A Note on Prüfer \star-multiplication Domains

Olivier A. Heubo-Kwegna

Department of Mathematical Sciences, Saginaw Valley State University, University Center MI 48710, USA

Abstract

In this note, we prove that for an arbitrary star operation \star on a domain R, the domain R is a Prüfer \star-multiplication domain if every 2-generated ideal of R is \star_{f}-invertible. Some characterizations of Prüfer- \star multiplication domains are therefore obtained.

2010 Mathematics Subject Classifications: 13A15, 13A18, 16W50
Key Words and Phrases: Star operation; *-ideal; Prüfer \star-multiplication domain

1. Introduction

Throughout this note R denotes an integral domain with quotient field K. Let $\mathscr{F}(R)$ be the set of all nonzero fractional ideals of R and $f(R)$ be the set of all nonzero finitely generated fractional ideals of R.
A star operation on R is a mapping $A \rightarrow A^{\star}$ of $\mathscr{F}(R)$ into $\mathscr{F}(R)$ such that for all $A, B \in \mathscr{F}(R)$ and for all $a \in K \backslash\{0\}$,
(i) $(a)^{\star}=(a)$ and $(a A)^{\star}=a A^{\star}$;
(ii) $A \subseteq A^{\star}$ and $A \subseteq B \Rightarrow A^{\star} \subseteq B^{\star}$, and
(iii) $A^{\star \star}:=\left(A^{\star}\right)^{\star}=A^{\star}$.

For an overview of star operations, the reader may refer to [5, Sections 32 and 34]. Given a star operation \star on R, one can construct a new star operation \star_{f} as follows: for each $A \in F(R)$, $A^{\star} f=\cup\left\{B^{\star} \mid B \subseteq A\right.$ and $\left.B \in f(R)\right\}$. A star operation is said to be of finite type if ${ }_{\star_{f}}=\star$. Since $\left(\star_{f}\right)_{f}=\star_{f}, \star_{f}$ is a finite type star operation for any given star operation \star on R. Note that $d_{f}=d$, where d is the identity star operation and if \star is the v-operation we denote $v_{f}:=t$ and call it the t-operation. A nonzero ideal A of R is a \star-ideal if $A^{\star}=A$. Similarly, we call a \star-ideal of R a \star-prime ideal of R if it is also a prime ideal. We call a maximal element in the set of all proper \star-ideals of R a \star-maximal ideal of R. We denote $\operatorname{Spec}^{\star}(R)$ the set of all \star-prime ideals

[^0]of R and $\operatorname{Max}^{\star}(R)$ the set of all \star-maximal ideals of R. An $A \in \mathscr{F}(R)$ is said to be \star-invertible if $\left(A A^{-1}\right)^{\star}=R$, whereas a domain R is a Prüfer \star-multiplication domain (in short, $\mathrm{P} \star \mathrm{MD}$) if every finitely generated ideal A of R is \star_{f}-invertible, i.e., $\left(A A^{-1}\right)^{\star} f=R$ for any $A \in f(R)$. Thus a Prüfer domain is a PdMD and $P v \mathrm{MD}$ is often called a Prüfer multiplication domain.

Many authors have previously produced several characterizations of Prüfer-^ multiplication domains (for instance see $[1-3,6]$). The aim of this note is to provide some new characterizations of Prüfer- \star multiplication domains. We precisely show that a domain R is a $P \star M D$ if and only if each 2 -generated ideal of R is \star_{f}-invertible. Note that this result is a generalization of the fact that a domain is Prüfer if and only if each 2 -generated ideal is invertible [9, page 7]. We also show that a domain R is a $\mathrm{P} \star \mathrm{MD}$ if and only if $(a) \cap(b)$ is \star_{f}-invertible for all $a, b \in R \backslash\{0\}$. The latest result has also been shown in the v-domain context [8] and in the $\mathrm{P} \nu \mathrm{MD}$ context [7].

2. Main Results

We start this section with the recollection of some facts about star operations. Let \star be a star operation on R. Recall that \star is stable if $(A \cap B)^{\star}=A^{\star} \cap B^{\star}$ for all $A, B \in \mathscr{F}(R)$. Now define $\widetilde{\star}$ by $A^{\widetilde{\star}}:=\cap\left\{A R_{M} \mid M \in \operatorname{Max}^{\star}(R)\right\}$, for all $A \in \mathscr{F}(R)$. Then it is well known that $\widetilde{\star}$ is a stable star operation on R of finite type called the stable star operation of finite type associated to \star. It is not hard to see that $\operatorname{Max}^{\widetilde{\star}}(R)=\operatorname{Max}^{\star} f(R)$ [4, Corollary 3.5(2)]. From the latest fact, it then follows that an ideal A is $\widetilde{\star}$-invertible if and only if it is \star_{f}-invertible (in fact, if a star operation \star is of finite type, then $\left(A A^{-1}\right)^{\star}=R$ if and only if $A A^{-1} \nsubseteq M$ for all $\left.M \in \operatorname{Max}^{\star}(R)\right)$. From this observation it then follows that $\mathrm{P} \star \mathrm{MD}, \mathrm{P}{ }_{f} \mathrm{MD}$, and $\mathrm{P} \widetilde{\star} \mathrm{MD}$ coincide.

Lemma 1. Let A be a finitely generated ideal of R and \star a star operation on R. If A is \star_{f}-invertible, then $A R_{M}$ is principal for every $M \in \operatorname{Max}^{\star}(R)$.

Proof. Suppose that A is \star_{f}-invertible. From the above observation, it follows that A is \approx-invertible, i.e., $\left(A A^{-1}\right)^{\star}=R$. We have, for each maximal \star_{f}-ideal M,

$$
R_{M}=\left(A A^{-1}\right)^{\widetilde{ }} R_{M}=\bigcap\left\{\left(A A^{-1}\right) R_{N} \mid N \in \operatorname{Max}^{\star}(R)\right\} R_{M}=\left(A A^{-1}\right) R_{M}
$$

[4, Lemma 2.4.(1)]. Thus $A R_{M}$ is invertible and therefore principal.

Theorem 1. Let R be an integral domain and let \star be a star operation on R. Then the following statements are equivalent for an integral domain R.
(i) R_{M} is a valuation domain for all $M \in \operatorname{Max}^{\star} f(R)$.
(ii) R is a $P \star M D$.
(iii) Every nonzero fractional finitely generated ideal of R is \star_{f}-invertible.
(iv) Every nonzero fractional 2-generated ideal is \star_{f}-invertible.

Proof. For $(i) \Leftrightarrow(i i)$ (see [1, Corollary 1.2]). (ii) $\Rightarrow(i i i)$ and (iii) $\Rightarrow(i v)$ are clear. So it remains to prove that $(i v) \Rightarrow(i)$. Let $x, y \in R$, note that if P is a prime ideal of R, we have $x R_{P}+y R_{P}=(a, b) R_{P}$ for some $a, b \in R$. But if P is a \star_{f}-maximal ideal of R then, by Lemma 1 , $(a, b) R_{P}$ is principal, that is, R_{P} is a valuation domain.

Corollary 1. A domain R is $a P \star M D$ if and only if $(a) \cap(b)$ is \star_{f}-invertible for all $a, b \in R \backslash\{0\}$.
Proof. Note that we have $(a b)^{-1}[(a) \cap(b)]=(a, b)^{-1}$. So $(a b)^{-1}[(a) \cap(b)](a, b)=(a, b)^{-1}(a, b)$ and $\left((a b)^{-1}[(a) \cap(b)](a, b)\right)^{\star_{f}}=\left((a, b)^{-1}(a, b)\right)^{\star_{f}}$. Thus if $a, b \in R \backslash\{0\},(a) \cap(b)$ is \star_{f} invertible if and only if (a, b) is \star_{f}-invertible. Hence R is a $\mathrm{P} \star \mathrm{MD}$ if and only if $(a) \cap(b)$ is \star_{f}-invertible for all $a, b \in R \backslash\{0\}$ by Theorem 1 (iv).

Recall that a \star-ideal A of R is of finite type if $A=\left(a_{1}, \ldots, a_{n}\right)^{\star}$ for some (0$) \neq\left(a_{1}, \ldots, a_{n}\right) \subseteq A$. Note that if $\star=\star_{f}$, then A^{\star} is of finite type if and only if $A^{\star}=\left(a_{1}, \ldots, a_{n}\right)^{\star}$ for some $(0) \neq\left(a_{1}, \ldots, a_{n}\right) \subseteq A$. If \star is a star operation of finite type, then a \star-invertible ideal is of finite type. Also note that from [5, Proposition 32.2(b)] and the fact that $(z)^{\star}=(z)$ for any $z \in K$, we have $((a) \cap(b))^{\star}=(a) \cap(b)$ for any star operation \star on R. Thus $(a) \cap(b)$ is a \star-ideal of R for all $a, b \in R \backslash\{0\}$.

Corollary 2. Let R be an integral domain such that $\left((a b)^{-1}[(a) \cap(b)](a, b)\right)^{\star}=R$. Then R is a $P \star M D$ if and only if $(a) \cap(b)$ is of finite type.

Proof. Suppose that R is a $\mathrm{P} \star$ MD. Then $(a) \cap(b)$ is \star_{f}-invertible by Corollary 1. So $(a) \cap(b)$ is of finite type following the above discussion. Conversely if we assume that $(a) \cap(b)$ is of finite type, then from $\left((a b)^{-1}[(a) \cap(b)](a, b)\right)^{\star}=R$, it follows that $(a) \cap(b)$ is \star_{f}-invertible and hence R is a $\mathrm{P} \star \mathrm{MD}$ by Corollary 1.

Remark 1. Note that the preceding theorem and corollaries give new characterizations of Prüfer *-multiplication domains which generalize some of the classical characterizations of Prüfer vmultiplication domains (see [7, Lemma 1.7, Corollary 1.8, and Corollary 1.9]).

ACKNOWLEDGEMENTS The author wishes to express his gratitude to Bruce Olberding for bringing up the problem treated in this paper following some discussions on Prüfer- \star multiplication domains.

References

[1] D. D. Anderson, D. F. Anderson, M. Fontana, and M. Zafrullah. On v-Domains and Star Operations, Communications in Algebra, 2, 141-145. 2008.
[2] D. F. Anderson, M. Fontana, and M. Zafrullah. Some remarks on Prüfer \star-multiplication domains and class groups, Journal of Algebra, 319, 272-295. 2008.
[3] G. W. Chang. Prüfer *-Multiplication Domains, Nagata rings, and Kroneker function rings, Journal of Algebra, 319(1), 309-319. 2008.
[4] M. Fontana and K.A. Loper. Nagata rings. Kronecker function rings and related smistar operations, Communications in Algebra, 31, 4775-4805. 2003.
[5] R. Gilmer. Multiplicative ideal theory, Corrected reprint of the 1972 edition. Queen's Papers in Pure and Applied Mathematics, 90. Queen's University, Kingston, ON, 1992.
[6] E. G. Houston, S. B. Malik, and J.L. Mott. Characterization of \star-Multiplication Domains, Canadian Mathematics Bulletin, 27, 48-52. 1984.
[7] S. Malik, J. Mott, and M. Zafrullah. On t-invertibility, Communications in Algebra, 16, 149-170. 1988.
[8] J. Mott, B. Nashier, and M. Zafrullah. Contents of polynomials and invertibility, Communications in Algebra, 18(5), 1569-1583. 1990.
[9] H. Prüfer. Untersuchen über Teilbarkeitseigenshafen in Körper, Journal of Reine Angew of Mathematics, 168, 1-36. 1932.

[^0]: Email address: oheubokw@svsu.edu

