Vol. 9, No. 2, 2016, 240-243 ISSN 1307-5543 – www.ejpam.com

On the Exponential Diophantine Equation

$$(M_{pq})^x + (M_{pq} + 1)^y = z^2$$

Azizul Hoque

Department of Mathematics, Gauhati University, Guwahati, India-781014

Abstract. In this paper, we consider the number $M_{pq} = p^q - 1$, where p > 0 and q > 1 are integers, and the Exponential Diophantine equation $(M_{pq})^x + (M_{pq} + 1)^y = z^2$, where x, y and z are positive integers. We find the solutions to the title equation expect the case only when both p and y are odd integers.

2010 Mathematics Subject Classifications: 11D61; 11D41

Key Words and Phrases: Exponential Diophantine Equation

1. Introduction

Sroysang [2] established that the Exponential Diophantine equation $31^x + 32^y = z^2$ has no non-negative solution. Recently, Sroysang [3] also showed that the Exponential Diophantine equation $7^x + 8^y = z^2$ has only one solution, that is (x, y, z) = (0, 1, 3). Sroysang [3] introduced an open problem regarding the set of all solutions (x, y, z) for the Exponential Diophantine equation $p^x + (p+1)^y = z^2$, where x, y and z are non-negative integers.

In this paper, we consider the number $M_{pq} = p^q - 1$, where p > 0 and q > 1 are integers, and the Exponential Diophantine equation $(M_{pq})^x + (M_{pq} + 1)^y = z^2$, where x, y and z are positive integers. We show that $(M_{pq}, x, y, z) = (7, 0, 1, 3)$ and $(M_{pq}, x, y, z) = (3, 2, 2, 5)$ are the only solutions to the above equation except the case when both p and y are odd integers.

2. Main Results

In this article, we use Catalan's conjecture [1], which states that the only solution in integers a > 1, b > 1, x > 1, y > 1 to the equation $a^x - b^y = 1$ is (a, b, x, y) = (3, 2, 2, 3).

We shall now solve the exponential Diophantine equation $(M_{pq})^x + (M_{pq}+1)^y = z^2$, where x, y, z, p, q are non-negative integers and $M_{pq} = p^q - 1$ with q > 1. We exclude the case when both p and y are odd positive integers.

http://www.ejpam.com

(c) 2016 EJPAM All rights reserved.

Email address: ahoque.ms@gmail.com

A. Hoque / Eur. J. Pure Appl. Math, 9 (2016), 240-243

Theorem 1. The Exponential Diophantine equation

$$(M_{pq})^{x} + (M_{pq} + 1)^{y} = z^{2}$$
⁽¹⁾

except the case when both p and y are odd positive integers, has only two solutions in non-negative integer; $(M_{pq}, x, y, z) = (7, 0, 2, 3)$ and $(M_{pq}, x, y, z) = (3, 2, 2, 5)$.

Proof. We divide the problem into two cases.

Case 1: Let p be an even positive integer. Then $M_{pq} \equiv 3 \pmod{4}$.

From Eq.(1) we observe that z must be odd, and thus $z^2 \equiv 1 \pmod{4}$ and $M_{pq} + 1 \equiv 0 \pmod{4}$.

Sub-case 1.1: Let x = 0, then Eq. (1) becomes

$$1 + (M_{pq} + 1)^y = z^2.$$

This gives $p^{qy} = z^2 - 1$ and thus $p^{qy} = (z+1)(z-1)$. Hence there exists non-negative integers *m* and *n* such that $p^m = z + 1$ and $p^n = z - 1$, where m > n and

$$m + n = qy \tag{2}$$

Now we have,

$$p^{n}(p^{m-n}-1) = p^{m}-p^{n} = (z+1)-(z-1) = 2$$

This implies p = 2, n = 1 and m = 2. Thus Eq. (2) gives qy = 3 and hence either q = 1, y = 3 or q = 3, y = 1.

Since q > 1, so that q = 3, y = 1.

Now $z = p^n + 1 = 3$ and $M_{pq} = 7$. Hence $(M_{pq}, x, y, z) = (7, 0, 1, 3)$ is the only solution to the Eq. (1) in this sub-case.

Sub-case 1.2: Let $x \ge 1$.

Since $(M_{pq} + 1)^y \equiv 0 \pmod{4}$ and $z^2 \equiv 1 \pmod{4}$, the Eq. (1) gives $(M_{pq})^x \equiv 1 \pmod{4}$. Again since $M_{pq} \equiv 3 \pmod{4}$, x must be even.

Let x = 2k for some integer $k \ge 1$. Then Eq. (1) implies

$$(M_{pq})^{2k} + p^{qy} = z^2.$$

This gives $p^{qy} = z^2 - (M_{pq}{}^k)^2$ and thus $p^{qy} = (z + M_{pq}{}^k)(z - M_{pq}{}^k)$. Hence there exists non-negative integers *i* and *j* such that $p^i = z + M_{pq}{}^k$ and $p^j = z - M_{pq}{}^k$, where i > j and

$$i+j=qy. (3)$$

Now we have $p^{j}(p^{i-j}-1) = p^{i} - p^{j} = 2(M_{pq})^{k}$. Since *p* is even, let p = 2t for some positive integer *t*. Then we have

$$2^{j-1}t^{j}(p^{i-j}-1) = (M_{pq})^{k}.$$
(4)

If t > 1 then $t \mid (M_{pq})^k$ and hence $p \mid 2(M_{pq})^k$. Since $gcd(p, M_{pq}) = 1$, we have $p \mid 2$, a contradiction. Hence t = 1 and p = 2.

A. Hoque / Eur. J. Pure Appl. Math, 9 (2016), 240-243

Now Eq. (4) gives, j = 1 and it becomes,

$$p^{i-1} - 1 = (M_{pq})^k \tag{5}$$

By using Catalan's Conjecture, the equation $p^{i-1} - (M_{pq})^k = 1$ has only one solution $(p, M_{pq}, i-1, k) = (3, 2, 2, 3)$ only when i > 2 and k > 1. But since p = 2, Eq. (5) has no solution only when i > 2 and k > 1.

It is now remaining to examine only when either $i \ge 2$ or $k \ge 1$. But we have i > 1, q > 1, $k \ge 1$ and Eq. (3) gives i + 1 = qy. Thus we get i = 2, q = 3, y = 1 or k = 1.

Now if i = 2, q = 3 and y = 1, then Eq.(5) gives,

$$p-1 = (M_{pq})^k \Rightarrow 1 = (M_{pq})^k \Rightarrow k = 0$$

This contradicts to $k \ge 1$. Hence Eq. (1) has no solution in this case.

Again, if k = 1, then Eq. (5) gives

$$p^{i-1} - 1 = M_{pq}$$

$$\Rightarrow p^{i-1} - 1 = p^q - 1$$

$$\Rightarrow i - 1 = q$$

$$\Rightarrow qy - 2 = q$$

$$\Rightarrow q(y - 1) = 2$$

$$\Rightarrow q = 2, y = 2.$$

Thus we have $M_{pq} = 3$, x = 2k = 2, y = 2 and $z = p^{j} + (M_{pq})^{k} = 5$. Therefore $(M_{pq}, x, y, z) = (3, 2, 2, 5)$ is the only solution to Eq. (1) in this sub-case.

Case 2: Let *p* be an odd positive integer. Then $M_{pq} \equiv 0 \pmod{4}$. From Eq. (1) we observe that *z* must be odd, and thus $z^2 \equiv 1 \pmod{4}$.

Sub-case 2.1: Let y = 0. Then Eq. (1) becomes $(M_{pq})^x + 1 = z^2$. This implies $(M_{pq})^x = (z+1)(z-1)$ and thus there exists non-negative integers a, b such that $(M_{pq})^a = z+1$ and $(M_{pq})^b = z-1$, where a > b and x = a + b.

Now $(M_{pq})^b (M_{pq}^{a-b}-1) = (M_{pq})^a - (M_{pq})^b = 2$. This gives $2 \equiv 0 \pmod{4}$, an absurdity. Thus there is no solution to Eq. (1) in this sub-case.

Sub-case 2.2: Let $y \ge 1$ even integer and let y = 2k. Then Eq. (1) becomes

$$(M_{pq})^x + (M_{pq} + 1)^{2k} = z^2.$$

This equation implies

$$(M_{pq})^{x} = z^{2} - (p^{kq})^{2} = (z + p^{kq})(z - p^{kq}).$$

Thus there are non-negative integers c, d such that $(M_{pq})^c = z + p^{kq}$ and $(M_{pq})^d = z - p^{kq}$, where c > d and c + d = x.

Now,

$$(M_{pq})^d (M_{pq}^{c-d} - 1) = (M_{pq})^c - (M_{pq})^d = 2p^{kq} = 2(M_{pq} + 1)^k$$

This implies $0 \equiv 2 \pmod{4}$. This is an absurdity. Hence Eq. (1) has no solution in this case. \Box

ACKNOWLEDGEMENTS The Author acknowledges UGC for JRF Fellowship (No.GU/ UGC/VI(3)/JRF/2012 /2985).

References

- [1] P. Mihailescu. *Primary cyclotomic units and a proof of Catalan's conjecture*, Journal für die reine und angewandte Mathematik, 27, 167-195. 2004.
- [2] B. Sroysang. On the Diophantine equation $31^x + 32^y = z^2$, International Journal of Pure and Applied Mathematics, 81, 609-612. 2012.
- [3] B. Sroysang. On the Diophantine equation $7^x + 8^y = z^2$, International Journal of Pure and Applied Mathematics, 84, 111-114. 2013.