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Abstract. In this article, all rings are commutative with nonzero identity. Let M be an R-module.
A proper submodule N of M is called a classical prime submodule, if for each m ∈ M and elements
a, b ∈ R, abm ∈ N implies that am ∈ N or bm ∈ N . We introduce the concept of "classical 2-absorbing
submodules" as a generalization of "classical prime submodules". We say that a proper submodule N
of M is a classical 2-absorbing submodule if whenever a, b, c ∈ R and m ∈ M with abcm ∈ N , then
abm ∈ N or acm ∈ N or bcm ∈ N .
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1. Introduction

Throughout this paper, we assume that all rings are commutative with 1 #= 0. Let R be
a commutative ring and M be an R-module. A proper submodule N of M is said to be a
prime submodule, if for each element a ∈ R and m ∈ M , am ∈ N implies that m ∈ N or
a ∈ (N :R M) = {r ∈ R | rM ⊆ N}. A proper submodule N of M is called a classical prime

submodule, if for each m ∈ M and a, b ∈ R, abm ∈ N implies that am ∈ N or bm ∈ N .
This notion of classical prime submodules has been extensively studied by Behboodi in [9, 10]
(see also, [11], in which, the notion of “weakly prime submodules” is investigated). For more
information on weakly prime submodules, the reader is referred to [3, 4, 12].

Badawi gave a generalization of prime ideals in [5] and said such ideals 2-absorbing ideals.
A proper ideal I of R is a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I , then
ab ∈ I or ac ∈ I or bc ∈ I . He proved that I is a 2-absorbing ideal of R if and only if
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whenever I1, I2, I3 are ideals of R with I1 I2 I3 ⊆ I , then I1 I2 ⊆ I or I1 I3 ⊆ I or I2 I3 ⊆ I .
Anderson and Badawi [2] generalized the notion of 2-absorbing ideals to n-absorbing ideals.
A proper ideal I of R is called an n-absorbing (resp. a strongly n-absorbing) ideal if whenever
x1 · · · xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp. I1 . . . In+1 ⊆ I for ideals I1, . . . , In+1 of R), then
there are n of the xi ’s (resp. n of the Ii ’s) whose product is in I . The reader is referred to
[6–8] for more concepts related to 2-absorbing ideals. Yousefian Darani and Soheilnia in [13]
extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule N of M is called
a 2-absorbing submodule of M if whenever abm ∈ N for some a, b ∈ R and m ∈ M , then
am ∈ N or bm ∈ N or ab ∈

!

N :R M
"

. Generally, a proper submodule N of M is called an
n-absorbing submodule if whenever a1 . . . anm ∈ N for a1, . . . an ∈ R and m ∈ M , then either
a1 . . . an ∈ (N :R M) or there are n− 1 of ai ’s whose product with m is in N , see [14]. Several
authors investigated properties of 2-absorbing submodules, for example [15].

In this paper we introduce the definition of classical 2-absorbing submodules. A proper sub-
module N of an R-module M is called classical 2-absorbing submodule if whenever a, b, c ∈ R

and m ∈ M with abcm ∈ N , then abm ∈ N or acm ∈ N or bcm ∈ N . Clearly, every classi-
cal prime submodule is a classical 2-absorbing submodule. We show that every Noetherian
R-module M contains a finite number of minimal classical 2-absorbing submodules (Theorem
3). Further, we give the relationship between classical 2-absorbing submodules, classical prime
submodules and 2-absorbing submodules (Proposition 2, Proposition 7). Moreover, we charac-
terize classical 2-absorbing submodules in (Theorem 2, Theorem 4). In (Theorem 7, Theorem
8) we investigate classical 2-absorbing submodules of a finite direct product of modules.

2. Characterizations of Classical 2-Absorbing Submodules

First of all we give a module which has no classical 2-absorbing submodule.

Example 1. Let p be a fixed prime integer and !0 = !∪ {0}. Then

E
!

p
"

:=

#

α ∈ "/# | α= r

pn
+# for some r ∈ # and n ∈ !0

$

is a nonzero submodule of the #-module "/#. For each t ∈ !0, set

Gt :=

#

α ∈ "/# | α= r

pt
+# for some r ∈ #

$

.

Notice that for each t ∈ !0, Gt is a submodule of E
!

p
"

generated by 1
pt +# for each t ∈ !0. Each

proper submodule of E
!

p
"

is equal to Gi for some i ∈ !0 (see, [17, Example 7.10]). However, no

Gt is a classical 2-absorbing submodule of E
!

p
"

. Indeed, 1
pt+3 +# ∈ E
!

p
"

. Then

p3
%

1
pt+3 +#
&

= 1
pt +# ∈ Gt but p2

%
1

pt+3 +#
&

= 1
pt+1 +# /∈ Gt.

Theorem 1. Let f : M → M ′ be an epimorphism of R-modules.

(i) If N ′ is a classical 2-absorbing submodule of M ′, then f −1(N ′) is a classical 2-absorbing

submodule of M.
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(ii) If N is a classical 2-absorbing submodule of M containing Ker( f ), then f (N) is a classical

2-absorbing submodule of M ′.

Proof. (i) Since f is epimorphism, f −1(N ′) is a proper submodule of M . Let a, b, c ∈ R and
m ∈ M such that abcm ∈ f −1(N ′). Then abc f (m) ∈ N ′. Hence ab f (m) ∈ N ′ or ac f (m) ∈ N ′

or bc f (m) ∈ N ′, and thus abm ∈ f −1(N ′) or acm ∈ f −1(N ′) or bcm ∈ f −1(N ′). So, f −1(N ′)
is a classical 2-absorbing submodule of M .
(ii) Let a, b, c ∈ R and m′ ∈ M ′ be such that abcm′ ∈ f (N). By assumption there exists

m ∈ M such that m′ = f (m) and so f (abcm) ∈ f (N). Since Ker( f ) ⊆ N , we have abcm ∈ N .
It implies that abm ∈ N or acm ∈ N or bcm ∈ N . Hence abm′ ∈ f (N) or acm′ ∈ f (N) or
bcm′ ∈ f (N). Consequently f (N) is a classical 2-absorbing submodule of M ′.

As an immediate consequence of Theorem 1 we have the following corollary.

Corollary 1. Let M be an R-module and L ⊆ N be submodules of M. Then N is a classical

2-absorbing submodule of M if and only if N/L is a classical 2-absorbing submodule of M/L.

Proposition 1. Let M be an R-module and N1, N2 be classical prime submodules of M. Then

N1 ∩ N2 is a classical 2-absorbing submodule of M.

Proof. Let for some a, b, c ∈ R and m ∈ M , abcm ∈ N1 ∩ N2. Since N1 is a classical prime
submodule, then we may assume that am ∈ N1. Likewise, assume that bm ∈ N2. Hence
abm ∈ N1 ∩ N2 which implies N1 ∩ N2 is a classical 2-absorbing submodule.

Proposition 2. Let N be a proper submodule of an R-module M.

(i) If N is a 2-absorbing submodule of M, then N is a classical 2-absorbing submodule of M.

(ii) N is a classical prime submodule of M if and only if N is a 2-absorbing submodule of M

and (N :R M) is a prime ideal of R.

Proof. (i) Assume that N is a 2-absorbing submodule of M . Let a, b, c ∈ R and m ∈ M such
that abcm ∈ N . Therefore either acm ∈ N or bcm ∈ N or ab ∈ (N : M). The first two cases
lead us to the claim. In the third case we have that abm ∈ N . Consequently N is a classical
2-absorbing submodule.
(ii) It is evident that if N is classical prime, then it is 2-absorbing. Also, [3, Lemma 2.1]

implies that (N :R M) is a prime ideal of R. Assume that N is a 2-absorbing submodule of M

and (N :R M) is a prime ideal of R. Let abm ∈ N for some a, b ∈ R and m ∈ M such that neither
am ∈ N nor bm ∈ N . Then ab ∈ (N :R M) and so either a ∈ (N :R M) or b ∈ (N :R M).This
contradiction shows that N is classical prime.

he following example shows that the converse of Proposition 2(i) is not true.

Example 2. Let R = # and M = #p

⊕

#q

⊕

" where p, q are two distinct prime integers. One

can easily see that the zero submodule of M is a classical 2-absorbing submodule. Notice that

pq(1,1,0) = (0,0,0), but p(1,1,0) #= (0,0,0), q(1,1,0) #= (0,0,0) and pq(1,1,1) #= 0. So

the zero submodule of M is not 2-absorbing. Also, part (ii) of Proposition 2 shows that the

zero submodule is not a classical prime submodule. Hence the two concepts of classical prime

submodules and of classical 2-absorbing submodules are different in general.
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Let M be an R-module and N a submodule of M . For every a ∈ R, {m ∈ M | am ∈ N} is
denoted by (N :R a). It is easy to see that (N :M a) is a submodule of M containing N .

Theorem 2. Let M be an R-module and N be a proper submodule of M. The following conditions

are equivalent:

(i) N is classical 2-absorbing;

(ii) For every a, b, c ∈ R, (N :M abc) = (N :M ab)∪ (N :M ac)∪ (N :M bc);

(iii) For every a, b ∈ R and m ∈ M with abm /∈ N, (N :R abm) = (N :R am)∪ (N :R bm);

(iv) For every a, b ∈ R and m ∈ M with abm /∈ N, (N :R abm) = (N :R am) or

(N :R abm) = (N :R bm);

(v) For every a, b ∈ R and every ideal I of R and m ∈ M with abIm ⊆ N, either abm ∈ N or

aIm ⊆ N or bIm ⊆ N;

(vi) For every a ∈ R and every ideal I of R and m ∈ M with aIm #⊆ N, (N :R aIm) = (N :R am)

or (N :R aIm) = (N :R Im);

(vii) For every a ∈ R and every ideals I , J of R and m ∈ M with aIJm ⊆ N, either aIm ⊆ N or

aJm ⊆ N or IJm ⊆ N;

(viii) For every ideals I , J of R and m ∈ M with IJm #⊆ N, (N :R IJm) = (N :R Im) or

(N :R IJm) = (N :R Jm);

(ix) For every ideals I , J , K of R and m ∈ M with IJKm ⊆ N, either IJm ⊆ N or IKm ⊆ N or

JKm ⊆ N;

(x) For every m ∈ M\N, (N :R m) is a 2-absorbing ideal of R.

Proof. (i)⇒ (ii) Suppose that N is a classical 2-absorbing submodule of M . Let
m ∈
!

N :M abc
"

. Then abcm ∈ N . Hence abm ∈ N or acm ∈ N or bcm ∈ N . Therefore
m ∈
!

N :M ab
"

or m ∈
!

N :M ac
"

or m ∈
!

N :M bc
"

. Consequently,

!

N :M abc
"

=
!

N :M ab
"

∪
!

N :M ac
"

∪
!

N :M bc
"

.

(ii)⇒ (iii) Let abm /∈ N for some a, b ∈ R and m ∈ M . Assume that x ∈ (N :R abm). Then
abxm ∈ N , and so m ∈ (N :M abx). Since abm /∈ N , m /∈ (N :M ab). Thus by part (i),
m ∈ (N :M ax) or m ∈ (N :M bx), whence x ∈ (N :R am) or x ∈ (N :R bm). Therefore
(N :R abm) = (N :R am)∪ (N :R bm).
(iii)⇒ (iv) By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups),
then it is equal to one of them.
(iv)⇒ (v) Let for some a, b ∈ R, an ideal I of R and m ∈ M , abIm ⊆ N . Hence I ⊆ (N :R abm).
If abm ∈ N , then we are done. Assume that abm /∈ N . Therefore by part (iv) we have that
I ⊆ (N :R am) or I ⊆ (N :R bm), i.e., aIm ⊆ N or bIm ⊆ N .
(v)⇒ (vi)⇒ (vii)⇒ (viii)⇒ (i x) Have proofs similar to that of the previous implications.
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(i x)⇒ (i) Is trivial.
(i x)⇔ (x) Straightforward.

Corollary 2. Let R be a ring and I be a proper ideal of R.

(i) RI is a classical 2-absorbing submodule of R if and only if I is a 2-absorbing ideal of R.

(ii) Every proper ideal of R is 2-absorbing if and only if for every R-module M and every proper

submodule N of M, N is a classical 2-absorbing submodule of M.

Proof. (i) Let I be a classical 2-absorbing submodule of R. Then by Theorem 2, (I :R 1) = I

is a 2-absorbing ideal of R. For the converse see part (i) of Proposition 2.
(ii) Assume that every proper ideal of R is 2-absorbing. Let N be a proper submodule of an

R-module M . Since for every m ∈ M\N , (N :R m) is a proper ideal of R, then it is a 2-absorbing
ideal of R. Hence by Theorem 2, N is a classical 2-absorbing submodule of M . We have the
converse immediately by part (i).

Proposition 3. Let M be an R-module and
(

Ki | i ∈ I
)

be a chain of classical 2-absorbing sub-

modules of M. Then ∩i∈I Ki is a classical 2-absorbing submodule of M.

Proof. Suppose that abcm ∈ ∩i∈I Ki for some a, b, c ∈ R and m ∈ M . Assume that
abm /∈ ∩i∈I Ki and acm /∈ ∩i∈I Ki . Then there are t, l ∈ I where abm /∈ Kt and acm /∈ Kl .
Hence, for every Ks ⊆ Kt and every Kd ⊆ Kl we have that abm /∈ Ks and acm /∈ Kd . Thus, for
every submodule Kh such that Kh ⊆ Kt and Kh ⊆ Kl we get bcm ∈ Kh. Hence bcm ∈ ∩i∈I Ki .

A classical 2-absorbing submodule of M is called minimal, if for any classical 2-absorbing
submodule K of M such that K ⊆ N , then K = N . Let L be a classical 2-absorbing submodule
of M . Set

Γ=
(

K | K is a classical 2-absorbing submodule of M and K ⊆ L
)

.

If
(

Ki : i ∈ I
)

is any chain in Γ, then ∩i∈I Ki is in Γ, by Proposition 3. By Zorn’s Lemma, Γ
contains a minimal member which is clearly a minimal classical 2-absorbing submodule of M .
Thus, every classical 2 -absorbing submodule of M contains a minimal classical 2-absorbing
submodule of M . If M is a finitely generated, then it is clear that M contains a minimal classical
2-absorbing submodule.

Theorem 3. Let M be a Noetherian R-module. Then M contains a finite number of minimal

classical 2-absorbing submodules.

Proof. Suppose that the result is false. Let Γ denote the collection of proper submodules
N of M such that the module M/N has an infinite number of minimal classical 2-absorbing
submodules. Since 0 ∈ Γ we get Γ #= ∅. Therefore Γ has a maximal member T , since M is a
Noetherian R-module. It is clear that T is not a classical 2-absorbing submodule. Therefore,
there exists an element m ∈ M\T and ideals I , J , K in R such that I JKm ⊆ T but I Jm #⊆ T ,
IKm #⊆ T and JKm #⊆ T . The maximality of T implies that M/ (T + I Jm), M/ (T + IKm)
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and M/ (T + JKm) have only finitely many minimal classical 2-absorbing submodules. Sup-
pose P/T be a minimal classical 2-absorbing submodule of M/T . So I JKm ⊆ T ⊆ P, which
implies that I Jm ⊆ P or IKm ⊆ P or JKm ⊆ P. Thus P/ (T + I Jm) is a minimal classical
2-absorbing submodule of M/ (T + I Jm) or P/ (T + IKm) is a minimal classical 2-absorbing
submodule of M/ (T + IKm) or P/ (T + JKm) is a minimal classical 2-absorbing submodule
of M/ (T + JKm). Thus, there are only a finite number of possibilities for the submodule P.
This is a contradiction.

We recall from [5] that if I is a 2-absorbing ideal of a ring R, then either
-

I = P where P

is a prime ideal of R or
-

I = P1 ∩ P2 where P1, P2 are the only distinct minimal prime ideals
of I .

Corollary 3. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that

m ∈ M\N and
*

(N :R m) = P where P is a prime ideal of R and (N :R m) #= P. Then for each

x ∈
*

(N :R m)\(N :R m), (N :R xm) is a prime ideal of R containing P. Furthermore, either

(N :R xm) ⊆ (N :R ym) or (N :R ym) ⊆ (N :R xm) for every x , y ∈
*

(N :R m)\(N :R m).

Proof. By Theorem 2 and [5, Theorem 2.5].

Corollary 4. Let N be a classical 2-absorbing submodule of an R-module M. Suppose that

m ∈ M\N and
*

(N :R m) = P1 ∩ P2 where P1 and P2 are the only nonzero distinct prime ideals

of R that are minimal over (N :R m). Then for each x ∈
*

(N :R m)\(N :R m), (N :R xm)

is a prime ideal of R containing P1 and P2. Furthermore, either (N :R xm) ⊆ (N :R ym) or

(N :R ym) ⊆ (N :R xm) for every x , y ∈
*

(N :R m)\(N :R m).

Proof. By Theorem 2 and [5, Theorem 2.6].

An R-module M is called a multiplication module if every submodule N of M has the form
I M for some ideal I of R. Let N and K be submodules of a multiplication R-module M with
N = I1M and K = I2M for some ideals I1 and I2 of R. The product of N and K denoted by NK

is defined by NK = I1 I2M . Then by [1, Theorem 3.4], the product of N and K is independent
of presentations of N and K .

Proposition 4. Let M be a multiplication R-module and N be a proper submodule of M. The

following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) If N1N2N3m ⊆ N for some submodules N1, N2, N3 of M and m ∈ M, then either N1N2m ⊆ N

or N1N3m ⊆ N or N2N3m ⊆ N.

Proof. (i) ⇒ (ii) Let N1N2N3m ⊆ N for some submodules N1, N2, N3 of M and m ∈ M .
Since M is multiplication, there are ideals I1, I2, I3 of R such that N1 = I1M , N2 = I2M and
N3 = I3M . Therefore I1 I2 I3m ⊆ N , and so either I1 I2m ⊆ N or I1 I3m ⊆ N or I2 I3m ⊆ N .
Hence N1N2m ⊆ N or N1N3m ⊆ N or N2N3m ⊆ N .
(ii) ⇒ (i) Suppose that I1 I2 I3m ⊆ N for some ideals I1, I2, I3 of R and some m ∈ M . It is
sufficient to set N1 := I1M , N2 := I2M and N3 = I3M in part (ii).
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In [16], Quartararo et al. said that a commutative ring R is a u-ring provided R has the
property that an ideal contained in a finite union of ideals must be contained in one of those
ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite
union of submodules must be equal to one of them. They show that every Bézout ring is a
u-ring. Moreover, they proved that every Prüfer domain is a u-domain. Also, any ring which
contains an infinite field as a subring is a u-ring, [17, Exercise 3.63].

Theorem 4. Let R be a um-ring, M be an R-module and N be a proper submodule of M. The

following conditions are equivalent:

(i) N is classical 2-absorbing;

(ii) For every a, b, c ∈ R, (N :M abc) = (N :M ab) or (N :M abc) = (N :M ac) or

(N :M abc) = (N :M bc);

(iii) For every a, b, c ∈ R and every submodule L of M, abcL ⊆ N implies that abL ⊆ N or

acL ⊆ N or bcL ⊆ N;

(iv) For every a, b ∈ R and every submodule L of M with abL #⊆ N, (N :R abL) = (N :R aL) or

(N :R abL) = (N :R bL);

(v) For every a, b ∈ R, every ideal I of R and every submodule L of M, abI L ⊆ N implies that

abL ⊆ N or aI L ⊆ N or bI L ⊆ N;

(vi) For every a ∈ R, every ideal I of R and every submodule L of M with

aI L #⊆ N, (N :R aI L) = (N :R aL) or (N :R aI L) = (N :R I L);

(vii) For every a ∈ R, every ideals I , J of R and every submodule L of M, aIJ L ⊆ N implies that

aI L ⊆ N or aJ L ⊆ N or IJ L ⊆ N;

(viii) For every ideals I , J of R and every submodule L of M with IJ L #⊆ N, (N :R IJ L) = (N :R I L)

or (N :R IJ L) = (N :R J L);

(ix) For every ideals I , J , K of R and every submodule L of M, IJK L ⊆ N implies that IJ L ⊆ N

or IK L ⊆ N or JK L ⊆ N;

(x) For every submodule L of M not contained in N, (N :R L) is a 2-absorbing ideal of R.

Proof. Similar to the proof of Theorem 2.

Proposition 5. Let R be a um-ring and N be a proper submodule of an R-module M. Then N

is a classical 2-absorbing submodule of M if and only if N is a 3-absorbing submodule of M and

(N :R M) is a 2-absorbing ideal of R.

Proof. It is trivial that if N is classical 2-absorbing, then it is 3-absorbing. Also, Theorem 4
implies that (N :R M) is a 2-absorbing ideal of R. Now, assume that N is a 3-absorbing submod-
ule of M and (N :R M) is a 2-absorbing ideal of R. Let a1a2a3m ∈ N for some a1, a2, a3 ∈ R and
m ∈ M such that neither a1a2m ∈ N nor a1a3m ∈ N nor a2a3m ∈ N . Then a1a2a3 ∈ (N :R M)
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and so either a1a2 ∈ (N :R M) or a1a3 ∈ (N :R M) or a2a3 ∈ (N :R M). This contradiction
shows that N is classical 2-absorbing.

Proposition 6. Let M be an R-module and N be a classical 2-absorbing submodule of M. The

following conditions hold:

(i) For every a, b, c ∈ R and m ∈ M, (N :R abcm) = (N :R abm)∪ (N :R acm)∪ (N :R bcm);

(ii) If R is a u-ring, then for every a, b, c ∈ R and m ∈ M, (N :R abcm) = (N :R abm) or

(N :R abcm) = (N :R acm) or (N :R abcm) = (N :R bcm).

Proof. (i) Let a, b, c ∈ R and m ∈ M . Suppose that r ∈ (N :R abcm). Then abc(rm) ∈ N .
So, either ab(rm) ∈ N or ac(rm) ∈ N or bc(rm) ∈ N . Therefore, either r ∈ (N :R abm) or
r ∈ (N :R acm) or r ∈ (N :R bcm). Consequently
(N :R abcm) = (N :R abm)∪ (N :R acm)∪ (N :R bcm).
(ii) Use part (i).

Proposition 7. Let R be a um-ring, M be a multiplication R-module and N be a proper submodule

of M. The following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) If N1N2N3N4 ⊆ N for some submodules N1, N2, N3, N4 of M, then either N1N2N4 ⊆ N or

N1N3N4 ⊆ N or N2N3N4 ⊆ N;

(iii) If N1N2N3 ⊆ N for some submodules N1, N2, N3 of M, then either N1N2 ⊆ N or N1N3 ⊆ N

or N2N3 ⊆ N;

(iv) N is a 2-absorbing submodule of M;

(v) (N :R M) is a 2-absorbing ideal of R.

Proof. (i)⇒ (ii) Let N1N2N3N4 ⊆ N for some submodules N1, N2, N3, N4 of M . Since M

is multiplication, there are ideals I1, I2, I3 of R such that N1 = I1M , N2 = I2M and N3 = I3M .
Therefore I1 I2 I3N4 ⊆ N , and so I1 I2N4 ⊆ N or I1 I3N4 ⊆ N or I2 I3N4 ⊆ N . Thus by Theorem 4,
either N1N2N4 ⊆ N or N1N3N4 ⊆ N or N2N3N4 ⊆ N .
(ii)⇒ (iii) Is easy.
(iii)⇒ (iv) Suppose that I1 I2K ⊆ N for some ideals I1, I2 of R and some submodule K of M .
It is sufficient to set N1 := I1M , N2 := I2M and N3 = K in part (iii).
(iv)⇒ (i) By part (i) of Proposition 2.
(iv)⇒ (v) By [15, Theorem 2.3].
(v)⇒ (iv) Let I1 I2K ⊆ N for some ideals I1, I2 of R and some submodule K of M . Since M is
multiplication, then there is an ideal I3 of R such that K = I3M . Hence I1 I2 I3 ⊆ (N :R M)which
implies that either I1 I2 ⊆ (N :R M) or I1 I3 ⊆ (N :R M) or I2 I3 ⊆ (N :R M). If I1 I2 ⊆ (N :R M),
then we are done. So, suppose that I1 I3 ⊆ (N :R M). Thus I1 I3M = I1K ⊆ N . Similarly if
I2 I3 ⊆ (N :R M), then we have I2K ⊆ N .
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Definition 1. Let R be a um-ring, M be an R-module and S be a subset of M\{0}. If for all

ideals I , J , Q of R and all submodules K, L of M, (K + I J L)∩ S #= . and (K + IQL)∩ S #= . and

(K + JQL) ∩ S #= . implies (K + I JQL) ∩ S #= ., then the subset S is called classical 2-absorbing

m-closed.

Proposition 8. Let R be a um-ring, M be R-module and N a submodule of M. Then N is a

classical 2-absorbing submodule if and only if M\N is a classical 2-absorbing m-closed.

Proof. Suppose that N is a classical 2-absorbing submodule of M and I , J , Q are ideals
of R and K , L are submodules of M such that (K + I J L) ∩ S #= . and (K + IQL) ∩ S #= . and
(K + JQL) ∩ S #= . where S = M\N . Assume that (K + I JQL) ∩ S = .. Then K + I JQL ⊆ N

and so K ⊆ N and I JQL ⊆ N . Since N is a classical 2-absorbing submodule, we get I J L ⊆ N

or IQL ⊆ N or JQL ⊆ N . If I J L ⊆ N , then we get (K + I J L) ∩ S = ., since K ⊆ N . This is a
contradiction. By the other cases we get similar contradictions. Now for the converse suppose
that S = M\N is a classical 2-absorbing m-closed and assume that I JQL ⊆ N for some ideals
I , J , Q of R and submodule L of M . Then we get for submodule K = (0), K + I JQL ⊆ N .
Thus (K + I JQL) ∩ S = .. Since S is a classical 2-absorbing m-closed, (K + I J L) ∩ S = . or
(K + IQL) ∩ S = . or (K + JQL) ∩ S = .. Hence I J L ⊆ N or IQL ⊆ N or JQL ⊆ N . So N is a
classical 2-absorbing submodule.

Proposition 9. Let R be a um-ring, M be an R-module, N a submodule of M and S = M\N. The

following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) S is a classical 2-absorbing m-closed;

(iii) For every ideals I , J , Q of R and every submodule L of M, if I J L ∩ S #= . and IQL ∩ S #= .
and JQL ∩ S #= ., then IJQL ∩ S #= .;

(iv) For every ideals I , J , Q of R and every m ∈ M, if I Jm ∩ S #= . and IQm ∩ S #= . and

JQm∩ S #= ., then IJQm∩ S #= ..
Proof. It follows from the previous Proposition, Theorem 2 and Theorem 4.

Theorem 5. Let R be a um-ring, M be an R-module and S be a classical 2-absorbing m-closed.

Then the set of all submodules of M which are disjoint from S has at least one maximal element.

Any such maximal element is a classical 2-absorbing submodule.

Proof. Let Ψ = {N | N is a submodule of M and N ∩ S = .}. Then (0) ∈ Ψ #= .. Since Ψ
is partially ordered by using Zorn’s Lemma we get at least a maximal element of Ψ, say P,
with property P ∩ S = .. Now we will show that P is classical 2-absorbing. Suppose that
I JQL ⊆ P for ideals I , J , Q of R and submodule L of M . Assume that I J L #⊆ P or IQL #⊆ P or
JQL #⊆ P. Then by the maximality of P we get (I J L + P) ∩ S #= . and (IQL + P) ∩ S #= . and
(JQL + P) ∩ S #= .. Since S is a classical 2-absorbing m-closed we have (I JQL + P) ∩ S #= ..
Hence P ∩ S #= ., which is a contradiction. Thus P is a classical 2-absorbing submodule of
M .
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Theorem 6. Let R be a um-ring and M be an R-module.

(i) If F is a flat R-module and N is a classical 2-absorbing submodule of M such that
F ⊗ N #= F ⊗M , then F ⊗ N is a classical 2-absorbing submodule of F ⊗M .

(ii) Suppose that F is a faithfully flat R-module. Then N is a classical 2-absorbing submodule
of M if and only if F ⊗ N is a classical 2-absorbing submodule of F ⊗M .

Proof. (i) Let a, b, c ∈ R. Then we get by Theorem 4,
!

N :M abc
"

=
!

N :M ab
"

or
!

N :M abc
"

=
!

N :M ac
"

or
!

N :M abc
"

=
!

N :M bc
"

. Assume that
!

N :M abc
"

=
!

N :M ab
"

.
Then by [4, Lemma 3.2],
!

F ⊗ N :F⊗M abc
"

= F ⊗
!

N :M abc
"

= F ⊗
!

N :M ab
"

=
!

F ⊗ N :F⊗M ab
"

.

Again Theorem 4 implies that F ⊗ N is a classical 2-absorbing submodule of F ⊗M .
(ii) Let N be a classical 2-absorbing submodule of M and assume that F ⊗ N = F ⊗ M .

Then 0 → F ⊗ N
⊆→ F ⊗ M → 0 is an exact sequence. Since F is a faithfully flat module,

0→ N
⊆→ M → 0 is an exact sequence. So N = M , which is a contradiction. So

F ⊗ N #= F ⊗M . Then F ⊗ N is a classical 2-absorbing submodule by (1). Now for conversely,
let F ⊗ N be a classical 2-absorbing submodule of F ⊗ M . We have F ⊗ N #= F ⊗ M and so
N #= M . Let a, b, c ∈ R. Then

!

F ⊗ N :F⊗M abc
"

=
!

F ⊗ N :F⊗M ab
"

or
!

F ⊗ N :F⊗M abc
"

=
!

F ⊗ N :F⊗M ac
"

or
!

F ⊗ N :F⊗M abc
"

=
!

F ⊗ N :F⊗M bc
"

by Theorem 4.
Assume that
!

F ⊗ N :F⊗M abc
"

=
!

F ⊗ N :F⊗M ab
"

. Hence

F ⊗
!

N :M ab
"

=
!

F ⊗ N :F⊗M ab
"

=
!

F ⊗ N :F⊗M abc
"

= F ⊗
!

N :M abc
"

.

So 0 → F ⊗
!

N :M ab
" ⊆→ F ⊗
!

N :M abc
"

→ 0 is an exact sequence. Since F is a faith-

fully flat module, 0→
!

N :M ab
" ⊆→
!

N :M abc
"

→ 0 is an exact sequence which implies that
!

N :M ab
"

=
!

N :M abc
"

. Consequently N is a classical 2-absorbing submodule of M by The-
orem 4.

Corollary 5. Let R be a um-ring, M be an R-module and X be an indeterminate. If N is a classical

2-absorbing submodule of M, then N[X ] is a classical 2-absorbing submodule of M[X ].

Proof. Assume that N is a classical 2-absorbing submodule of M . Notice that R[X ] is a
flat R-module. So by Theorem 6, R[X ] ⊗ N 0 N[X ] is a classical 2-absorbing submodule of
R[X ]⊗M 0 M[X ].

For an R-module M , the set of zero-divisors of M is denoted by ZR(M).

Proposition 10. Let M be an R-module, N be a submodule and S be a multiplicative subset of R.

(i) If N is a classical 2-absorbing submodule of M such that
!

N :R M
"

∩ S = ., then S−1N is a

classical 2-absorbing submodule of S−1M.
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(ii) If S−1N is a classical 2-absorbing submodule of S−1M such that ZR(M/N)∩S = ., then N

is a classical 2-absorbing submodule of M.

Proof. (i) Let N be a classical 2-absorbing submodule of M and
!

N :R M
"

∩S = .. Suppose
that a1

s1

a2
s2

a3
s3

m
s4
∈ S−1N . Then there exist n ∈ N and s ∈ S such that a1

s1

a2
s2

a3
s3

m
s4
= n

s . Therefore
there exists an s′ ∈ S such that s′sa1a2a3m= s′s1s2s3s4n ∈ N . So a1a2a3 (s

∗m) ∈ N for s∗ = s′s.
Since N is a classical 2-absorbing submodule we get a1a2 (s

∗m) ∈ N or a1a3 (s
∗m) ∈ N or

a2a3 (s
∗m) ∈ N . Thus a1a2m

s1s2s4
=

a1a2(s
∗m)

s1s2s4s∗ ∈ S−1N or a1a3m
s1s3s4
∈ S−1N or a2a3m

s2s3s4
∈ S−1N .

(ii) Assume that S−1N is a classical 2-absorbing submodule of S−1M and ZR(M/N)∩S = ..
Let a, b, c ∈ R and m ∈ M such that abcm ∈ N . Then a

1
b
1

c
1

m
1 ∈ S−1N . Therefore a

1
b
1

m
1 ∈ S−1N

or a
1

c
1

m
1 ∈ S−1N or b

1
c
1

m
1 ∈ S−1N . We may assume that a

1
b
1

m
1 ∈ S−1N . So there exists u ∈ S

such that uabm ∈ N . But ZR(M/N)∩ S = ., whence abm ∈ N . Consequently N is a classical
2-absorbing submodule of M .

Let Ri be a commutative ring with identity and Mi be an Ri-module, for i = 1,2. Let
R = R1 × R2. Then M = M1 × M2 is an R-module and each submodule of M is in the form of
N = N1 × N2 for some submodules N1 of M1 and N2 of M2.

Theorem 7. Let R = R1 × R2 be a decomposable ring and M = M1 ×M2 be an R-module where

M1 is an R1-module and M2 is an R2-module. Suppose that N = N1 × N2 is a proper submodule

of M. Then the following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) Either N1 = M1 and N2 is a classical 2-absorbing submodule of M2 or N2 = M2 and N1 is

a classical 2-absorbing submodule of M1 or N1, N2 are classical prime submodules of M1,

M2, respectively.

Proof. (i)⇒ (ii) Suppose that N is a classical 2-absorbing submodule of M such that
N2 = M2. From our hypothesis, N is proper, so N1 #= M1. Set M ′ = M

{0}×M2
. Hence N ′ = N

{0}×M2

is a classical 2-absorbing submodule of M ′ by Corollary 1. Also observe that M ′ ∼= M1 and
N ′ ∼= N1. Thus N1 is a classical 2-absorbing submodule of M1. Suppose that N1 #= M1 and
N2 #= M2. We show that N1 is a classical prime submodule of M1. Since N2 #= M2, there exists
m2 ∈ M2\N2. Let abm1 ∈ N1 for some a, b ∈ R1 and m1 ∈ M1. Thus

(a, 1)(b, 1)(1,0)(m1, m2) = (abm1, 0) ∈ N = N1 × N2.

So either (a, 1)(1,0)(m1, m2) = (am1, 0) ∈ N or (b, 1)(1,0)(m1, m2) = (bm1, 0) ∈ N . Hence
either am1 ∈ N1 or bm1 ∈ N1 which shows that N1 is a classical prime submodule of M1.
Similarly we can show that N2 is a classical prime submodule of M2.
(ii) ⇒ (i) Suppose that N = N1 × M2 where N1 is a classical 2-absorbing (resp. classical
prime) submodule of M1. Then it is clear that N is a classical 2-absorbing (resp. classical
prime) submodule of M . Now, assume that N = N1 × N2 where N1 and N2 are classical prime
submodules of M1 and M2, respectively. Hence (N1 × M2) ∩ (M1 × N2) = N1 × N2 = N is a
classical 2-absorbing submodule of M , by Proposition 1.
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Lemma 1. Let R= R1×R2× · · ·×Rn be a decomposable ring and M = M1×M2× · · ·×Mn be an

R-module where for every 1≤ i ≤ n, Mi is an Ri-module, respectively. A proper submodule N of M

is a classical prime submodule of M if and only if N = ×n
i=1Ni such that for some k ∈ {1,2, . . . , n},

Nk is a classical prime submodule of Mk, and Ni = Mi for every i ∈ {1,2, . . . , n}\{k}.
Proof. (⇒) Let N be a classical prime submodule of M . We know N = ×n

i=1Ni where for
every 1≤ i ≤ n, Ni is a submodule of Mi , respectively. Assume that Nr is a proper submodule
of Mr and Ns is a proper submodule of Ms for some 1 ≤ r < s ≤ n. So, there are mr ∈ Mr\Nr

and ms ∈ Ms\Ns. Since

(0, . . . , 0,

r-th
︷︸︸︷

1Rr
, 0, . . . , 0)(0, . . . , 0,

s-th
︷︸︸︷

1Rs
, 0, . . . , 0)(0, . . . , 0,

r-th
︷︸︸︷

mr , 0, . . . , 0,
s-th
︷︸︸︷

ms , 0, . . . , 0)

=(0, . . . , 0) ∈ N ,

then either

(0, . . . , 0,

r-th
︷︸︸︷

1Rr
, 0, . . . , 0)(0, . . . , 0,

r-th
︷︸︸︷

mr , 0, . . . , 0,
s-th
︷︸︸︷

ms , 0, . . . , 0)

=(0, . . . , 0,
r-th
︷︸︸︷

mr , 0, . . . , 0) ∈ N

or

(0, . . . , 0,

s-th
︷︸︸︷

1Rs
, 0, . . . , 0)(0, . . . , 0,

r-th
︷︸︸︷

mr , 0, . . . , 0,
s-th
︷︸︸︷

ms , 0, . . . , 0)

=(0, . . . , 0,
s-th
︷︸︸︷

ms , 0, . . . , 0) ∈ N ,

which is a contradiction. Hence exactly one of the Ni ’s is proper, say Nk. Now, we show that
Nk is a classical prime submodule of Mk. Let abmk ∈ Nk for some a, b ∈ Rk and mk ∈ Mk.
Therefore

(0, . . . , 0,
k-th
︷︸︸︷

a , 0, . . . , 0)(0, . . . , 0,

k-th
︷︸︸︷

b , 0, . . . , 0)(0, . . . , 0,
k-th
︷︸︸︷

mk , 0, . . . , 0)

=(0, . . . , 0,

k-th
︷ ︸︸ ︷

abmk, 0, . . . , 0) ∈ N ,

and so

(0, . . . , 0,
k-th
︷︸︸︷

a , 0, . . . , 0)(0, . . . , 0,
k-th
︷︸︸︷

mk , 0, . . . , 0) = (0, . . . , 0,
k-th
︷︸︸︷

amk , 0, . . . , 0) ∈ N

or

(0, . . . , 0,

k-th
︷︸︸︷

b , 0, . . . , 0)(0, . . . , 0,
k-th
︷︸︸︷

mk , 0, . . . , 0) = (0, . . . , 0,

k-th
︷︸︸︷

bmk , 0, . . . , 0) ∈ N .

Thus amk ∈ Nk or bmk ∈ Nk which implies that Nk is a classical prime submodule of Mk.
(⇐) Is easy.
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Theorem 8. Let R= R1 × R2 × · · ·× Rn (2≤ n<∞) be a decomposable ring and

M = M1 × M2 × · · · × Mn be an R-module where for every 1 ≤ i ≤ n, Mi is an Ri-module,

respectively. For a proper submodule N of M the following conditions are equivalent:

(i) N is a classical 2-absorbing submodule of M;

(ii) Either N = ×n
t=1Nt such that for some k ∈ {1,2, . . . , n}, Nk is a classical 2-absorbing

submodule of Mk, and Nt = Mt for every t ∈ {1,2, . . . , n}\{k} or N = ×n
t=1Nt such that for

some k, m ∈ {1,2, . . . , n}, Nk is a classical prime submodule of Mk, Nm is a classical prime

submodule of Mm, and Nt = Mt for every t ∈ {1,2, . . . , n}\{k, m}.

Proof. We argue induction on n. For n = 2 the result holds by Theorem 7. Then let
3≤ n<∞ and suppose that the result is valid when K = M1 × · · ·×Mn−1. We show that the
result holds when M = K ×Mn. By Theorem 7, N is a classical 2-absorbing submodule of M if
and only if either N = L×Mn for some classical 2-absorbing submodule L of K or N = K × Ln

for some classical 2-absorbing submodule Ln of Mn or N = L × Ln for some classical prime
submodule L of K and some classical prime submodule Ln of Mn. Notice that by Lemma 1, a
proper submodule L of K is a classical prime submodule of K if and only if L = ×n−1

t=1Nt such
that for some k ∈ {1,2, . . . , n− 1}, Nk is a classical prime submodule of Mk, and Nt = Mt for
every t ∈ {1,2, . . . , n− 1}\{k}. Consequently we reach the claim.
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