On the Exponential Diophantine Equation
 $\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2}$

Azizul Hoque
Department of Mathematics, Gauhati University, Guwahati, India-781014

Abstract

In this paper, we consider the number $M_{p q}=p^{q}-1$, where $p>0$ and $q>1$ are integers, and the Exponential Diophantine equation $\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2}$, where x, y and z are positive integers. We find the solutions to the title equation expect the case only when both p and y are odd integers.

2010 Mathematics Subject Classifications: 11D61; 11D41
Key Words and Phrases: Exponential Diophantine Equation

1. Introduction

Sroysang [2] established that the Exponential Diophantine equation $31^{x}+32^{y}=z^{2}$ has no non-negative solution. Recently, Sroysang [3] also showed that the Exponential Diophantine equation $7^{x}+8^{y}=z^{2}$ has only one solution, that is $(x, y, z)=(0,1,3)$. Sroysang [3] introduced an open problem regarding the set of all solutions (x, y, z) for the Exponential Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$, where x, y and z are non-negative integers.

In this paper, we consider the number $M_{p q}=p^{q}-1$, where $p>0$ and $q>1$ are integers, and the Exponential Diophantine equation $\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2}$, where x, y and z are positive integers. We show that $\left(M_{p q}, x, y, z\right)=(7,0,1,3)$ and $\left(M_{p q}, x, y, z\right)=(3,2,2,5)$ are the only solutions to the above equation except the case when both p and y are odd integers.

2. Main Results

In this article, we use Catalan's conjecture [1], which states that the only solution in integers $a>1, b>1, x>1, y>1$ to the equation $a^{x}-b^{y}=1$ is $(a, b, x, y)=(3,2,2,3)$.

We shall now solve the exponential Diophantine equation $\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2}$, where x, y, z, p, q are non-negative integers and $M_{p q}=p^{q}-1$ with $q>1$. We exclude the case when both p and y are odd positive integers.

Theorem 1. The Exponential Diophantine equation

$$
\begin{equation*}
\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2} \tag{1}
\end{equation*}
$$

except the case when both p and y are odd positive integers, has only two solutions in non-negative integer, $\left(M_{p q}, x, y, z\right)=(7,0,2,3)$ and $\left(M_{p q}, x, y, z\right)=(3,2,2,5)$.

Proof. We divide the problem into two cases.
Case 1: Let p be an even positive integer. Then $M_{p q} \equiv 3(\bmod 4)$.
From Eq.(1) we observe that z must be odd, and thus $z^{2} \equiv 1(\bmod 4)$ and $M_{p q}+1 \equiv$ $0(\bmod 4)$.

Sub-case 1.1: Let $x=0$, then Eq. (1) becomes

$$
1+\left(M_{p q}+1\right)^{y}=z^{2}
$$

This gives $p^{q y}=z^{2}-1$ and thus $p^{q y}=(z+1)(z-1)$. Hence there exists non-negative integers m and n such that $p^{m}=z+1$ and $p^{n}=z-1$, where $m>n$ and

$$
\begin{equation*}
m+n=q y \tag{2}
\end{equation*}
$$

Now we have,

$$
p^{n}\left(p^{m-n}-1\right)=p^{m}-p^{n}=(z+1)-(z-1)=2
$$

This implies $p=2, n=1$ and $m=2$. Thus Eq. (2) gives $q y=3$ and hence either $q=1, y=3$ or $q=3, y=1$.

Since $q>1$, so that $q=3, y=1$.
Now $z=p^{n}+1=3$ and $M_{p q}=7$. Hence $\left(M_{p q}, x, y, z\right)=(7,0,1,3)$ is the only solution to the Eq. (1) in this sub-case.

Sub-case 1.2: Let $x \geq 1$.
Since $\left(M_{p q}+1\right)^{y} \equiv 0(\bmod 4)$ and $z^{2} \equiv 1(\bmod 4)$, the Eq. (1) gives $\left(M_{p q}\right)^{x} \equiv 1(\bmod 4)$. Again since $M_{p q} \equiv 3(\bmod 4), x$ must be even.

Let $x=2 k$ for some integer $k \geq 1$. Then Eq. (1) implies

$$
\left(M_{p q}\right)^{2 k}+p^{q y}=z^{2}
$$

This gives $p^{q y}=z^{2}-\left(M_{p q}{ }^{k}\right)^{2}$ and thus $p^{q y}=\left(z+M_{p q}{ }^{k}\right)\left(z-M_{p q}{ }^{k}\right)$. Hence there exists nonnegative integers i and j such that $p^{i}=z+M_{p q}{ }^{k}$ and $p^{j}=z-M_{p q}{ }^{k}$, where $i>j$ and

$$
\begin{equation*}
i+j=q y \tag{3}
\end{equation*}
$$

Now we have $p^{j}\left(p^{i-j}-1\right)=p^{i}-p^{j}=2\left(M_{p q}\right)^{k}$.
Since p is even, let $p=2 t$ for some positive integer t. Then we have

$$
\begin{equation*}
2^{j-1} t^{j}\left(p^{i-j}-1\right)=\left(M_{p q}\right)^{k} \tag{4}
\end{equation*}
$$

If $t>1$ then $t \mid\left(M_{p q}\right)^{k}$ and hence $p \mid 2\left(M_{p q}\right)^{k}$. Since $\operatorname{gcd}\left(p, M_{p q}\right)=1$, we have $p \mid 2$, a contradiction. Hence $t=1$ and $p=2$.

Now Eq. (4) gives, $j=1$ and it becomes,

$$
\begin{equation*}
p^{i-1}-1=\left(M_{p q}\right)^{k} \tag{5}
\end{equation*}
$$

By using Catalan's Conjecture, the equation $p^{i-1}-\left(M_{p q}\right)^{k}=1$ has only one solution ($\left.p, M_{p q}, i-1, k\right)=(3,2,2,3)$ only when $i>2$ and $k>1$. But since $p=2$, Eq. (5) has no solution only when $i>2$ and $k>1$.

It is now remaining to examine only when either $i \geq 2$ or $k \geq 1$. But we have $i>1, q>1$, $k \geq 1$ and Eq. (3) gives $i+1=q y$. Thus we get $i=2, q=3, y=1$ or $k=1$.

Now if $i=2, q=3$ and $y=1$, then Eq.(5) gives,

$$
p-1=\left(M_{p q}\right)^{k} \Rightarrow 1=\left(M_{p q}\right)^{k} \Rightarrow k=0
$$

This contradicts to $k \geq 1$. Hence Eq. (1) has no solution in this case.
Again, if $k=1$, then Eq. (5) gives

$$
\begin{aligned}
p^{i-1}-1= & M_{p q} \\
& \Rightarrow p^{i-1}-1=p^{q}-1 \\
& \Rightarrow i-1=q \\
& \Rightarrow q y-2=q \\
& \Rightarrow q(y-1)=2 \\
& \Rightarrow q=2, y=2 .
\end{aligned}
$$

Thus we have $M_{p q}=3, x=2 k=2, y=2$ and $z=p^{j}+\left(M_{p q}\right)^{k}=5$. Therefore $\left(M_{p q}, x, y, z\right)=(3,2,2,5)$ is the only solution to Eq. (1) in this sub-case.

Case 2: Let p be an odd positive integer. Then $M_{p q} \equiv 0(\bmod 4)$. From Eq. (1) we observe that z must be odd, and thus $z^{2} \equiv 1(\bmod 4)$.

Sub-case 2.1: Let $y=0$. Then Eq. (1) becomes $\left(M_{p q}\right)^{x}+1=z^{2}$. This implies $\left(M_{p q}\right)^{x}=(z+1)(z-1)$ and thus there exists non-negative integers a, b such that $\left(M_{p q}\right)^{a}=z+1$ and $\left(M_{p q}\right)^{b}=z-1$, where $a>b$ and $x=a+b$.

Now $\left(M_{p q}\right)^{b}\left(M_{p q}^{a-b}-1\right)=\left(M_{p q}\right)^{a}-\left(M_{p q}\right)^{b}=2$. This gives $2 \equiv 0(\bmod 4)$, an absurdity.
Thus there is no solution to Eq. (1) in this sub-case.
Sub-case 2.2: Let $y \geq 1$ even integer and let $y=2 k$. Then Eq. (1) becomes

$$
\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{2 k}=z^{2}
$$

This equation implies

$$
\left(M_{p q}\right)^{x}=z^{2}-\left(p^{k q}\right)^{2}=\left(z+p^{k q}\right)\left(z-p^{k q}\right)
$$

Thus there are non-negative integers c, d such that $\left(M_{p q}\right)^{c}=z+p^{k q}$ and $\left(M_{p q}\right)^{d}=z-p^{k q}$, where $c>d$ and $c+d=x$.

Now,

$$
\left(M_{p q}\right)^{d}\left(M_{p q}^{c-d}-1\right)=\left(M_{p q}\right)^{c}-\left(M_{p q}\right)^{d}=2 p^{k q}=2\left(M_{p q}+1\right)^{k}
$$

This implies $0 \equiv 2(\bmod 4)$. This is an absurdity. Hence Eq. (1) has no solution in this case.

ACKNOWLEDGEMENTS The Author acknowledges UGC for JRF Fellowship (No.GU/ UGC/VI(3)/JRF/2012 /2985).

References

[1] P. Mihailescu. Primary cyclotomic units and a proof of Catalan's conjecture, Journal für die reine und angewandte Mathematik, 27, 167-195. 2004.
[2] B. Sroysang. On the Diophantine equation $31^{x}+32^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81, 609-612. 2012.
[3] B. Sroysang. On the Diophantine equation $7^{x}+8^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 84, 111-114. 2013.

