EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 4, 2015, 458-461 ISSN 1307-5543 – www.ejpam.com

A Note on Prüfer *-multiplication Domains

Olivier A. Heubo-Kwegna

Department of Mathematical Sciences, Saginaw Valley State University, University Center MI 48710, USA

Abstract. In this note, we prove that for an arbitrary star operation \star on a domain *R*, the domain *R* is a Prüfer \star -multiplication domain if every 2-generated ideal of *R* is \star_f -invertible. Some characterizations of Prüfer- \star multiplication domains are therefore obtained.

2010 Mathematics Subject Classifications: 13A15, 13A18, 16W50

Key Words and Phrases: Star operation; *-ideal; Prüfer *-multiplication domain

1. Introduction

Throughout this note *R* denotes an integral domain with quotient field *K*. Let $\mathscr{F}(R)$ be the set of all nonzero fractional ideals of *R* and f(R) be the set of all nonzero finitely generated fractional ideals of *R*.

A star operation on *R* is a mapping $A \to A^*$ of $\mathscr{F}(R)$ into $\mathscr{F}(R)$ such that for all $A, B \in \mathscr{F}(R)$ and for all $a \in K \setminus \{0\}$,

- (i) $(a)^* = (a)$ and $(aA)^* = aA^*$;
- (ii) $A \subseteq A^*$ and $A \subseteq B \Rightarrow A^* \subseteq B^*$, and
- (iii) $A^{\star\star} := (A^{\star})^{\star} = A^{\star}$.

For an overview of star operations, the reader may refer to [5, Sections 32 and 34]. Given a star operation \star on R, one can construct a new star operation \star_f as follows: for each $A \in F(R)$, $A^{\star_f} = \bigcup \{B^* | B \subseteq A \text{ and } B \in f(R)\}$. A star operation is said to be of *finite type* if $\star_f = \star$. Since $(\star_f)_f = \star_f, \star_f$ is a finite type star operation for any given star operation \star on R. Note that $d_f = d$, where d is the identity star operation and if \star is the v-operation we denote $v_f := t$ and call it the t-operation. A nonzero ideal A of R is a \star -*ideal* if $A^* = A$. Similarly, we call a \star -ideal of R a \star -*prime ideal* of R if it is also a prime ideal. We call a maximal element in the set of all proper \star -ideals of R a \star -*maximal* ideal of R. We denote Spec^{*}(R) the set of all \star -prime ideals

http://www.ejpam.com

© 2015 EJPAM All rights reserved.

Email address: oheubokw@svsu.edu

of *R* and Max^{*}(*R*) the set of all *-maximal ideals of *R*. An $A \in \mathscr{F}(R)$ is said to be *-invertible if $(AA^{-1})^* = R$, whereas a domain *R* is a *Prüfer* *-*multiplication domain* (in short, P*MD) if every finitely generated ideal *A* of *R* is *_f-invertible, i.e., $(AA^{-1})^{*_f} = R$ for any $A \in f(R)$. Thus a Prüfer domain is a PdMD and PvMD is often called a Prüfer multiplication domain.

Many authors have previously produced several characterizations of Prüfer-* multiplication domains (for instance see [1–3, 6]). The aim of this note is to provide some new characterizations of Prüfer-* multiplication domains. We precisely show that a domain *R* is a P*MD if and only if each 2-generated ideal of *R* is $*_f$ -invertible. Note that this result is a generalization of the fact that a domain is Prüfer if and only if each 2-generated ideal is invertible [9, page 7]. We also show that a domain *R* is a P*MD if and only if $(a) \cap (b)$ is $*_f$ -invertible for all $a, b \in R \setminus \{0\}$. The latest result has also been shown in the *v*-domain context [8] and in the PvMD context [7].

2. Main Results

We start this section with the recollection of some facts about star operations. Let \star be a star operation on R. Recall that \star is *stable* if $(A \cap B)^* = A^* \cap B^*$ for all $A, B \in \mathscr{F}(R)$. Now define $\tilde{\star}$ by $A^{\tilde{\star}} := \cap \{AR_M | M \in Max^{\star_f}(R)\}$, for all $A \in \mathscr{F}(R)$. Then it is well known that $\tilde{\star}$ is a stable star operation on R of finite type called the *stable star operation of finite type associated to* \star . It is not hard to see that $Max^{\tilde{\star}}(R) = Max^{\star_f}(R)[4$, Corollary 3.5(2)]. From the latest fact, it then follows that an ideal A is $\tilde{\star}$ -invertible if and only if it is \star_f -invertible (in fact, if a star operation \star is of finite type, then $(AA^{-1})^* = R$ if and only if $AA^{-1} \not\subseteq M$ for all $M \in Max^*(R)$). From this observation it then follows that P \star MD, P \star_f MD, and P $\tilde{\star}$ MD coincide.

Lemma 1. Let A be a finitely generated ideal of R and \star a star operation on R. If A is \star_f -invertible, then AR_M is principal for every $M \in Max^{\star_f}(R)$.

Proof. Suppose that *A* is \star_f -invertible. From the above observation, it follows that *A* is $\tilde{\star}$ -invertible, i.e., $(AA^{-1})^{\tilde{\star}} = R$. We have, for each maximal \star_f -ideal *M*,

$$R_M = (AA^{-1})^{\tilde{\star}} R_M = \bigcap \{ (AA^{-1})R_N | N \in Max^{\star_f}(R) \} R_M = (AA^{-1})R_M$$

[4, Lemma 2.4.(1)]. Thus AR_M is invertible and therefore principal.

Theorem 1. Let R be an integral domain and let \star be a star operation on R. Then the following statements are equivalent for an integral domain R.

- (i) R_M is a valuation domain for all $M \in Max^{\star_f}(R)$.
- (ii) R is a $P \star MD$.
- (iii) Every nonzero fractional finitely generated ideal of R is \star_{f} -invertible.
- (iv) Every nonzero fractional 2-generated ideal is \star_{f} -invertible.

REFERENCES

Proof. For $(i) \Leftrightarrow (ii)$ (see [1, Corollary 1.2]). $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$ are clear. So it remains to prove that $(iv) \Rightarrow (i)$. Let $x, y \in R$, note that if P is a prime ideal of R, we have $xR_P + yR_P = (a, b)R_P$ for some $a, b \in R$. But if P is a \star_f -maximal ideal of R then, by Lemma 1, $(a, b)R_P$ is principal, that is, R_P is a valuation domain.

Corollary 1. A domain R is a P*MD if and only if $(a) \cap (b)$ is \star_f -invertible for all $a, b \in \mathbb{R} \setminus \{0\}$.

Proof. Note that we have $(ab)^{-1}[(a) \cap (b)] = (a, b)^{-1}$. So $(ab)^{-1}[(a) \cap (b)](a, b) = (a, b)^{-1}(a, b)$ and $((ab)^{-1}[(a) \cap (b)](a, b))^{*_f} = ((a, b)^{-1}(a, b))^{*_f}$. Thus if $a, b \in R \setminus \{0\}$, $(a) \cap (b)$ is $*_f$ invertible if and only if (a, b) is $*_f$ -invertible. Hence R is a P*MD if and only if $(a) \cap (b)$ is $*_f$ -invertible for all $a, b \in R \setminus \{0\}$ by Theorem 1(iv).

Recall that a *-ideal *A* of *R* is of *finite type* if $A = (a_1, ..., a_n)^*$ for some $(0) \neq (a_1, ..., a_n) \subseteq A$. Note that if $* = *_f$, then A^* is of finite type if and only if $A^* = (a_1, ..., a_n)^*$ for some $(0) \neq (a_1, ..., a_n) \subseteq A$. If * is a star operation of finite type, then a *-invertible ideal is of finite type. Also note that from [5, Proposition 32.2(b)] and the fact that $(z)^* = (z)$ for any $z \in K$, we have $((a) \cap (b))^* = (a) \cap (b)$ for any star operation * on *R*. Thus $(a) \cap (b)$ is a *-ideal of *R* for all $a, b \in R \setminus \{0\}$.

Corollary 2. Let R be an integral domain such that $((ab)^{-1}[(a) \cap (b)](a, b))^* = R$. Then R is a P*MD if and only if $(a) \cap (b)$ is of finite type.

Proof. Suppose that *R* is a P*MD. Then $(a) \cap (b)$ is \star_f -invertible by Corollary 1. So $(a) \cap (b)$ is of finite type following the above discussion. Conversely if we assume that $(a) \cap (b)$ is of finite type, then from $((ab)^{-1}[(a) \cap (b)](a, b))^* = R$, it follows that $(a) \cap (b)$ is \star_f -invertible and hence *R* is a P*MD by Corollary 1.

Remark 1. Note that the preceding theorem and corollaries give new characterizations of Prüfer *-multiplication domains which generalize some of the classical characterizations of Prüfer vmultiplication domains (see [7, Lemma 1.7, Corollary 1.8, and Corollary 1.9]).

ACKNOWLEDGEMENTS The author wishes to express his gratitude to Bruce Olberding for bringing up the problem treated in this paper following some discussions on Prüfer-* multiplication domains.

References

- [1] D. D. Anderson, D. F. Anderson, M. Fontana, and M. Zafrullah. *On v-Domains and Star Operations*, Communications in Algebra, 2, 141-145. 2008.
- [2] D. F. Anderson, M. Fontana, and M. Zafrullah. Some remarks on Prüfer *-multiplication domains and class groups, Journal of Algebra, 319, 272-295. 2008.
- [3] G. W. Chang. *Prüfer* *-*Multiplication Domains, Nagata rings, and Kroneker function rings,* Journal of Algebra, 319(1), 309-319. 2008.

- [4] M. Fontana and K.A. Loper. Nagata rings. *Kronecker function rings and related smistar operations*, Communications in Algebra, 31, 4775-4805. 2003.
- [5] R. Gilmer. *Multiplicative ideal theory*, Corrected reprint of the 1972 edition. Queen's Papers in Pure and Applied Mathematics, 90. Queen's University, Kingston, ON, 1992.
- [6] E. G. Houston, S. B. Malik, and J.L. Mott. *Characterization of *-Multiplication Domains*, Canadian Mathematics Bulletin, 27, 48-52. 1984.
- [7] S. Malik, J. Mott, and M. Zafrullah. *On t-invertibility*, Communications in Algebra, 16, 149-170. 1988.
- [8] J. Mott, B. Nashier, and M. Zafrullah. *Contents of polynomials and invertibility*, Communications in Algebra, 18(5), 1569-1583. 1990.
- [9] H. Prüfer. *Untersuchen über Teilbarkeitseigenshafen in Körper*, Journal of Reine Angew of Mathematics, 168, 1-36. 1932.