banach Theorem there exists $e' \in A^{\#'}$ such that e'(e) = 1 and e'(a) = 0for each $a \in A$, and we can extend $\lambda \in A'$ to an element of $A^{\#'}$ with $\lambda(e) = 1$. So $A^{\#'} = \mathbb{C}e' \oplus_{\infty} A'$ and $||\alpha e' + \lambda|| = \max\{|\alpha|, ||\lambda||\}$ for $\alpha \in \mathbb{C}$ and $\lambda \in A'$. Moreover, $A^{\#'}$ is a Banach space and is a Banach $A^{\#}$ -bimodule by module multiplications

$$(\alpha e + a) \cdot (\gamma e' + \lambda) = (\alpha \gamma + \lambda(a))e' + \alpha \lambda + a \cdot \lambda$$
$$(\gamma e' + \lambda) \cdot (\alpha e + a) = (\alpha \gamma + \lambda(a))e' + \alpha \lambda + \lambda \cdot a$$

where $\alpha, \gamma \in \mathbb{C}$, $a \in A$ and $\lambda \in A'$.

Let $\hat{e} \in A''$ with $\hat{e}(\lambda) = \lambda(e)$, then $(A^{\#})'' = A'' \oplus \mathbb{C}\hat{e}$. For more details see [4].

Lemma 1. Let A be an Arens regular Banach algebra. Then A' and $A^{\#'}$ are Banach $A^{\#''}$ -bimodule.

Proof. The proof is straightforward.

Theorem 2. Let A be an Arens regular Banach algebra and $\overline{A''^2} = A''$. If A'' is (-1)-weakly amenable, Then $A''^{\#}$ is (-1)-weakly amenable.

Proof. Suppose that *A* has not unit element and $A^{\#} = A \oplus \mathbb{C}e$ be its unitization. By the previous Lemma, A' is a Banach A''-bimodule and $A^{\#'}$ is a Banach $A^{\#''}$ -bimodule.

Since $A''^{\#}$ is a unital Banach algebra and $A'^{\#}$ is a unital $A''^{\#}$ -bimodule and A'' is a maximal ideal of codimension one in $A''^{\#}$, by 2.8.23 (iii) in [4] we can conclude that

 $H^1(A^{\#\prime\prime}, A^{\#\prime}) = H^1(A^{\prime\prime}, A^{\#\prime})$. Let $D: A^{\prime\prime} \longrightarrow A^{\#\prime}$ be a bounded derivation. We define

 \square

 $\overline{D}: A'' \longrightarrow A'$ by $\overline{D}(F) = DF|_{A \times \{0\}}$, for each $F \in A''$. Then \overline{D} is a bounded derivation (Note that $\overline{D}F(a) = DF(a + 0e)$. So $\overline{D}F \in A'$). By (-1)-weakly amenability of A'', there exists $f_0 \in A'$ such that for each $F \in A''$, $\overline{D}F = \delta_{f_0}F$. Let $D_1 = D - \overline{D}$, then D_1 is a bounded derivation. Now we show that $D_1 = 0$ (Consider DF as an element in A' with its extension).

For $F, G \in A''$, there is $(b_i)_i$ in A with $\hat{b}_i \xrightarrow{w^*} G$, then

$$e' \cdot G(a + \alpha e) = G((a + \alpha e)(0 + e')) = G(\alpha e') = \lim_{j} \hat{b}_j(\alpha e') = \lim_{j} \alpha e'(b_j) = 0.$$

On the other hand, since $D : A'' \longrightarrow A^{\#'}$ and $A^{\#'} = A' \oplus \mathbb{C}e'$, for each $F \in A''$ there are unique elements, $\lambda_F \in A'$ and $\alpha_F \in \mathbb{C}$ such that $DF = \lambda_F + \alpha_F e'$. Since $\overline{D}F = DF|_{A \times \{0\}}$, and $\overline{D}F = \lambda_F$ then $D_1F = \alpha_F e'$. So we have

$$D_1(F \cdot G) = D_1F \cdot G + F \cdot D_1G = \alpha_F(e' \cdot G) + \alpha_G(F \cdot e') = 0.$$

Since D_1 is bounded then $D_1|_{\overline{A''^2}} = 0$. So by the essentiality of A'', $D_1 = 0$, so $D = \delta_{f_0}$ where $f_0 = f_0 + 0e' \in A' \oplus \mathbb{C}e' = A^{\#'}$. Therefore $H^1(A^{\#''}, A^{\#'}) = H^1(A'', A^{\#'}) = \{0\}$.

Theorem 3. Let A be an Arens regular Banach algebra, $A^{\#''}$ be (-1)-weakly amenable and $H^2(A'', \mathbb{C}_0) = (0)$. Then A'' is (-1)-weakly amenable.

Proof. We may suppose that *A* has not unit element and $A^{\#} = A \oplus \mathbb{C}_0 e$. Then

$$\Sigma: 0 \longrightarrow A \longrightarrow A^{\#} \longrightarrow \mathbb{C}_0 \longrightarrow 0$$

is an admissible short exact sequence and hence so is its dual,

$$\Sigma': 0 \longrightarrow \mathbb{C}_0 \longrightarrow A^{\#'} \longrightarrow A' \longrightarrow 0.$$

Using 2.8.25 in [4] we have exact sequence

$$S:\ldots \longrightarrow H^1(A'',\mathbb{C}_0) \longrightarrow H^1(A'',A^{\#'}) \longrightarrow H^1(A'',A') \longrightarrow H^2(A'',\mathbb{C}_0) \longrightarrow \ldots,$$

from 2.8.23 (iii) in [4], $H^1(A'', A^{\#'}) = H^1(A''^{\#}, A^{\#'}) = (0)$, since $A''^{\#}$ is (-1)-weakly amenable. Moreover $H^2(A'', \mathbb{C}_0) = (0)$, so in the exact sequence S, $H^1(A'', A^{\#'}) = H^2(A'', \mathbb{C}_0) = (0)$ then $H^1(A'', A') = (0)$.

Remark 2. The condition $H^2(A'', \mathbb{C}_0) = (0)$ in Theorem 3 is not trivial. To this end, let $B = \{f \in A(\overline{\mathbb{D}}) : f(0) = f'(0) = 0\}$ then B is a closed subalgebra of the disc algebra $A(\overline{\mathbb{D}})$. Consider \mathbb{C}_0 as the annihilator B-module i.e. B acts trivially on the left and right on \mathbb{C}_0 . Now we define $\mu : B \times B \longrightarrow \mathbb{C}_0$, by $(f,g) \mapsto f'''(0)g'''(0)$. Then μ is a continuous functional for which $\mu(f,g) = \mu(g,f)$. If $H^2(B,\mathbb{C}_0) = \{0\}$, then for some $\lambda \in B'$ we have $\mu = \delta^1(\lambda)$ where

$$\delta^{1}(\lambda)(f,g) = f \cdot \lambda g - \lambda(f \cdot g) + \lambda f \cdot g.$$
⁽¹⁾

If for $z \in \overline{\mathbb{D}}$ we define $f, g, h \in B$ by $f(z) = z^2$, $g(z) = z^4$ and $h(z) = z^3$ then f'''(z) = 0, g'''(z) = 24z, h'''(z) = 6 and we have $\mu(f,g) = f'''(0)g'''(0) = 0$ and $\mu(h,h) = 36$. Since \mathbb{C} is an annihilator B-module then $f \cdot \lambda g = \lambda f \cdot g = 0$. On the other hand by (1) we have

$$\mu(f,g) = \delta^{1}(\lambda)(f,g) = -\lambda(f \cdot g),$$

$$\mu(h,h) = \delta^{1}(\lambda)(h,h) = -\lambda(h \cdot h).$$

So $\lambda(f \cdot g) = 0$ and $\lambda(h \cdot h) = -36$. But $f \cdot g(z) = z^2 \cdot z^4 = z^6 = h \cdot h(z)$, which is a contradiction. So $H^2(B, \mathbb{C}_0) \neq \{0\}$.

Now consider $\mu'' : B'' \times B'' \longrightarrow \mathbb{C}_0$, and suppose that for some $\Lambda \in B'''$ we have $\mu'' = \delta^1(\Lambda)$ and so $\Lambda(\widehat{f \cdot g}) = 0$ and $\Lambda(\widehat{h \cdot h}) = -36$, but $f \cdot g = h \cdot h$. So there is no $\Lambda \in B'''$ with $\mu'' = \delta^1(\Lambda)$. Therefore $H^2(B'', \mathbb{C}_0) \neq \{0\}$.

The ext example shows that the converse of Theorem 1 is not true.

Example 3. By 4.1.42 in [4], $H^2(l^p, \mathbb{C}_0) \neq \{0\}$ for p > 1 and l^p is weakly amenable and reflexive. So l^p is (-1)-weakly amenable.

Since l^p has an approximate identity, then $l^p = \overline{(l^p)^2}$ and by Theorem 2, $(l^p)^{\#}$ is (-1)-weakly amenable (note that $(l^p)^{\#''} = (l^p)^{\prime\prime\#} \simeq l^{p\#}$).

A normed algebra *A* has π -property if there is a constant c > 0 with $|||a|||_{\pi} \le c||a||$, for $a \in A^2$, where $|||a|||_{\pi} = \inf \left\{ \sum_{j=1}^{\infty} ||a_j|| ||b_j|| : a = \sum_{j=1}^{\infty} a_j b_j \right\}$, for more details see [4]. By 2.8.21 in [4], a Banach algebra with $H^2(A, \mathbb{C}_0) = \{0\}$ has π -property. Now, by using Theorem 3 we have the following corollary.

Corollary 1. Let A be a Banach algebra for which A'' has π -property. If $A^{\#''}$ is (-1)-weakly amenable, then A'' is (-1)-weakly amenable.

Theorem 4. Let A be an Arens regular Banach algebra and $A''^{\#}$ is (-1)-weakly amenable. If G(DF) = -F(DG), for each $D \in Z^1(A'', A')$ and each $F, G \in A''$. Then A'' is (-1)-weakly amenable.

Proof. Let $D \in Z^1(A'', A')$. We define

$$D^{\#}: A^{\prime\prime} \longrightarrow A^{\#\prime}$$
$$D^{\#}(F)(ae+a) := D(F)(a).$$

We prove $D^{\#}$ is a derivation. Let $F, G \in A''$, then there are nets $(a_i)_i$ and $(b_j)_j$ in A such that $a_i \xrightarrow{w^*} F$ and $b_j \xrightarrow{w^*} G$ and for each $\alpha \in \mathbb{C}, a \in A$ we have

$$D^{\#}F \cdot G(\alpha e + a) = G((\alpha e + a) \cdot D^{\#}F) = \lim_{j} ((\alpha e + a) \cdot D^{\#}F)(b_{j})$$
$$= \lim_{j} DF(\alpha b_{j} + b_{j}a) = \lim_{j} \alpha \cdot \hat{b}_{j}(DF) + \lim_{j} \hat{b}_{j}(a \cdot DF).$$

So $(D^{\#}F \cdot G)(ae + a) = \alpha G(DF) + G(a \cdot DF)$ and similarly

$$(F \cdot D^{\#}G)(\alpha e + a) = \alpha F(DG) + F(DG \cdot a).$$

S. Hosseinioun, A. Valadkhani / Eur. J. Pure Appl. Math, 9 (2016), 231-239

Then we have

$$(D^{\#}F \cdot G + F \cdot D^{\#}G)(\alpha e + a) = \alpha G(DF) + G(a \cdot DF) + \alpha F(DG) + F(DG \cdot a)$$
$$= \alpha (G(DF) + F(DG)) + F \cdot DG(a) + DF \cdot G(a)$$
$$= (F \cdot DG + DF \cdot G)(a) = D^{\#}(F \cdot G)(a + \alpha e).$$

Therefore $D^{\#}$ is a bounded derivation and there exists $\lambda_1 = \lambda_0 + \alpha_0 e' \in A^{\#'}$ such that $D^{\#}(F) = \delta_{\lambda_1}(F)$, for $F \in A''$ (Note that since $A^{\#'} = A' \oplus \mathbb{C}e'$, $\lambda_0 \in A'$ and $\alpha_0 \in \mathbb{C}$ are unique and $H^1(A'', A^{\#'}) = H^1(A''^{\#}, A^{\#'}) = (0)$). We show that $D = \delta_{\lambda_0}$. Toward this end, let $F \in A''$ and $a \in A$, we have

$$(DF)(a) = D^{\#}F(a + 0e) = \delta_{\lambda_1}(F)(a + 0e) = (F \cdot \lambda_1 - \lambda_1 \cdot F)(a + 0e)$$

= $F(\lambda_1 \cdot (a + 0e) - (a + 0e) \cdot \lambda_1)$
= $F((\lambda_0 + \alpha_0 e')(a + 0e) - (a + 0e)(\lambda_0 + \alpha_0 e'))$
= $F(\lambda_0 \cdot a - a \cdot \lambda_0) = (F \cdot \lambda_0 - \lambda_0 \cdot F)(a) = \delta_{\lambda_0}(F)(a).$

So $D = \delta_{\lambda_0}$. Therefore A'' is (-1)-weakly amenable.

The following example shows that the condition in Theorem 4, is not trivial.

Example 4. Let \mathbb{T} be the unit circle and $A = lip_{\alpha}\mathbb{T}$. Let $(\hat{F}(n))_{n \in \mathbb{Z}}$ and $(\hat{g}(n))_{n \in \mathbb{Z}}$ are the Fourier coefficients of $F \in Lip_{\alpha}\mathbb{T}$ and $g \in lip_{\alpha}\mathbb{T}$. We define D as follows

$$D:A'' \to A'$$
$$DF(g) = \sum_{n=-\infty}^{+\infty} n\hat{g}(n)\hat{F}(n)$$

So D is a derivation which is not inner.

Since $(lip_{\alpha}\mathbb{T})'' = Lip_{\alpha}\mathbb{T}$, then for $F, G \in Lip_{\alpha}\mathbb{T}$ there are $(f_{\alpha})_{\alpha}$ and $(g_{\beta})_{\beta}$ in $lip_{\alpha}\mathbb{T}$ such that $F = w^* - \lim_{\alpha} \hat{f}_{\alpha}$ and $G = w^* - \lim_{\beta} \hat{g}_{\beta}$. Then we have

$$DF_{\alpha}(g_{\beta}) = \sum_{n=-\infty}^{+\infty} n\hat{g}_{\beta}(n)\hat{f}_{\alpha}(-n) = \sum_{n=-\infty}^{+\infty} (-n)\hat{g}_{\beta}(-n)\hat{f}_{\alpha}(n)$$
$$= -\sum_{n=-\infty}^{+\infty} n\hat{g}_{\beta}(-n)\cdot\hat{f}_{\alpha}(n) = -(Dg_{\beta})(f_{\alpha}).$$

On the other hand

$$\lim_{\beta} \lim_{\alpha} Df_{\alpha}(g_{\beta}) = \lim_{\beta} DF(g_{\beta}) = \lim_{\beta} \hat{g}_{\beta} DF = G(DF),$$
$$\lim_{\beta} \lim_{\alpha} Dg_{\beta}(f_{\alpha}) = \lim_{\alpha} \lim_{\beta} Dg_{\beta}(f_{\alpha}) = \lim_{\alpha} DG(f_{\alpha}) = F(DG).$$

So F(DG) = -G(DF) where D is a non-inner derivation.

Theorem 5. Let A be a unital Banach algebra and A'' is commutative and (-1)-weakly amenable. Then $Z^1(A'', E) = (0)$, for each Banach A''-module E.

Proof. Let *E* be a Banach left *A*^{''}-module and define $x \cdot F =: F \cdot x$ for each $F \in A''$ and $x \in E$. Then *E* is a Banach right *A*^{''}-module and commutativity of *A*^{''} implies that *E* is a Banach *A*^{''}-bimodule (of course *E* is an *A*-bimodule and *E*' is an *A*^{''}-bimodule).

Let *e* be the unit element in *A*, and let *D* be a non-zero derivation in $Z^1(A'', E)$. Then for some $F_0 \in A''$, we have $DF_0 \neq 0$, so there exists $\lambda \in E'$ such that $\lambda(DF_0) = 1$. We define

$$R: E \longrightarrow A'$$

$$R(x)(a) = \lambda(\hat{a} \cdot x), \quad (a \in A, x \in X).$$

R is a bounded linear map. Now $R \circ D : A'' \longrightarrow A'$ is a bounded derivation since

$$R \circ D(F \cdot G)(a) = R(DF \cdot G + F \cdot DG)(a) = \lambda(\hat{a} \cdot (DF \cdot G) + \hat{a} \cdot (F \cdot DG))$$
$$= G \cdot \lambda(\hat{a} \cdot DF) + F \cdot \lambda(\hat{a} \cdot DG).$$

On the other hand for $G = w^* - \lim_{\alpha} \hat{b}_{\alpha}$ and $x \in E$, the net $(\hat{b}_{\alpha} \cdot x)_{\alpha}$ is a bounded net in E'', so $\widehat{b_{\alpha} \cdot x} \xrightarrow{w^*} G \cdot x$, especially $\lambda(G \cdot x) = \lim \lambda(\hat{b}_{\alpha} \cdot x)$ and we have

$$(R(DF) \cdot G)(a) = \lim_{\alpha} (R(DF) \cdot a)(b_{\alpha})$$
$$= \lim_{\alpha} R(DF)(a \cdot b_{\alpha}) = \lim_{\alpha} \lambda(\widehat{a \cdot b_{\alpha}} \cdot DF)$$
$$= \lambda \cdot G(\hat{a} \cdot DF) = G \cdot \lambda(\hat{a} \cdot DF).$$

Similarly $(F \cdot R(DG))(a) = F \cdot \lambda(a \cdot DG)$.

Therefore $R \circ D$ is a derivation in $Z^1(A'', A')$. Now, since A'' is (-1)-weakly amenable and commutative then $R \circ D = 0$. But $R \circ D(F_0)(e) = R(DF_0)(e) = \lambda(e \cdot DF_0) = 1$, which is a contradiction. So D = 0 and we have $Z^1(A'', E) = 0$

Now we recall some Theorems which are used in the following corollaries.

Theorem 6. For a commutative Banach algebra A, if A is weakly amenable, then $Z^{1}(A, E) = (0)$ for each Banach A-module E.

Theorem 7. Let A be a commutative Banach algebra. Then A is weakly amenable if and only if $A^{\#}$ is weakly amenable.

See [2] and [4] for proofs of Theorems 6 and 7, respectively.

Corollary 2. Let A be an Arens regular commutative Banach algebra. Then $A^{\#''}$ is (-1)-weakly amenable if and only if A'' is weakly amenable.

Proof. Let A'' be weakly amenable then by Theorem 7, $A^{\#}$ is weakly amenable. Since A is Arens regular then by Lemma 1, $A^{\#'}$ is a Banach $A^{\#''}$ -bimodul, so $H^1(A^{\#''}, A^{\#'}) = \{0\}$.

For the converse, let $A^{\#''}$ is (-1)-weakly amenable. Using Theorem 5, $A^{\#''}$ is weakly amenable, so by Theorem 7, A'' is weakly amenable.

Corollary 3. Let A be a Banach algebra and A'' be commutative and (-1)-weakly amenable, for which $A'' \cdot A = A''$. Then A'' is (-1)-weakly amenable if and only if $A^{\#''}$ is (-1)-weakly amenable.

Proof. If A'' is commutative and (-1)-weakly amenable, and also $A'' \cdot A = A''$ then it is proved that Z1(A'', E) = 0 for each Banach A''-module E. Now use Theorems 6 and 7.

References

- F. E. Alexander. Some algebraic properties of F(X) and K(X), Proceedings of the Edinburgh Mathematical Society, 19, 353–361. 1975.
- [2] W. G. Bade, P. C. Curtis, and H. G. Dales. Amenability and weak amenability for Beurling and Lipschits algebra, Proceedings of the London Mathematical Society, 3(55), 359–377. 1987.
- [3] M. C. F. Berglund. *Ideal C*-algebras*, Duke Mathematical Journal, 40, 241–257. 1973.
- [4] H. G. Dales. Banach algebra and Automatic continuity, Oxford University Press, 2000.
- [5] H. G. Dales, A. Rodriguez-Palacios, and M. V. Velasco. *The second transpose of a derivation*, Journal of the London Mathematical Society, 2(64), 707–721. 2001.
- [6] J. Duncan and S. A. Hosseiniun, *The second dual of banach algeba*. Proceedings of the Royal Society of Edinburgh, Section A, 84, 309–325. 1979.
- [7] M. Eshaghi, S. A. R. Hosseinioun, and A. Valadkhani. *On (-1)-weak amenability of Banach algebras*, Mathematical Reports, 15(3), 271–279. 2013.
- [8] B. E. Johnson. *Cohomology in Banach algebras*, Memoirs of the American Mathematical Society, 127, 96. 1972.
- [9] B. E. Johnson. *Weak amenability of group algebras*, Bulletin of the London Mathematical Society, 23, 281–284. 1991.
- [10] A. Medghalchi and T. Yazdanpanah. *Problems concerning n-weak amenability of Banach algebras*, Czechoslovak Mathematical Journal, 55(4), 863–876. 2005.
- [11] S. Watanabe. *A Banach algebra which is an ideal in the second dual space*, Science Reports of Niigata University, Series A, 11, 95–101. 1974.
- [12] S. Watanabe. A Banach algebra which is an ideal in the second dual space II, Science Reports of Niigata University, Series A, 13, 43–48. 1976.
- [13] P. K. Wong. On the Arens product and certain Banach algebras, Transactions of the American Mathematical Society, 37, 111–113. 1973.