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Abstract. In this article, all rings are commutative with nonzero identity. Let M be an R-module.
A proper submodule N of M is called a classical prime submodule, if for each m € M and elements
a,b €R, abm € N implies that am € N or bm € N. We introduce the concept of "classical 2-absorbing
submodules" as a generalization of "classical prime submodules". We say that a proper submodule N
of M is a classical 2-absorbing submodule if whenever a,b,c € R and m € M with abcm € N, then
abmeN oracmeN or bcmeN.
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1. Introduction

Throughout this paper, we assume that all rings are commutative with 1 # 0. Let R be
a commutative ring and M be an R-module. A proper submodule N of M is said to be a
prime submodule, if for each element a € R and m € M, am € N implies that m € N or
ac(N:xgM)={reR|rM C N}. A proper submodule N of M is called a classical prime
submodule, if for each m € M and a,b € R, abm € N implies that am € N or bm € N.
This notion of classical prime submodules has been extensively studied by Behboodi in [9, 10]
(see also, [11], in which, the notion of “weakly prime submodules” is investigated). For more
information on weakly prime submodules, the reader is referred to [3, 4, 12].

Badawi gave a generalization of prime ideals in [5] and said such ideals 2-absorbing ideals.
A proper ideal I of R is a 2-absorbing ideal of R if whenever a,b,c € R and abc € I, then
ab €1l orac €I or bc € I. He proved that I is a 2-absorbing ideal of R if and only if
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whenever I, I,, I; are ideals of R with I;I,I5 € I, then I;I, € I or I1I3 € I or I,I5 C 1.
Anderson and Badawi [2] generalized the notion of 2-absorbing ideals to n-absorbing ideals.
A proper ideal I of R is called an n-absorbing (resp. a strongly n-absorbing) ideal if whenever
X1+ Xpy1 € I for xq,...,%,41 € R (resp. I;...I,.; € I for ideals Iy,...,I,,; of R), then
there are n of the x;’s (resp. n of the I;’s) whose product is in I. The reader is referred to
[6-8] for more concepts related to 2-absorbing ideals. Yousefian Darani and Soheilnia in [13]
extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule N of M is called
a 2-absorbing submodule of M if whenever abm € N for some a,b € R and m € M, then
ame€ N orbme N orab € (N a M ) Generally, a proper submodule N of M is called an
n-absorbing submodule if whenever a;...a,m € N for a,,...a, € R and m € M, then either
a...a, € (N :x M) or there are n — 1 of a;’s whose product with m is in N, see [14]. Several
authors investigated properties of 2-absorbing submodules, for example [15].

In this paper we introduce the definition of classical 2-absorbing submodules. A proper sub-
module N of an R-module M is called classical 2-absorbing submodule if whenever a,b,c € R
and m € M with abcm € N, then abm € N or acm € N or bcm € N. Clearly, every classi-
cal prime submodule is a classical 2-absorbing submodule. We show that every Noetherian
R-module M contains a finite number of minimal classical 2-absorbing submodules (Theorem
3). Further, we give the relationship between classical 2-absorbing submodules, classical prime
submodules and 2-absorbing submodules (Proposition 2, Proposition 7). Moreover, we charac-
terize classical 2-absorbing submodules in (Theorem 2, Theorem 4). In (Theorem 7, Theorem
8) we investigate classical 2-absorbing submodules of a finite direct product of modules.

2. Characterizations of Classical 2-Absorbing Submodules

First of all we give a module which has no classical 2-absorbing submodule.

Example 1. Let p be a fixed prime integer and Ny = N U {0}. Then
r
E(p) = {aeQ/Z | @ = — +Z for some reZandneNO}
p
is a nonzero submodule of the Z-module Q/Z. For each t € N, set
r
G, := {aeQ/Zlaz—t+Zforsome rEZ}.
p

Notice that for each t € Ny, G, is a submodule of E (p) generated by I% +7Z for each t € Ng. Each
proper submodule of E (p) is equal to G; for some i € Ny (see, [17, Example 7.10]). However, no
G, is a classical 2-absorbing submodule of E (p) Indeed, # +Z€E (p) Then

P(E+z)=2+z2eG bup? (L +2) =L +2¢G..

Theorem 1. Let f : M — M’ be an epimorphism of R-modules.

(i) If N’ is a classical 2-absorbing submodule of M’, then f1(N’) is a classical 2-absorbing
submodule of M.
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(i) If N is a classical 2-absorbing submodule of M containing Ker(f), then f(N) is a classical
2-absorbing submodule of M’.

Proof (i) Since f is epimorphism, f ~}(N’) is a proper submodule of M. Let a, b,c €R and
m € M such that abcm € fY(N’). Then abcf(m) € N’. Hence abf(m) € N’ or acf(m) € N’
or bcf(m) € N’, and thus abm € f~}(N’) or acm € f~}(N’) or bem € f~}(N’). So, f(N’)
is a classical 2-absorbing submodule of M.

(ii) Let a,b,c € R and m’ € M’ be such that abcm’ € f(N). By assumption there exists
m € M such that m’ = f(m) and so f(abcm) € f(N). Since Ker(f) € N, we have abcm € N.
It implies that abm € N or acm € N or bcm € N. Hence abm’ € f(N) or acm’ € f(N) or
bem’ € f(N). Consequently f(N) is a classical 2-absorbing submodule of M’. O

As an immediate consequence of Theorem 1 we have the following corollary.

Corollary 1. Let M be an R-module and L. € N be submodules of M. Then N is a classical
2-absorbing submodule of M if and only if N/L is a classical 2-absorbing submodule of M /L.

Proposition 1. Let M be an R-module and N;, N, be classical prime submodules of M. Then
N; NN, is a classical 2-absorbing submodule of M.

Proof. Let for some a,b,c € R and m € M, abcm € N; N N,. Since N; is a classical prime
submodule, then we may assume that am € N;. Likewise, assume that bm € N,. Hence
abm € N; NN, which implies N; N N, is a classical 2-absorbing submodule. O

Proposition 2. Let N be a proper submodule of an R-module M.

() If N is a 2-absorbing submodule of M, then N is a classical 2-absorbing submodule of M.

(ii) N is a classical prime submodule of M if and only if N is a 2-absorbing submodule of M
and (N :zg M) is a prime ideal of R.

Proof. (i) Assume that N is a 2-absorbing submodule of M. Let a, b,c € R and m € M such
that abcm € N. Therefore either acm € N or bcm € N or ab € (N : M). The first two cases
lead us to the claim. In the third case we have that abm € N. Consequently N is a classical
2-absorbing submodule.

(i) It is evident that if N is classical prime, then it is 2-absorbing. Also, [3, Lemma 2.1]
implies that (N :z M) is a prime ideal of R. Assume that N is a 2-absorbing submodule of M
and (N :z M) is a prime ideal of R. Letabm € N for some a, b € R and m € M such that neither
am € N nor bm € N. Then ab € (N :z M) and so either a € (N :3 M) or b € (N :z M).This
contradiction shows that N is classical prime. O

he following example shows that the converse of Proposition 2(i) is not true.

Example 2. Let R =Z and M = 7Z, D Z, P Q where p, q are two distinct prime integers. One
can easily see that the zero submodule of M is a classical 2-absorbing submodule. Notice that
pq(1,1,0) = (0,0,0), but p(1,1,0) # (0,0,0), g(1,1,0) # (0,0,0) and pq(1,1,1) # 0. So
the zero submodule of M is not 2-absorbing. Also, part (ii) of Proposition 2 shows that the
zero submodule is not a classical prime submodule. Hence the two concepts of classical prime
submodules and of classical 2-absorbing submodules are different in general.
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Let M be an R-module and N a submodule of M. For everya € R, {m € M | am € N} is
denoted by (N :g a). It is easy to see that (N :j; a) is a submodule of M containing N.

Theorem 2. Let M be an R-module and N be a proper submodule of M. The following conditions
are equivalent:

(1) N is classical 2-absorbing;
(i) For every a,b,c €R, (N :3; abc) = (N :3; ab)U(N :p; ac)U (N :p; be);
(iii) For every a,b € Rand m € M with abm ¢ N, (N :g abm) = (N :g am)U (N :z bm);

(iv) For every a,b € R and m € M with abm ¢ N, (N :g abm) = (N :g am) or
(N :g abm)= (N :z bm);

(v) For every a,b € R and every ideal I of R and m € M with abIm C N, either abm € N or
alm C N or bIm CN;

(vi) For every a € R and every ideal I of R and m € M with alm € N, (N :g alm) = (N :z am)
or (N ;g alm) = (N :xz Im);

(vii) For every a € R and every ideals I, J of R and m € M with alJm C N, either alm C N or
aJmCNorlJmCN;

(viii) For every ideals I, J of Rand m € M with IJm € N, (N :g IJm) = (N :g Im) or
(N ;g IJm) = (N :g Jm);

(ix) For every ideals I, J, K of R and m € M with IJKm C N, either IJm € N or IKm C N or
JKmCN;

(x) For every m € M\N, (N :g m) is a 2-absorbing ideal of R.

Proof. (i) = (ii) Suppose that N is a classical 2-absorbing submodule of M. Let
me (N M abc). Then abcm € N. Hence abm € N or acm € N or bcm € N. Therefore
me (N ‘M ab) orme (N M ac) orme (N M bc). Consequently,

(N M abc)z(N M ab)U(N M ac)U(N M bc).

(ii) = (iii) Let abm ¢ N for some a,b € R and m € M. Assume that x € (N :z abm). Then
abxm € N, and so m € (N :); abx). Since abm ¢ N, m ¢ (N :j; ab). Thus by part (i),
m € (N :j; ax) or m € (N :3; bx), whence x € (N :zg am) or x € (N :zg bm). Therefore
(N :gabm)= (N :g am)U (N :z bm).

(iii) = (iv) By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups),
then it is equal to one of them.

(iv) = (v) Let for some a, b € R, aniideal I of Rand m € M, abIm C N. Hence I C (N :z abm).
If abm € N, then we are done. Assume that abm ¢ N. Therefore by part (iv) we have that
IC(N:gam)orI C(N :zg bm),i.e.,alm SN or bImCN.

(v) = (vi) = (vii) = (viii) = (ix) Have proofs similar to that of the previous implications.
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(ix) = (i) Is trivial.
(ix) & (x) Straightforward. O

Corollary 2. Let R be a ring and I be a proper ideal of R.
(D) gl is a classical 2-absorbing submodule of R if and only if I is a 2-absorbing ideal of R.

(ii) Every proper ideal of R is 2-absorbing if and only if for every R-module M and every proper
submodule N of M, N is a classical 2-absorbing submodule of M.

Proof. (i) Let I be a classical 2-absorbing submodule of R. Then by Theorem 2, (I ;g 1) =1
is a 2-absorbing ideal of R. For the converse see part (i) of Proposition 2.

(ii) Assume that every proper ideal of R is 2-absorbing. Let N be a proper submodule of an
R-module M. Since for every m € M\N, (N :z m) is a proper ideal of R, then it is a 2-absorbing
ideal of R. Hence by Theorem 2, N is a classical 2-absorbing submodule of M. We have the
converse immediately by part (i). O

Proposition 3. Let M be an R-module and {Ki liel } be a chain of classical 2-absorbing sub-
modules of M. Then N;¢;K; is a classical 2-absorbing submodule of M.

Proof. Suppose that abcm € N;¢;K; for some a, b,c € R and m € M. Assume that
abm ¢ N;g;K; and acm ¢ N;¢;K;. Then there are t, | € [ where abm ¢ K, and acm ¢ K;.
Hence, for every K, € K, and every K; € K; we have that abm ¢ K, and acm ¢ K. Thus, for
every submodule Kj, such that K, € K, and K;, € K; we get bcm € K;,. Hence bcm € N K;. O

A classical 2-absorbing submodule of M is called minimal, if for any classical 2-absorbing
submodule K of M such that K € N, then K = N. Let L be a classical 2-absorbing submodule
of M. Set

= {K | K is a classical 2-absorbing submodule of M and K C L} .

If {Ki el } is any chain in I, then N;;K; is in ', by Proposition 3. By Zorn’s Lemma, T’
contains a minimal member which is clearly a minimal classical 2-absorbing submodule of M.
Thus, every classical 2 -absorbing submodule of M contains a minimal classical 2-absorbing
submodule of M. If M is a finitely generated, then it is clear that M contains a minimal classical
2-absorbing submodule.

Theorem 3. Let M be a Noetherian R-module. Then M contains a finite number of minimal
classical 2-absorbing submodules.

Proof. Suppose that the result is false. Let I' denote the collection of proper submodules
N of M such that the module M /N has an infinite number of minimal classical 2-absorbing
submodules. Since 0 € T we get I' # @. Therefore I' has a maximal member T, since M is a
Noetherian R-module. It is clear that T is not a classical 2-absorbing submodule. Therefore,
there exists an element m € M\T and ideals I, J, K in R such that JKm C TbutIJm¢Z T,
IKm € T and JKm € T. The maximality of T implies that M /(T +IJm), M /(T + IKm)
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and M /(T +JKm) have only finitely many minimal classical 2-absorbing submodules. Sup-
pose P/T be a minimal classical 2-absorbing submodule of M/T. So IJKm C T C P, which
implies that IJm € P or IKm € P or JKm C P. Thus P/ (T +IJm) is a minimal classical
2-absorbing submodule of M /(T + I1Jm) or P/(T +IKm) is a minimal classical 2-absorbing
submodule of M/ (T +IKm) or P/(T +JKm) is a minimal classical 2-absorbing submodule
of M/ (T +JKm). Thus, there are only a finite number of possibilities for the submodule P.
This is a contradiction. O

We recall from [5] that if I is a 2-absorbing ideal of a ring R, then either +/I = P where P
is a prime ideal of R or +/T = P; N P, where P;, P, are the only distinct minimal prime ideals
of I.

Corollary 3. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that

m € M\N and /(N :g m) = P where P is a prime ideal of R and (N :z m) # P. Then for each
x € /(N ;g m)\(N :zg m), (N :g xm) is a prime ideal of R containing P. Furthermore, either
(N :gxm) € (N :g ym)or (N :g ym) € (N :z xm) for every x,y € 4/ (N :g m)\(N :xp m).

Proof. By Theorem 2 and [5, Theorem 2.5]. O

Corollary 4. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that

m € M\N and /(N :g m) = P, N P, where P; and P, are the only nongzero distinct prime ideals
of R that are minimal over (N :z m). Then for each x € /(N ;g m)\(N :x m), (N :z xm)
is a prime ideal of R containing P; and P,. Furthermore, either (N :z xm) C (N :z ym) or

(N :g ym) € (N :g xm) for every x,y € /(N :g m)\(N :x m).
Proof. By Theorem 2 and [5, Theorem 2.6]. O

An R-module M is called a multiplication module if every submodule N of M has the form
IM for some ideal I of R. Let N and K be submodules of a multiplication R-module M with
N =1;M and K = I, M for some ideals I and I, of R. The product of N and K denoted by NK
is defined by NK = I;I,M. Then by [1, Theorem 3.4], the product of N and K is independent
of presentations of N and K.

Proposition 4. Let M be a multiplication R-module and N be a proper submodule of M. The
following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(i) If N;NyNym C N for some submodules N, No, N3 of M and m € M, then either NyNo,m € N
or N\Nsm € N or Ny)Nsm C N.

Proof. (i) = (ii) Let NyN,Nsm C N for some submodules N;, N5, N3 of M and m € M.
Since M is multiplication, there are ideals Iy, I, I3 of R such that N; = I; M, N, = I,M and
N; = IsM. Therefore I;I,Ism € N, and so either I;I,m € N or I;I3m C N or I;]sm € N.
Hence NyNom € N or NyNsm € N or NyoNasm C N.

(i) = (i) Suppose that I;I,Ism C N for some ideals I;, I,, I; of R and some m € M. It is
sufficient to set Ny :=I; M, N, := I, M and N5 = I3M in part (ii). O
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In [16], Quartararo et al. said that a commutative ring R is a u-ring provided R has the
property that an ideal contained in a finite union of ideals must be contained in one of those
ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite
union of submodules must be equal to one of them. They show that every Bézout ring is a
u-ring. Moreover, they proved that every Priifer domain is a u-domain. Also, any ring which
contains an infinite field as a subring is a u-ring, [17, Exercise 3.63].

Theorem 4. Let R be a um-ring, M be an R-module and N be a proper submodule of M. The
following conditions are equivalent:

() N is classical 2-absorbing;

(ii) For every a,b,c €R, (N :3; abc) = (N :j; ab) or (N :j; abc) = (N :; ac) or
(N :p; abc) = (N :p; be);

(iii) For every a,b,c € R and every submodule L of M, abcL € N implies that abL C N or
acL €N or bcL CN;

(iv) For every a,b € R and every submodule L of M with abL € N, (N :g abL) = (N :z aL) or
(N :gabL)=(N :z bL);

(v) For every a,b €R, every ideal I of R and every submodule L of M, abIL C N implies that
abL CNorallL CN or bIL CN;

(vi) For every a €R, every ideal I of R and every submodule L of M with
alL €N, (N :galL)=(N:zgaL) or (N :;galL)=(N :g IL);

(vii) For every a €R, every ideals I, J of R and every submodule L of M, alJL € N implies that
alLCNoraJLCNorlJLCN;

(viii) For everyideals I, J of R and every submodule L of M with IJL € N, (N :g IJL) = (N :z IL)
or (N:gIJL)=(N :z JL);

(ix) For every ideals I, J, K of R and every submodule L of M, IJKL C N implies that IJL. C N
or IKLCN orJKL CN;

(x) For every submodule L of M not contained in N, (N :i L) is a 2-absorbing ideal of R.

Proof. Similar to the proof of Theorem 2. O

Proposition 5. Let R be a um-ring and N be a proper submodule of an R-module M. Then N
is a classical 2-absorbing submodule of M if and only if N is a 3-absorbing submodule of M and
(N :x M) is a 2-absorbing ideal of R.

Proof. 1t is trivial that if N is classical 2-absorbing, then it is 3-absorbing. Also, Theorem 4
implies that (N :z M) is a 2-absorbing ideal of R. Now, assume that N is a 3-absorbing submod-
ule of M and (N :z M) is a 2-absorbing ideal of R. Let a;a,asm € N for some a;,a,, as € R and
m € M such that neither a;a,m € N nor a;asm € N nor ay,asm € N. Then a;a,a; € (N :z M)
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and so either a;a, € (N :z M) or aja; € (N :g M) or aya; € (N :zx M). This contradiction
shows that N is classical 2-absorbing. O

Proposition 6. Let M be an R-module and N be a classical 2-absorbing submodule of M. The
following conditions hold:

(i) Forevery a,b,c€Rand m€ M, (N :g abcm) = (N :g abm)U(N :g acm)U (N :z bcm);

(i) If R is a u-ring, then for every a,b,c € Rand m € M, (N :z abcm) = (N :z abm) or
(N :g abcm) = (N :z acm) or (N :zg abcm) = (N :x bcm).

Proof. (i) Let a,b,c € R and m € M. Suppose that r € (N :z abcm). Then abc(rm) € N.
So, either ab(rm) € N or ac(rm) € N or bc(rm) € N. Therefore, either r € (N :zg abm) or
r € (N :zacm) or r € (N :z bcm). Consequently
(N :g abcm) = (N :g abm)U (N :g acm)U (N :g bcm).

(i) Use part (i). O

Proposition 7. Let R be a um-ring, M be a multiplication R-module and N be a proper submodule
of M. The following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(i) If N\N;N3N, € N for some submodules Ny, N, N3, N, of M, then either N{N,N, € N or
N1N3N4 g N or N2N3N4 g N,

(iii) If N;N,;N5 € N for some submodules Ny, Ny, N5 of M, then either N\N, € N or NJN; C N
or NoN; € N;

(iv) N is a 2-absorbing submodule of M;
(v) (N :g M) is a 2-absorbing ideal of R.

Proof. (i) = (ii) Let N;N,N3N, € N for some submodules Ny, N,, N5, N, of M. Since M
is multiplication, there are ideals I;, I, I3 of R such that N; = I{M, Ny = [,M and N5 = I;M.
Therefore I;I,IsN, € N, and so I;I,N, € N or I;I3N4 € N or I,I3N, € N. Thus by Theorem 4,
either NyN,N, € N or NN3N, € N or NoN3N, C N.
(ii) = (iii) Is easy.
(iii) = (iv) Suppose that I;I,K € N for some ideals I;, I, of R and some submodule K of M.
It is sufficient to set N; :=I;M, N, := [,M and N5 =K in part (iii).
(iv) = (i) By part (i) of Proposition 2.
(iv) = (v) By [15, Theorem 2.3].
(v) = (iv) Let I;I,K € N for some ideals I, I, of R and some submodule K of M. Since M is
multiplication, then there is an ideal I5 of R such that K = IsM. Hence I11,I5 € (N :x M) which
implies that either I;I, € (N :g M) or I1I3 € (N :g M) or I;I3 € (N :g M). If 11, € (N :zg M),
then we are done. So, suppose that I;I3 € (N :g M). Thus I1IsM = 4K € N. Similarly if
I,I5 € (N :zg M), then we have [LbK C N. O
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Definition 1. Let R be a um-ring, M be an R-module and S be a subset of M\ {0}. If for all
ideals I, J, Q of R and all submodules K, L of M, (K+I1JL)NS # @ and (K +IQL)NS # 0 and
(K+JQL)NS # 0 implies (K +1JQL) NS # @, then the subset S is called classical 2-absorbing
m-closed.

Proposition 8. Let R be a um-ring, M be R-module and N a submodule of M. Then N is a
classical 2-absorbing submodule if and only if M\N is a classical 2-absorbing m-closed.

Proof. Suppose that N is a classical 2-absorbing submodule of M and I, J, Q are ideals
of R and K, L are submodules of M such that (K +IJL)NS # @ and (K+IQL)NS # @ and
(K+JQL)NS # () where S = M\N. Assume that (K +I1JQL)NS =@. Then K +IJQL C N
and so K € N and IJQL C N. Since N is a classical 2-absorbing submodule, we get IJL C N
or IQL C N orJQL CN. If IJL € N, then we get (K+IJL)NS =@, since K € N. Thisis a
contradiction. By the other cases we get similar contradictions. Now for the converse suppose
that S = M\N is a classical 2-absorbing m-closed and assume that IJQL C N for some ideals
I, J, Q of R and submodule L of M. Then we get for submodule K = (0), K + IJQL C N.
Thus (K+I1JQL)NS = (. Since S is a classical 2-absorbing m-closed, (K +IJL)NS = @ or
(K+IQL)NS=0or (K+JQL)NS =0. Hence IJL CN or IQL SN or JQLCN. SoN isa
classical 2-absorbing submodule. O

Proposition 9. Let R be a um-ring, M be an R-module, N a submodule of M and S = M\N. The
following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;
(ii) S is a classical 2-absorbing m-closed;

(iii) For every ideals I, J, Q of R and every submodule L of M, if IJILNS # @ and IQLNS # @
and JQLNS # @, then IIQL NS # §;

(iv) For every ideals I, J, Q of Rand every m € M, if IJmNS # @ and IQmN S # @ and
JQmNS # @, then IJQmN S # (.

Proof. It follows from the previous Proposition, Theorem 2 and Theorem 4. O

Theorem 5. Let R be a um-ring, M be an R-module and S be a classical 2-absorbing m-closed.
Then the set of all submodules of M which are disjoint from S has at least one maximal element.
Any such maximal element is a classical 2-absorbing submodule.

Proof Let ¥ = {N | N is a submodule of M and N NS = @}. Then (0) € ¥ # . Since ¥
is partially ordered by using Zorn’s Lemma we get at least a maximal element of ¥, say P,
with property P NS = @. Now we will show that P is classical 2-absorbing. Suppose that
IJQL C P forideals I, J, Q of R and submodule L of M. Assume that IJL € P or IQL € P or
JQL ¢ P. Then by the maximality of P we get (IJL +P)NS # @ and (IQL +P)N S # @ and
(JQL+P)NS # . Since S is a classical 2-absorbing m-closed we have (IJQL +P)NS # 0.
Hence P NS # @, which is a contradiction. Thus P is a classical 2-absorbing submodule of
M. O
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Theorem 6. Let R be a um-ring and M be an R-module.

(i) If F is a flat R-module and N is a classical 2-absorbing submodule of M such that
F®N #F ®M, then F ® N is a classical 2-absorbing submodule of F ® M.

(ii) Suppose that F is a faithfully flat R-module. Then N is a classical 2-absorbing submodule
of M if and only if F ® N is a classical 2-absorbing submodule of F @ M.

Proof. (i) Let a, b,c € R. Then we get by Theorem 4, (N M abc) = (N M ab) or
(N M abc) = (N M ac) or (N M abc) = (N M bc). Assume that (N M abc) = (N M ab).
Then by [4, Lemma 3.2],

(F®N:F®M abc)=F®(N M abc)=F®(N M ab):(F®N ‘FeM ab).

Again Theorem 4 implies that F ® N is a classical 2-absorbing submodule of F @ M.

(ii) Let N be a classical 2-absorbing submodule of M and assume that F® N = F ® M.
Then 0 —» F®N = F® M — 0 is an exact sequence. Since F is a faithfully flat module,
0— N > M — 0is an exact sequence. So N = M, which is a contradiction. So
F®N #F®M. Then F ® N is a classical 2-absorbing submodule by (1). Now for conversely,
let F ® N be a classical 2-absorbing submodule of F ® M. We have F® N # F ® M and so
N # M. Leta,b,c €R. Then (F ®N reum abc) = (F ®N reum ab) or

(F ®N rem abc) = (F ®N rem ac) or (F ®N reu abc) = (F ®N rem bc) by Theorem 4.
Assume that (F ®N rem abc) = (F ®N rem ab). Hence

F®(N M ab) = (F®N FeM ab): (F ®N rem abc) =F®(N M abc).

C
So0 - F® (N M ab) - F® (N M abc) — 0 is an exact sequence. Since F is a faith-

fully flat module, 0 — (N M ab) 5 (N M abc) — 0 is an exact sequence which implies that

(N ‘M ab) = (N ‘M abc). Consequently N is a classical 2-absorbing submodule of M by The-
orem 4. O

Corollary 5. Let R be a um-ring, M be an R-module and X be an indeterminate. If N is a classical
2-absorbing submodule of M, then N[X] is a classical 2-absorbing submodule of M[X ].

Proof. Assume that N is a classical 2-absorbing submodule of M. Notice that R[X] is a
flat R-module. So by Theorem 6, R[X]® N ~ N[X] is a classical 2-absorbing submodule of
R[X]®M ~ M[X]. O

For an R-module M, the set of zero-divisors of M is denoted by Zz(M).
Proposition 10. Let M be an R-module, N be a submodule and S be a multiplicative subset of R.

(i) If N is a classical 2-absorbing submodule of M such that (N M ) NS =0, thenS N isa
classical 2-absorbing submodule of S™*M.
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(ii) If STIN is a classical 2-absorbing submodule of S™*M such that Zx(M/N)NS = @, then N
is a classical 2-absorbing submodule of M.

Proof. (i) Let N be a classical 2-absorbing submodule of M and (N M ) NS = (. Suppose

that $1522 % € $7IN. Then there exist n € N and s € S such that & az M — L Therefore
1 Sp S3 S4 S1 S S3 S4 s

there exists an s’ € S such that s’sa;agagm = s's;s5535,n € N. So a,aza3 (s*m) € N fors* =s's.

Since N is a classical 2-absorbing submodule we get a,a,(s*m) € N or a;as(s*m) € N or

* @qaym _ a1ay(stm) 1 a;asm 1 azasm 1
a,as (s*m) € N. Thus S5os = s €5 Nor SEE ST Nor ZEE€STN.

(ii) Assume that S~!N is a classical 2-absorbing submodule of S~ 1M and ZR(M /N )ns =4.

Let a,b,c € R and m € M such that abcm € N. Then 11’ £ € STIN. Therefore § TT_ €SN
or $£2 € S7IN or l{i’f € STIN. We may assume that (1”1”{1 € S7IN. So there exists u € S
such that uabm € N. But Zzg(M/N)NS = @, whence abm € N. Consequently N is a classical

2-absorbing submodule of M. O

Let R; be a commutative ring with identity and M; be an R;-module, for i = 1,2. Let
R=R; xR,. Then M = M; x M, is an R-module and each submodule of M is in the form of
N = N; x N, for some submodules N; of M; and N, of M,.

Theorem 7. Let R =R, x R, be a decomposable ring and M = M; x M, be an R-module where
M, is an Ry-module and M, is an Ry-module. Suppose that N = N; x N, is a proper submodule
of M. Then the following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) Either N; = M; and N, is a classical 2-absorbing submodule of M, or Ny = M, and Ny is
a classical 2-absorbing submodule of M; or N, N, are classical prime submodules of M,
M,, respectively.

Proof. (i) = (ii) Suppose that N is a classical 2-absorbing submodule of M such that
N, = M,. From our hypothesis, N is proper, so N; # M;. Set M’ = {O}xM Hence N’ = W
is a classical 2-absorbing submodule of M’ by Corollary 1. Also observe that M’ = M; and
N’ = N,. Thus Nj is a classical 2-absorbing submodule of M;. Suppose that N; # M; and
N, # M,. We show that N; is a classical prime submodule of M;. Since N, # M,, there exists

m, € M,\N,. Let abm; € N; for some a,b € R; and m; € M;. Thus
(az 1)(b1 1)(1:0)(m15 mZ) = (abmlzo) eEN= Nl X N2'

So either (a, 1)(1,0)(m;,my) = (am,,0) € N or (b,1)(1,0)(m;,m,) = (bm;,0) € N. Hence
either am; € N; or bm; € N; which shows that N; is a classical prime submodule of M.
Similarly we can show that N, is a classical prime submodule of M,.

(ii) = (i) Suppose that N = N; x M, where N; is a classical 2-absorbing (resp. classical
prime) submodule of M;. Then it is clear that N is a classical 2-absorbing (resp. classical
prime) submodule of M. Now, assume that N = N; x N, where N; and N, are classical prime
submodules of M; and M,, respectively. Hence (N; x My)N(M; x N;) = N; x Ny, = N is a
classical 2-absorbing submodule of M, by Proposition 1. O
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Lemma 1. Let R=R; xRy X -+ XR,, be a decomposable ring and M = My x My X -+ x M, be an
R-module where for every 1 < i < n, M; is an R;-module, respectively. A proper submodule N of M
is a classical prime submodule of M if and only if N = x!_, N; such that for some k € {1,2,...,n},
Ny is a classical prime submodule of My, and N; = M; for every i € {1,2,...,n}\{k}.

Proof. (=) Let N be a classical prime submodule of M. We know N = x?lei where for
every 1 <i <n, N; is a submodule of M;, respectively. Assume that N, is a proper submodule
of M, and N; is a proper submodule of M, for some 1 < r <s < n. So, there are m, € M,.\N,
and m, € M,\N;. Since

r-th s-th r-th s-th
(o,...,o,”i/;,o,...,o)(o,...,0,’1}?,0,...,0)(0,...,0,’771?,0,...,0,’7@,0,...,0)
=(0,...,0) N,
then either
o L
,...,0, 1 _0,...,0)(0,...,0,"m,0,...,0, M, ,0,...,0)
r-th
=(0,...,0,’m>,0,...,0) €N
or
0,...,0, 15 0,...,0)(0,...,0,m,,0,...,0,”7,,0,...,0)

s-th
=(0,...,0,"m,0,...,0) €N,
which is a contradiction. Hence exactly one of the N;’s is proper, say N;,. Now, we show that
Ny is a classical prime submodule of M. Let abm; € N; for some a,b € R, and m; € M.
Therefore

k-th k-th k-th
(o,...,0,” a ,0,...,0)0,...,0, b ,0,...,0)0,...,0,”m; ,0,...,0)
k-th

—
=(0,...,0,abm;,0,...,0) €N,

and so
k-th k-th k-th
(o,...,0,” a ,0,...,0)0,...,0,”my ,0,...,0)=(0,...,0,'am,0,...,0) €N

or
k-th k-th k-th
~— N ~
(o,...,0, b ,0,...,0)0,...,0,”my ,0,...,0)=(0,...,0, bm;,0,...,0) €N.

Thus am;. € Ny, or bm;, € N, which implies that N, is a classical prime submodule of M.
(<) Is easy. O
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Theorem 8. Let R=R; xRy X -+ xR, (2 < n < 00) be a decomposable ring and
M = M; x My x --- x M, be an R-module where for every 1 < i < n, M; is an R;-module,
respectively. For a proper submodule N of M the following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) Either N = x}_ N, such that for some k € {1,2,...,n}, Ny is a classical 2-absorbing
submodule of My, and N, = M, for every t € {1,2,...,n}\{k} or N = x!_, N, such that for
some k,m € {1,2,...,n}, Ny is a classical prime submodule of My, N,, is a classical prime
submodule of M,,, and N, = M, for every t € {1,2,...,n}\{k, m}.

Proof. We argue induction on n. For n = 2 the result holds by Theorem 7. Then let
3 < n < 0o and suppose that the result is valid when K = M; x -+ x M,_;. We show that the
result holds when M = K x M,,. By Theorem 7, N is a classical 2-absorbing submodule of M if
and only if either N = L x M,, for some classical 2-absorbing submodule L of K or N =K x L,
for some classical 2-absorbing submodule L, of M,, or N = L x L, for some classical prime
submodule L of K and some classical prime submodule L,, of M,,. Notice that by Lemma 1, a
proper submodule L of K is a classical prime submodule of K if and only if L = x’tl;}Nt such
that for some k € {1,2,...,n—1}, Ny is a classical prime submodule of M;, and N, = M, for
every t € {1,2,...,n—1}\{k}. Consequently we reach the claim. O
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