(-1)-Weak Amenability of Unitized Banach Algebras

S. Alireza Hosseinioun ${ }^{1}$, Arezou Valadkhani ${ }^{2, *}$
${ }^{1}$ University of Arkansas, Department of Mathematical sciences, Fayetteville, AR 72703, USA
${ }^{2}$ Department of Mathematics, Shahid Beheshti University, Tehran, Iran

Abstract

For a Banach algebra A, its second dual $A^{\prime \prime}$ is (-1)-weakly amenable if A^{\prime} is a Banach $A^{\prime \prime}$ bimodule and the first cohomology group of $A^{\prime \prime}$ with coefficients in A^{\prime} is zero i.e. $H^{1}\left(A^{\prime \prime}, A^{\prime}\right)=\{0\}$. We first show that under certain conditions A^{\prime} is a Banach $A^{\prime \prime}$-bimodule. We then consider the relationships between (-1)-weak amenability of A and $A^{\#}$, where $A^{\#}$ is the unitization of A.

2010 Mathematics Subject Classifications: 46H25
Key Words and Phrases: Banach algebra, (-1)-Weak amenability, Arens products Unitization.

1. Introduction

Let A be a Banach algebra and E be a Banach A-bimodule, then a bounded derivation from A into E is a bounded linear mapping $D: A \longrightarrow E$ such that $D(a \cdot b)=D a \cdot b+a \cdot D b$, for each $a, b \in A$. For example let $x \in X$ and define $\delta_{x}: A \longrightarrow E$ by $\delta_{x} a=a \cdot x-x \cdot a$, then δ_{x} is a bounded derivation which is called an inner derivation. Let $Z^{1}(A, E)$ be the space of all bounded derivations from A into $E, N^{1}(A, E)$ be the space of all inner derivations from A into E and the first cohomology group of A with coefficients in E be the quotient space $H^{1}(A, X)=Z^{1}(A, X) / N^{1}(A, X)$.

A Banach algebra A is amenable if $H^{1}\left(A, E^{\prime}\right)=\{0\}$ for each Banach A-bimodule E, this concept was introduced by B. E. Johnson in [8].

The notion of weak amenability for commutative Banach algebras was introduced by W. G. Bade, P. C. Curtis and H. G. Dales in [2]. Later Johnson defined weak amenability for arbitrary Banach algebras in [9], in fact a Banach algebra A is weakly amenable if $H^{1}\left(A, A^{\prime}\right)=\{0\}$.

In [10], A. Medghalchi and T. Yazdanpanah introduced the notion of (-1)-weak amenability. A Banach algebra A is (-1)-weakly amenable if A^{\prime} is a Banach $A^{\prime \prime}$-bimodule and $H^{1}\left(A^{\prime \prime}, A^{\prime}\right)=\{0\}$.

There are some examples of non (-1)-weakly amenable Banach algebras. For instance, in [7] we proved that $\left(\operatorname{Lip}_{\alpha} K\right)^{\prime \prime}$ for $\alpha \in(0,1)$ and infinite compact metric space K is not

[^0]Email addresses: ahosseinioun@yahoo.com (S. Hosseinioun), arezou.valadkhani@yahoo. com (A. Valadkhani)
(-1)-weakly amenable. The space l^{p} for $1<p<\infty$ is reflexive and weakly amenable, so is (-1)-weakly amenable which is not amenable since it doesn't factor. Furthermore, the second dual of a C^{*}-algebra is (-1)-weakly amenable and in the case $A^{\prime \prime}$ is a non-nuclear C^{*}-algebra, we can conclude that $A^{\prime \prime}$ is (-1)-weakly amenable which is not amenable. Therefore, the notion of (-1)-weak amenability is different from amenability. For more examples see [7] and [9].

Although there are some main theorems and examples which may suggest that the notion of (-1)-weak amenability is close to the notion of weak amenability, there are some examples which prove that these two notions are different, see [8].

Let A be a Banach algebra and $A^{\prime \prime}$ be its second dual, for each $a, b \in A, f \in A^{\prime}$ and $F, G \in A^{\prime \prime}$ we define $f \cdot a, a \cdot f$ and $F \cdot f, f \cdot F \in A^{\prime}$ by

$$
\begin{array}{ll}
f \cdot a(b)=f(a \cdot b), & a \cdot f(b)=f(b \cdot a) \\
F \cdot f(a)=F(f \cdot a), & f \cdot F(a)=F(a \cdot f) .
\end{array}
$$

Now we define $F \cdot G, F \times G \in A^{\prime \prime}$ as follows

$$
F \cdot G(f)=F(G \cdot f), \quad F \times G(f)=G(f \cdot F) .
$$

Then $A^{\prime \prime}$ is a Banach algebra with respect to either of the products • and \times. These products are called the first and the second Arens products on $A^{\prime \prime}$, respectively. A is called Arens regular if $F \cdot G=F \times G$, for all $F, G \in A^{\prime \prime}$.

Let E be a Banach A-bimodule, then the iterated conjugates of E, denoted by $E^{\prime}, E^{\prime \prime}, E^{\prime \prime \prime}, \ldots$ are Banach A-bimodules, and the map $\rho: E^{\prime \prime \prime} \longrightarrow E^{\prime}$ with $\rho(\Gamma)=\left.\Gamma\right|_{\hat{A}}$ is an A-bimodule homomorphism which is called natural projection.

All concepts and definitions which are not defined in this paper may be found in [4].

2. When A^{\prime} is a Banach $A^{\prime \prime}$-bimodule?

In the notion of (-1)-weak amenability, a necessary condition is that " A ' is a Banach $A^{\prime \prime}$ bimodule". Throughout this paper, we shall consider the second dual $A^{\prime \prime}$ with the first Arens product. For the relations between (-1)-weak amenability of $\left(A^{\prime \prime}, \cdot\right)$ and $\left(A^{\prime \prime}, \times\right)$, see [9].
Theorem 1. Let A be a Banach algebra. Then in each of the following cases, A^{\prime} is a Banach $A^{\prime \prime}$-bimodule:
(1) A is Arens regular;
(2) \hat{A} is a left ideal in $A^{\prime \prime}$;
(3) \hat{A} is a right ideal in $A^{\prime \prime}$ and $A^{\prime \prime}=A^{\prime \prime} \cdot A$.

Proof. (1) and (2) are proved in [6].
(3) Let \hat{A} be a right ideal in $A^{\prime \prime}$ and $A^{\prime \prime} \cdot A=A^{\prime \prime}$. Let $a \in A, F, G \in A^{\prime \prime}$ and $f \in A^{\prime}$, then there exist $F_{1} \in A^{\prime \prime}$ and $b, c \in A$ such that $F=F_{1} \cdot b$ and $b \cdot G=\hat{c}$, so we have

$$
(f \cdot F) \cdot G(a)=\left(f \cdot\left(F_{1} \cdot b\right)\right) \cdot G(a)=\left(f \cdot F_{1}\right) \cdot(b \cdot G)(a)=\left(f \cdot F_{1}\right) \cdot \hat{c}(a)
$$

$$
\begin{aligned}
& =\hat{c}\left(a \cdot\left(f \cdot F_{1}\right)\right)=f \cdot F_{1}(c \cdot a)=F_{1} \cdot c(a \cdot f) \\
& =\left(F_{1} \cdot(b \cdot G)\right)(a \cdot f)=F \cdot G(a \cdot f)=f \cdot(F \cdot G)(a)
\end{aligned}
$$

So A^{\prime} is a right $A^{\prime \prime}$-module.
On the other hand, there exists $d \in A$ such that $a \cdot F=\hat{d}$ and we have

$$
\begin{aligned}
(F \cdot f) \cdot G(a) & =G(a \cdot(F \cdot f))=G((a \cdot F) \cdot f)=G(d \cdot f) \\
& =\hat{d}(f \cdot G)=(a \cdot F)(f \cdot G)=F \cdot(f \cdot G)(a) .
\end{aligned}
$$

Therefore A^{\prime} is a Banach $A^{\prime \prime}$-bimodule.
Remark 1. Dales, Rodrigues-palacios and Velasco in [5] proved that for a Banach algebra A, A^{\prime} is an $A^{\prime \prime}$-submodule of $A^{\prime \prime \prime}$ if and only if A is Arens regular. So under the condition " A ' is a Banach $A^{\prime \prime}$-bimodule" we can consider a larger class of Banach algebras.

Example 1. In each of the following cases by using Theorem 1, A^{\prime} is a Banach $A^{\prime \prime}$-bimodule.
(1) Let A be a C^{*}-algebra, then A is Arens regular and A^{\prime} is a Banach $A^{\prime \prime}$-bimodule [3].
(2) Let $A=l^{1}(\mathbb{N})$ with product $f \cdot g=f(1) g$. Then A is a Banach algebra with l^{1}-norm and A is a left ideal in $A^{\prime \prime}$. So A^{\prime} is a Banach $A^{\prime \prime}$-bimodule [6].
(3) Let S be an infinite set with product $s \cdot t=t$ for all $s, t \in S$. Then $l^{1}(S)$ is a left ideal in $\left(l^{1}(S)\right)^{\prime \prime}$ and so $\left(l^{1}(S)\right)^{\prime}$ is a Banach $\left(l^{1}(S)\right)^{\prime \prime}$-bimodule. But $l^{1}(S)$ is not a right ideal in $\left(l^{1}(S)\right)^{\prime \prime}[6]$ (so the third condition in Theorem 1 is not a necessary condition).
(4) We know that for each semisimple annihilator Banach algebra A, A is an ideal in $A^{\prime \prime}$ [13]. So A^{\prime} is a Banach $A^{\prime \prime}$-bimodule and we have the following assertion:

- Let G be an infinite compact group, then $L^{1}(G)$ is not Arens regular but $L^{1}(G)$ is an ideal in $\left(L^{1}(G)\right)^{\prime \prime}$. So $\left(L^{1}(G)\right)^{\prime}$ is a Banach $\left(L^{1}(G)\right)^{\prime \prime}$-bimodule, whereas $L^{1}(G)$ is not Arens regular (so the first condition in Theorem 1 is not a necessary condition).
- Let G be an finite group then $M(G)$ is an ideal in $M(G)^{\prime \prime}$. So $M(G)^{\prime}$ is a Banach $M(G)^{\prime \prime}$-bimodule [11] and [12].
(5) Let X be a reflexive Banach space and $K L(X)$ be the algebra of compact operators on X. Then $K L(X)$ is an ideal in $K L(X)^{\prime \prime}$ and so $(K L(X))^{\prime}$ is a Banach $(K L(X))^{\prime \prime}$-bimodule. Note that in the case X has not approximation property $K L(X)$ is not an annihilator algebra [1].

Now we give an example of a Banach algebra A for which A^{\prime} is not a Banach $A^{\prime \prime}$-bimodule.
Example 2. Consider $A=\left(l^{1}, *\right)$ for $n, m \in \mathbb{N}$. Set $a_{n}=\delta_{2^{2 n},}, b_{m}=\delta_{2^{2 m+1}-1}$ and $x=\delta_{1}$ that $\left(a_{n}\right)_{n},\left(b_{m}\right)_{m}$ are bounded sequences in l^{1}. There are $F, G \in A^{\prime \prime}$ for which $F=w^{*}-\lim _{n} \hat{a}_{n}$, $G=w^{*}-\lim _{m} \hat{b}_{m}$. Now, let

$$
S=\left\{2^{2 n}+2^{2 m+1}: n, m \in \mathbb{N}, n<m\right\}
$$

and set $\lambda=\chi_{S}$, where χ_{S} is characteristic function on S. So $\left(b_{m} * x\right) * a_{n}=\delta_{2^{2 n+2 m+1}}$ and we have

$$
\lim _{n \rightarrow \infty} \lambda\left(b_{m} * x * a_{n}\right)=0, \quad \lim _{m \rightarrow \infty} \lambda\left(b_{m} * x * a_{n}\right)=1
$$

So,

$$
\begin{aligned}
(F \cdot \lambda) \cdot G(x) & =G(x \cdot(F \cdot \lambda))=\lim _{m} F\left(\lambda \cdot\left(b_{m} * x\right)\right) \\
& =\lim _{m} \lim _{n} \lambda\left(b_{m} * x * a_{n}\right)=0 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
F \cdot(\lambda \cdot G)(x) & =F((\lambda \cdot G) \cdot x)=\lim _{n} \lambda \cdot G\left(x * a_{n}\right) \\
& =\lim _{n} \lim _{m} \lambda\left(b_{m} * x * a_{n}\right)=1 .
\end{aligned}
$$

Therefore A^{\prime} is not a Banach $A^{\prime \prime}$-bimodule and so $A^{\prime \prime}$ is not (-1)-weakly amenable.
Question. Is there any Banach algebra A such that A is amenable but A^{\prime} is not $A^{\prime \prime}$-bimodule?

3. Unitization

Let A has not unit element and $A^{\#}=A \oplus \mathbb{C e}$ be the unitization of A.
For $e \in A^{\#}$, by Hahn-Banach Theorem there exists $e^{\prime} \in A^{\# \prime}$ such that $e^{\prime}(e)=1$ and $e^{\prime}(a)=0$ for each $a \in A$, and we can extend $\lambda \in A^{\prime}$ to an element of $A^{\# \prime \prime}$ with $\lambda(e)=1$. So $A^{\# \prime}=\mathbb{C} e^{\prime} \oplus_{\infty} A^{\prime}$ and $\left\|\alpha e^{\prime}+\lambda\right\|=\max \{|\alpha|,\|\lambda\|\}$ for $\alpha \in \mathbb{C}$ and $\lambda \in A^{\prime}$. Moreover, $A^{\not \prime \prime}$ is a Banach space and is a Banach $A^{\#}$-bimodule by module multiplications

$$
\begin{aligned}
& (\alpha e+a) \cdot\left(\gamma e^{\prime}+\lambda\right)=(\alpha \gamma+\lambda(a)) e^{\prime}+\alpha \lambda+a \cdot \lambda \\
& \left(\gamma e^{\prime}+\lambda\right) \cdot(\alpha e+a)=(\alpha \gamma+\lambda(a)) e^{\prime}+\alpha \lambda+\lambda \cdot a
\end{aligned}
$$

where $\alpha, \gamma \in \mathbb{C}, a \in A$ and $\lambda \in A^{\prime}$.
Let $\hat{e} \in A^{\prime \prime}$ with $\hat{e}(\lambda)=\lambda(e)$, then $\left(A^{\#}\right)^{\prime \prime}=A^{\prime \prime} \oplus \mathbb{C} \hat{e}$. For more details see [4].
Lemma 1. Let A be an Arens regular Banach algebra. Then A^{\prime} and $A^{\# \prime}$ are Banach $A^{\# \prime \prime}$-bimodule.
Proof. The proof is straightforward.
Theorem 2. Let A be an Arens regular Banach algebra and $\overline{A^{\prime 2}}=A^{\prime \prime}$. If $A^{\prime \prime}$ is (-1)-weakly amenable, Then $A^{\prime \prime \#}$ is (-1)-weakly amenable.

Proof. Suppose that A has not unit element and $A^{\#}=A \oplus \mathbb{C} e$ be its unitization. By the previous Lemma, A^{\prime} is a Banach $A^{\prime \prime}$-bimodule and $A^{\# \prime}$ is a Banach $A^{\# \prime \prime}$-bimodule.

Since $A^{\prime \prime \#}$ is a unital Banach algebra and $A^{\prime \#}$ is a unital $A^{\prime \prime \#}$-bimodule and $A^{\prime \prime}$ is a maximal ideal of codimension one in $A^{\prime \prime \#}$, by 2.8.23 (iii) in [4] we can conclude that $H^{1}\left(A^{\# \prime \prime}, A^{\# \prime}\right)=H^{1}\left(A^{\prime \prime}, A^{\# \prime}\right)$. Let $D: A^{\prime \prime} \longrightarrow A^{\# \prime}$ be a bounded derivation. We define
$\bar{D}: A^{\prime \prime} \longrightarrow A^{\prime}$ by $\bar{D}(F)=\left.D F\right|_{A \times\{0\}}$, for each $F \in A^{\prime \prime}$. Then \bar{D} is a bounded derivation (Note that $\bar{D} F(a)=D F(a+0 e)$. So $\left.\bar{D} F \in A^{\prime}\right)$. By (-1)-weakly amenability of $A^{\prime \prime}$, there exists $f_{0} \in A^{\prime}$ such that for each $F \in A^{\prime \prime}, \bar{D} F=\delta_{f_{0}} F$. Let $D_{1}=D-\bar{D}$, then D_{1} is a bounded derivation. Now we show that $D_{1}=0$ (Consider $D F$ as an element in A^{\prime} with its extension).

For $F, G \in A^{\prime \prime}$, there is $\left(b_{j}\right)_{j}$ in A with $\hat{b}_{j} \xrightarrow{w^{*}} G$, then

$$
e^{\prime} \cdot G(a+\alpha e)=G\left((a+\alpha e)\left(0+e^{\prime}\right)\right)=G\left(\alpha e^{\prime}\right)=\lim _{j} \hat{b}_{j}\left(\alpha e^{\prime}\right)=\lim _{j} \alpha e^{\prime}\left(b_{j}\right)=0
$$

On the other hand, since $D: A^{\prime \prime} \longrightarrow A^{\# \prime}$ and $A^{\# \prime}=A^{\prime} \oplus \mathbb{C} e^{\prime}$, for each $F \in A^{\prime \prime}$ there are unique elements, $\lambda_{F} \in A^{\prime}$ and $\alpha_{F} \in \mathbb{C}$ such that $D F=\lambda_{F}+\alpha_{F} e^{\prime}$. Since $\bar{D} F=\left.D F\right|_{A \times\{0\}}$, and $\bar{D} F=\lambda_{F}$ then $D_{1} F=\alpha_{F} e^{\prime}$. So we have

$$
D_{1}(F \cdot G)=D_{1} F \cdot G+F \cdot D_{1} G=\alpha_{F}\left(e^{\prime} \cdot G\right)+\alpha_{G}\left(F \cdot e^{\prime}\right)=0 .
$$

Since D_{1} is bounded then $\left.D_{1}\right|_{A^{\prime \prime 2}}=0$. So by the essentiality of $A^{\prime \prime}, D_{1}=0$, so $D=\delta_{f_{0}}$ where $f_{0}=f_{0}+0 e^{\prime} \in A^{\prime} \oplus \mathbb{C} e^{\prime}=A^{\# \prime}$. Therefore $H^{1}\left(A^{\# \prime \prime}, A^{\# \prime}\right)=H^{1}\left(A^{\prime \prime}, A^{\# \prime}\right)=\{0\}$.

Theorem 3. Let A be an Arens regular Banach algebra, $A^{\# \prime \prime}$ be (-1)-weakly amenable and $H^{2}\left(A^{\prime \prime}, \mathbb{C}_{0}\right)=(0)$. Then $A^{\prime \prime}$ is (-1)-weakly amenable.

Proof. We may suppose that A has not unit element and $A^{\#}=A \oplus \mathbb{C}_{0} e$. Then

$$
\Sigma: 0 \longrightarrow A \longrightarrow A^{\#} \longrightarrow \mathbb{C}_{0} \longrightarrow 0
$$

is an admissible short exact sequence and hence so is its dual,

$$
\Sigma^{\prime}: 0 \longrightarrow \mathbb{C}_{0} \longrightarrow A^{\# \prime} \longrightarrow A^{\prime} \longrightarrow 0
$$

Using 2.8.25 in [4] we have exact sequence

$$
S: \ldots \longrightarrow H^{1}\left(A^{\prime \prime}, \mathbb{C}_{0}\right) \longrightarrow H^{1}\left(A^{\prime \prime}, A^{\# \prime}\right) \longrightarrow H^{1}\left(A^{\prime \prime}, A^{\prime}\right) \longrightarrow H^{2}\left(A^{\prime \prime}, \mathbb{C}_{0}\right) \longrightarrow \ldots,
$$

from 2.8.23 (iii) in [4], $H^{1}\left(A^{\prime \prime}, A^{\# \prime}\right)=H^{1}\left(A^{\prime \prime \#}, A^{\# \prime}\right)=(0)$, since $A^{\prime \prime \#}$ is (-1)-weakly amenable. Moreover $H^{2}\left(A^{\prime \prime}, \mathbb{C}_{0}\right)=(0)$, so in the exact sequence $S, H^{1}\left(A^{\prime \prime}, A^{\# \prime}\right)=H^{2}\left(A^{\prime \prime}, \mathbb{C}_{0}\right)=(0)$ then $H^{1}\left(A^{\prime \prime}, A^{\prime}\right)=(0)$.

Remark 2. The condition $H^{2}\left(A^{\prime \prime}, \mathbb{C}_{0}\right)=(0)$ in Theorem 3 is not trivial. To this end, let $B=\left\{f \in A(\overline{\mathbb{D}}): f(0)=f^{\prime}(0)=0\right\}$ then B is a closed subalgebra of the disc algebra $A(\overline{\mathbb{D}})$. Consider \mathbb{C}_{0} as the annihilator B-module i.e. B acts trivially on the left and right on \mathbb{C}_{0}. Now we define $\mu: B \times B \longrightarrow \mathbb{C}_{0}$, by $(f, g) \mapsto f^{\prime \prime \prime}(0) g^{\prime \prime \prime}(0)$. Then μ is a continuous functional for which $\mu(f, g)=\mu(g, f)$. If $H^{2}\left(B, \mathbb{C}_{0}\right)=\{0\}$, then for some $\lambda \in B^{\prime}$ we have $\mu=\delta^{1}(\lambda)$ where

$$
\begin{equation*}
\delta^{1}(\lambda)(f, g)=f \cdot \lambda g-\lambda(f \cdot g)+\lambda f \cdot g . \tag{1}
\end{equation*}
$$

If for $z \in \overline{\mathbb{D}}$ we define $f, g, h \in B$ by $f(z)=z^{2}, g(z)=z^{4}$ and $h(z)=z^{3}$ then $f^{\prime \prime \prime}(z)=0$, $g^{\prime \prime \prime}(z)=24 z, h^{\prime \prime \prime}(z)=6$ and we have $\mu(f, g)=f^{\prime \prime \prime}(0) g^{\prime \prime \prime}(0)=0$ and $\mu(h, h)=36$. Since \mathbb{C} is an annihilator B-module then $f \cdot \lambda g=\lambda f \cdot g=0$. On the other hand by (1) we have

$$
\begin{aligned}
& \mu(f, g)=\delta^{1}(\lambda)(f, g)=-\lambda(f \cdot g) \\
& \mu(h, h)=\delta^{1}(\lambda)(h, h)=-\lambda(h \cdot h)
\end{aligned}
$$

So $\lambda(f \cdot g)=0$ and $\lambda(h \cdot h)=-36$. But $f \cdot g(z)=z^{2} \cdot z^{4}=z^{6}=h \cdot h(z)$, which is a contradiction. So $H^{2}\left(B, \mathbb{C}_{0}\right) \neq\{0\}$.

Now consider $\mu^{\prime \prime}: B^{\prime \prime} \times B^{\prime \prime} \longrightarrow \mathbb{C}_{0}$, and suppose that for some $\Lambda \in B^{\prime \prime \prime}$ we have $\mu^{\prime \prime}=\delta^{1}(\Lambda)$ and so $\Lambda(\widehat{f \cdot g})=0$ and $\Lambda\left(h^{\wedge} h\right)=-36$, but $f \cdot g=h \cdot h$. So there is no $\Lambda \in B^{\prime \prime \prime}$ with $\mu^{\prime \prime}=\delta^{1}(\Lambda)$. Therefore $H^{2}\left(B^{\prime \prime}, \mathbb{C}_{0}\right) \neq\{0\}$.

The ext example shows that the converse of Theorem 1 is not true.
Example 3. By 4.1.42 in [4], $H^{2}\left(l^{p}, \mathbb{C}_{0}\right) \neq\{0\}$ for $p>1$ and l^{p} is weakly amenable and reflexive. So l^{p} is (-1)-weakly amenable.

Since l^{p} has an approximate identity, then $l^{p}=\overline{\left(l^{p}\right)^{2}}$ and by Theorem $2,\left(l^{p}\right)^{\#}$ is (-1)-weakly amenable (note that $\left.\left(l^{p}\right)^{\#^{\prime \prime}}=\left(l^{p}\right)^{\prime \prime \#} \simeq l^{p \#}\right)$.

A normed algebra A has π-property if there is a constant $c>0$ with $\left\|\|a\|_{\pi} \leq c\right\| a \|$, for $a \in A^{2}$, where $\left\|\left\|\|_{\pi}=\inf \left\{\sum_{j=1}^{\infty}\left\|a_{j}\right\|\left\|b_{j}\right\|: a=\sum_{j=1}^{\infty} a_{j} b_{j}\right\}\right.\right.$, for more details see [4]. By 2.8.21 in [4], a Banach algebra with $H^{2}\left(A, \mathbb{C}_{0}\right)=\{0\}$ has π-property. Now, by using Theorem 3 we have the following corollary.
Corollary 1. Let A be a Banach algebra for which $A^{\prime \prime}$ has π-property. If $A^{\# \prime \prime}$ is (-1)-weakly amenable, then $A^{\prime \prime}$ is (-1)-weakly amenable.

Theorem 4. Let A be an Arens regular Banach algebra and $A^{\prime \prime \#}$ is (-1)-weakly amenable. If $G(D F)=-F(D G)$, for each $D \in Z^{1}\left(A^{\prime \prime}, A^{\prime}\right)$ and each $F, G \in A^{\prime \prime}$. Then $A^{\prime \prime}$ is (-1)-weakly amenable.

Proof. Let $D \in Z^{1}\left(A^{\prime \prime}, A^{\prime}\right)$. We define

$$
\begin{gathered}
D^{\#}: A^{\prime \prime} \longrightarrow A^{\# \prime} \\
D^{\#}(F)(\alpha e+a):=D(F)(a)
\end{gathered}
$$

We prove $D^{\#}$ is a derivation. Let $F, G \in A^{\prime \prime}$, then there are nets $\left(a_{i}\right)_{i}$ and $\left(b_{j}\right)_{j}$ in A such that $a_{i} \xrightarrow{w^{*}} F$ and $b_{j} \xrightarrow{w^{*}} G$ and for each $\alpha \in \mathbb{C}, a \in A$ we have

$$
\begin{aligned}
D^{\#} F \cdot G(\alpha e+a) & =G\left((\alpha e+a) \cdot D^{\#} F\right)=\lim _{j}\left((\alpha e+a) \cdot D^{\#} F\right)\left(b_{j}\right) \\
& =\lim _{j} D F\left(\alpha b_{j}+b_{j} a\right)=\lim _{j} \alpha \cdot \hat{b}_{j}(D F)+\lim _{j} \hat{b}_{j}(a \cdot D F)
\end{aligned}
$$

So $\left(D^{\#} F \cdot G\right)(\alpha e+a)=\alpha G(D F)+G(a \cdot D F)$ and similarly

$$
\left(F \cdot D^{\#} G\right)(\alpha e+a)=\alpha F(D G)+F(D G \cdot a)
$$

Then we have

$$
\begin{aligned}
\left(D^{\#} F \cdot G+F \cdot D^{\#} G\right)(\alpha e+a) & =\alpha G(D F)+G(a \cdot D F)+\alpha F(D G)+F(D G \cdot a) \\
& =\alpha(G(D F)+F(D G))+F \cdot D G(a)+D F \cdot G(a) \\
& =(F \cdot D G+D F \cdot G)(a)=D^{\#}(F \cdot G)(a+\alpha e) .
\end{aligned}
$$

Therefore $D^{\#}$ is a bounded derivation and there exists $\lambda_{1}=\lambda_{0}+\alpha_{0} e^{\prime} \in A^{\# \prime}$ such that $D^{\#}(F)=\delta_{\lambda_{1}}(F)$, for $F \in A^{\prime \prime}$ (Note that since $A^{\# \prime}=A^{\prime} \oplus \mathbb{C} e^{\prime}, \lambda_{0} \in A^{\prime}$ and $\alpha_{0} \in \mathbb{C}$ are unique and $\left.H^{1}\left(A^{\prime \prime}, A^{\# \prime}\right)=H^{1}\left(A^{\prime \prime \#}, A^{\# \prime}\right)=(0)\right)$. We show that $D=\delta_{\lambda_{0}}$. Toward this end, let $F \in A^{\prime \prime}$ and $a \in A$, we have

$$
\begin{aligned}
(D F)(a) & =D^{\#} F(a+0 e)=\delta_{\lambda_{1}}(F)(a+0 e)=\left(F \cdot \lambda_{1}-\lambda_{1} \cdot F\right)(a+0 e) \\
& =F\left(\lambda_{1} \cdot(a+0 e)-(a+0 e) \cdot \lambda_{1}\right) \\
& =F\left(\left(\lambda_{0}+\alpha_{0} e^{\prime}\right)(a+0 e)-(a+0 e)\left(\lambda_{0}+\alpha_{0} e^{\prime}\right)\right) \\
& =F\left(\lambda_{0} \cdot a-a \cdot \lambda_{0}\right)=\left(F \cdot \lambda_{0}-\lambda_{0} \cdot F\right)(a)=\delta_{\lambda_{0}}(F)(a) .
\end{aligned}
$$

So $D=\delta_{\lambda_{0}}$. Therefore $A^{\prime \prime}$ is (-1)-weakly amenable.
The following example shows that the condition in Theorem 4, is not trivial.
Example 4. Let \mathbb{T} be the unit circle and $A=\operatorname{lip}_{\alpha} \mathbb{T}$. Let $(\hat{F}(n))_{n \in \mathbb{Z}}$ and $(\hat{g}(n))_{n \in \mathbb{Z}}$ are the Fourier coefficients of $F \in \operatorname{Lip} p_{\alpha} \mathbb{T}$ and $g \in l i p_{\alpha} \mathbb{T}$. We define D as follows

$$
\begin{gathered}
D: A^{\prime \prime} \rightarrow A^{\prime} \\
D F(g)=\sum_{n=-\infty}^{+\infty} n \hat{g}(n) \hat{F}(n) .
\end{gathered}
$$

So D is a derivation which is not inner.
Since $\left(\text { lip } p_{\alpha} \mathbb{T}\right)^{\prime \prime}=\operatorname{Lip} \mathbb{T}$, then for $F, G \in \operatorname{Lip} p_{\alpha} \mathbb{T}$ there are $\left(f_{\alpha}\right)_{\alpha}$ and $\left(g_{\beta}\right)_{\beta}$ in lip $p_{\alpha} \mathbb{T}$ such that $F=w^{*}-\lim _{\alpha} \hat{f}_{\alpha}$ and $G=w^{*}-\lim _{\beta} \hat{g}_{\beta}$. Then we have

$$
\begin{aligned}
D F_{\alpha}\left(g_{\beta}\right) & =\sum_{n=-\infty}^{+\infty} n \hat{g}_{\beta}(n) \hat{f}_{\alpha}(-n)=\sum_{n=-\infty}^{+\infty}(-n) \hat{g}_{\beta}(-n) \hat{f}_{\alpha}(n) \\
& =-\sum_{n=-\infty}^{+\infty} n \hat{g}_{\beta}(-n) \cdot \hat{f}_{\alpha}(n)=-\left(D g_{\beta}\right)\left(f_{\alpha}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{array}{r}
\lim _{\beta} \lim _{\alpha} D f_{\alpha}\left(g_{\beta}\right)=\lim _{\beta} D F\left(g_{\beta}\right)=\lim _{\beta} \hat{g}_{\beta} D F=G(D F), \\
\lim _{\beta} \lim _{\alpha} D g_{\beta}\left(f_{\alpha}\right)=\lim _{\alpha} \lim _{\beta} D g_{\beta}\left(f_{\alpha}\right)=\lim _{\alpha} D G\left(f_{\alpha}\right)=F(D G) .
\end{array}
$$

So $F(D G)=-G(D F)$ where D is a non-inner derivation.

Theorem 5. Let A be a unital Banach algebra and $A^{\prime \prime}$ is commutative and (-1)-weakly amenable. Then $Z^{1}\left(A^{\prime \prime}, E\right)=(0)$, for each Banach $A^{\prime \prime}$-module E.

Proof. Let E be a Banach left $A^{\prime \prime}$-module and define $x \cdot F=: F \cdot x$ for each $F \in A^{\prime \prime}$ and $x \in E$. Then E is a Banach right $A^{\prime \prime}$-module and commutativity of $A^{\prime \prime}$ implies that E is a Banach $A^{\prime \prime}$-bimodule (of course E is an A-bimodule and E^{\prime} is an $A^{\prime \prime}$-bimodule).

Let e be the unit element in A, and let D be a non-zero derivation in $Z^{1}\left(A^{\prime \prime}, E\right)$. Then for some $F_{0} \in A^{\prime \prime}$, we have $D F_{0} \neq 0$, so there exists $\lambda \in E^{\prime}$ such that $\lambda\left(D F_{0}\right)=1$. We define

$$
\begin{aligned}
& R: E \longrightarrow A^{\prime} \\
& R(x)(a)=\lambda(\hat{a} \cdot x), \quad(a \in A, x \in X) .
\end{aligned}
$$

R is a bounded linear map. Now $R \circ D: A^{\prime \prime} \longrightarrow A^{\prime}$ is a bounded derivation since

$$
\begin{aligned}
R \circ D(F \cdot G)(a) & =R(D F \cdot G+F \cdot D G)(a)=\lambda(\hat{a} \cdot(D F \cdot G)+\hat{a} \cdot(F \cdot D G)) \\
& =G \cdot \lambda(\hat{a} \cdot D F)+F \cdot \lambda(\hat{a} \cdot D G)
\end{aligned}
$$

On the other hand for $G=w^{*}-\lim _{\alpha} \hat{b}_{\alpha}$ and $x \in E$, the net $\left(\hat{b}_{\alpha} \cdot x\right)_{\alpha}$ is a bounded net in $E^{\prime \prime}$, so $\widehat{b_{\alpha} \cdot x} \xrightarrow{w^{*}} G \cdot x$, especially $\lambda(G \cdot x)=\lim \lambda\left(\hat{b}_{\alpha} \cdot x\right)$ and we have

$$
\begin{aligned}
(R(D F) \cdot G)(a) & =\lim _{\alpha}(R(D F) \cdot a)\left(b_{\alpha}\right) \\
& =\lim _{\alpha} R(D F)\left(a \cdot b_{\alpha}\right)=\lim _{\alpha} \lambda\left(\widehat{a \cdot b_{\alpha}} \cdot D F\right) \\
& =\lambda \cdot G(\hat{a} \cdot D F)=G \cdot \lambda(\hat{a} \cdot D F) .
\end{aligned}
$$

Similarly $(F \cdot R(D G))(a)=F \cdot \lambda(a \cdot D G)$.
Therefore $R \circ D$ is a derivation in $Z^{1}\left(A^{\prime \prime}, A^{\prime}\right)$. Now, since $A^{\prime \prime}$ is (-1)-weakly amenable and commutative then $R \circ D=0$. But $R \circ D\left(F_{0}\right)(e)=R\left(D F_{0}\right)(e)=\lambda\left(e \cdot D F_{0}\right)=1$, which is a contradiction. So $D=0$ and we have $Z^{1}\left(A^{\prime \prime}, E\right)=0$

Now we recall some Theorems which are used in the following corollaries.
Theorem 6. For a commutative Banach algebra A, if A is weakly amenable, then $Z^{1}(A, E)=(0)$ for each Banach A-module E.

Theorem 7. Let A be a commutative Banach algebra. Then A is weakly amenable if and only if $A^{\#}$ is weakly amenable.

See [2] and [4] for proofs of Theorems 6 and 7, respectively.
Corollary 2. Let A be an Arens regular commutative Banach algebra. Then $A^{\# \prime \prime}$ is (-1)-weakly amenable if and only if $A^{\prime \prime}$ is weakly amenable.

Proof. Let $A^{\prime \prime}$ be weakly amenable then by Theorem 7, $A^{\#}$ is weakly amenable. Since A is Arens regular then by Lemma $1, A^{\# \prime}$ is a Banach $A^{\# \prime \prime}$-bimodul, so $H^{1}\left(A^{\# \prime \prime}, A^{\# \prime}\right)=\{0\}$.

For the converse, let $A^{\# \prime \prime}$ is (-1)-weakly amenable. Using Theorem $5, A^{\# \prime \prime}$ is weakly amenable, so by Theorem 7, $A^{\prime \prime}$ is weakly amenable.

Corollary 3. Let A be a Banach algebra and $A^{\prime \prime}$ be commutative and (-1)-weakly amenable, for which $A^{\prime \prime} \cdot A=A^{\prime \prime}$. Then $A^{\prime \prime}$ is (-1)-weakly amenable if and only if $A^{\# \prime \prime}$ is (-1)-weakly amenable.

Proof. If $A^{\prime \prime}$ is commutative and (-1)-weakly amenable, and also $A^{\prime \prime} \cdot A=A^{\prime \prime}$ then it is proved that $Z 1\left(A^{\prime \prime}, E\right)=0$ for each Banach $A^{\prime \prime}$-module E. Now use Theorems 6 and 7.

References

[1] F. E. Alexander. Some algebraic properties of $F(X)$ and $K(X)$, Proceedings of the Edinburgh Mathematical Society, 19, 353-361. 1975.
[2] W. G. Bade, P. C. Curtis, and H. G. Dales. Amenability and weak amenability for Beurling and Lipschits algebra, Proceedings of the London Mathematical Society, 3(55), 359-377. 1987.
[3] M. C. F. Berglund. Ideal C*-algebras, Duke Mathematical Journal, 40, 241-257. 1973.
[4] H. G. Dales. Banach algebra and Automatic continuity, Oxford University Press, 2000.
[5] H. G. Dales, A. Rodriguez-Palacios, and M. V. Velasco. The second transpose of a derivation, Journal of the London Mathematical Society, 2(64), 707-721. 2001.
[6] J. Duncan and S. A. Hosseiniun, The second dual of banach algeba. Proceedings of the Royal Society of Edinburgh, Section A, 84, 309-325. 1979.
[7] M. Eshaghi, S. A. R. Hosseinioun, and A. Valadkhani. On (-1)-weak amenability of Banach algebras, Mathematical Reports, 15(3), 271-279. 2013.
[8] B. E. Johnson. Cohomology in Banach algebras, Memoirs of the American Mathematical Society, 127, 96. 1972.
[9] B. E. Johnson. Weak amenability of group algebras, Bulletin of the London Mathematical Society, 23, 281-284. 1991.
[10] A. Medghalchi and T. Yazdanpanah. Problems concerning n-weak amenability of Banach algebras, Czechoslovak Mathematical Journal, 55(4), 863-876. 2005.
[11] S. Watanabe. A Banach algebra which is an ideal in the second dual space, Science Reports of Niigata University, Series A, 11, 95-101. 1974.
[12] S. Watanabe. A Banach algebra which is an ideal in the second dual space II, Science Reports of Niigata University, Series A, 13, 43-48. 1976.
[13] P. K. Wong. On the Arens product and certain Banach algebras, Transactions of the American Mathematical Society, 37, 111-113. 1973.

[^0]: *Corresponding author.

