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Abstract. Combining antithetic time series is used to reduce model fitted and forecast mean square

error (MSE). This is accomplished by removing the component of error that represents bias. The po-

tential to reduce error is a function of variance in the time series. The greater the variance the greater is

the potential for error reduction. But, the greater the variance the less is the efficacy of reversing corre-

lation and combining antithetic time series. The percentage reduction in MSE increases with variance

up to a limit then reduces.
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1. Introduction

Combining antithetic time series to reduce fitted MSE has applications in statistical process

control, and the analysis of engineering, scientific, medical and economic time series. The

method was demonstrated by Ridley and Ngnepieba [30] with the well-known CompanyX

data. They also showed that it satisfies the Diebold and Mariano [12] test for significance in

forecast improvement. Before that, the problem of bias in CompanyX data ARIMA models was

observed by Chatfield and Prothero [6]. The problem of bias in time series modeling in general

was discussed by Copas [10], Griliches [14], Kendall [18], Klein [20], Koyck [21], Marriott

and Pope [25], and Nerlov [26].

Prior to time series applications, complementary antithetic random numbers r and 1− r

were suggested by Hammersley and Morton [16] for Monte Carlo computer simulation (see

also Hammersley and Handscomb [15]). The results were mixed (see Kleijnen [19], Hendry

[17], Ripley [32] and Davidson and McKinnon [11]). Clements and Hendry [9] discussed the

use of antithetic variates to establish various properties concerning bias in forecasting models

(see also Calzolari [5], Fisher and Salmon [13] and Mariano and Brown [24]).
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Antithetic time series analysis as discussed in this paper is different. And, combining anti-

thetic time series is fundamentally different from traditional combining. Traditional combining

applies to independent estimates obtained from two or more different models, which may col-

lectively contain more information than any one model. But, there is no explicit correction of

systematic bias that might occur in any one or more of the models. For an extensive review

of traditional combining see Armstrong [1], Bates and Granger [2], Bunn [4], Clemen [7],

Clemen and Winkler [8], Makridakis and Hibon [23], and Makridakis, et al., [22]. Antithetic

combining applies to two estimates. The first estimate is obtained from the single best model,

subject only to possible systematic bias. The second estimate is created so as to be inversely

correlated with the first, and thereby eliminate systematic bias (Ridley, [27–29]). Since Ridley

[29] illustrated antithetic time series combining for an extensive range of autoregressive pro-

cesses and probability distributions, those results will not be repeated here. Ridley, Ngnepieba

and Duke [31] studied the effect of combining parameters on combining. In this paper we

extend the simulation studies and derive a closed form formulae for MSE before and after

combining. Like in the demonstration with actual data by Ridley and Ngnepieba [30], the

variance of a real time series is fixed and cannot be altered. Therefore, this paper focuses on

simulated lognormal AR(1) time series where the variance can be altered to illustrate its effect.

The paper is organized as follows. The theory of correlation reversal and bias reduction as

a function of variance is reviewed in sections 2 and 3. An analytical function for the percentage

reduction in MSE is derived in section 4. The effect of variance on percentage reduction in

MSE is illustrated by way of computer simulation in section 5. The conclusions in section 6

contain recommendations for future research.

2. Reverse Correlation and Variance

Definition 1. Two random variables are antithetic if their correlation is negative. A bivariate

collection of random variables is asymptotically antithetic if its limiting correlation approaches

minus one asymptotically (see Ridley, [29] for a derivation).

Definition 2. {X (ξ, t)} is an ensemble of random variables, where ξ belongs to a sample space

and t belongs to an index set representing time, such that X t is a discrete realization of a lognormal

stationary stochastic process from the ensemble, ln X t ∼ N(µ,σ), and X t , t = 1,2,3, . . . are

serially correlated.

Remark 1. Antithetic time series involves the application of a power transformation that cannot

be applied directly to normally distributed numbers that by definition include negative numbers.

The Ridley [29] antithetic time series theorem states that "if X t > 0, t = 1,2,3, . . . is a

discrete realization of a lognormal stochastic process, such that ln X t ∼ N(µ,σ), then if the

correlation between X t and X
p
t is ρX X p , then limp→0−,σ→0ρX X p = −1." The standard deviation

σ and variance σ2 are for the logarithm of the time series. Therefore, in practice, they are

naturally small. However, since there is no guarantee that the variance will actually approach

zero, there will be some loss of efficacy in reversing correlation and combining antithetic time

series. The purpose of this extension of Ridley and Ngnepieba [30] (and Ridley, [29] lognormal

theory) is to illustrate the effect on percentage reduction in MSE for various values of σ2.
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3. Antithetic Combining and Bias Reduction

Before antithetic combining can correct bias in a time series model, bias must first occur.

Bias occurs when a sample of data is observed, an autoregressive model is fitted to the data,

and there is failure to realize all the assumptions of the model, leading to correlation between

the error and the lagged variable. The antithetic combining model (Ridley, [29], Ridley and

Ngnepieba, [30]), applied to fitted data, is summarized as follows:

bX c,t = wbX t + (1−w) bX ′t , t = 1,2,3, . . . , n

where bX t are fitted values obtained from a time series model X t = ΦX t−1+εt , t = 1,2,3, . . . n.

The parameter−∞ < w<∞ is a combining weight. The fitted values bX t and bX ′t are antithetic

in the sense that they contain components of error ε̂t and ε̂′t , respectively, that are biased

and when weighted, wε̂t and (1 − w)ε̂′t are perfectly negatively correlated. The antithetic

component bX ′t is estimated from

bX ′t = X + rX̂ X̂ p

�
sX̂/sX̂ p

��bX p
t − bX p

�
, t = 1,2, . . . , n

where the exponent of the power transformation is set to the small negative value p = −0.001,

r denotes sample correlation coefficient and s denotes sample standard deviation.

In data analysis, data are often assumed to be normally distributed in order to use well

known normal theory. But, the distribution of many data, including particle physics, engineer-

ing, business and economic data is lognormal. For example, it is not possible to manufacture

or sell a negative quantity, but the positive amount of the quantity is unlimited. Hence the

distribution is positively skewed. In any case, if the data really are normally distributed, they

can easily be transformed to a lognormal distribution by simple exponentiation. When the

distribution of X t is lognormal, the distribution of limp→0− X
p
t is normal (Ridley, [29]). The

exponent p is set to a small negative number to simulate the limit as p→ 0−. Since it is fixed,

it is not an added model parameter that must be estimated from data. Also, the role of p is

perfect reversal of correlation, not the conversion of a non-linear model to a linear model.

The complete combining function for empirical data is given by

bX c,t = wbX t + (1−w)

n
X +
�
1− k
p

n− t + 1
�

rẐ Ẑ p

�
sẐ/sẐ p

��bZ p
t − bZ p

�o
, t = 1,2, . . . , n,

where a shift parameter λ (suggested by Box and Cox, [3]) is used to facilitate the power

transformation by adding λ to each X t to obtain Zt = X t + λ prior to applying the power

transformation and subtracting it after conversion back to their original units, leaving the

mean unchanged. Ridley [29] proved the counterintuitive result that rẐ Ẑ p is independent of

λ. The values of k, λ and w are selected so as to minimize the combined fitted MSE in bX c,t . The

expectation is that if bX t are biased, then bX c,t will exhibit diminishing bias as p approaches zero

from the left (p inside an infinitesimal neighborhood of zero but not zero) and the correlation

rẐ Ẑ p approaches −1. If bX t are unbiased then w= 1 and the combined fitted values are just the
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original fitted values. The factor k
p

n− t + 1 is to correct for any apparent heteroscedasticity

in the sample data, and k is expected to be small, or zero if there is none. The antithetic

combining calculations are performed by FOURCAST†.

4. Analytic Per Unit Reduction in MSE Function of Variance

In order to gain some insight into how antithetic combining is affected by variance, con-

sider the stationary model

X t = µX +Φ
�
X t−1 −µX

�
+ ǫt , t = 2,3, . . . , n, (1)

where X t are lognormally distributed, ln X t ∼ N(µ,σ), and whose fitted values are

bX t = bµX + bΦ
�
X t−1 − bµX

�
, t = 2,3, . . . , n, (2)

where bµX and bΦ are least-squares estimates of µX and Φ, respectively. The least squares esti-

mate bΦ of Φ (see Ridley [29]) is

bΦ = Φ+Cov
�
ǫt , X t−1

�
/Var
�
X t

�
, (3)

where fitted values bX t obtained from bµX +bΦ
�
X t−1 − bµX

�
are biased if Cov

�
ǫt , X t−1

� 6= 0. From

(2) and (3), and given that the time series is stationary so that Var
�
X t

�
= Var
�
X t−1

�
, then as

n→∞ and bµX → µX ,

bX t =µX +Φ
�
X t−1 −µX

�
+
�
Cov
�
ǫt , X t−1

�
/Var
�
X t

�	 �
X t−1 −µX

�
(4)

=E
�
X t

�
+ vt + ut ,

where vt are purely random errors and ut =
�
Cov
�
ǫt , X t−1

�
/Var
�
X t

�	 �
X t−1 −µX

�
are sys-

tematic serially correlated errors.

From Appendix A, the total MSE before combining is given by (A1):

MSE
�
σ2
�
=



1−
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�

From Appendix B, the MSE after combining is given by (B6):

MSEc
�
σ2
�
=



�w2 − 2w
�
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1− 2 (1−w)exp

�
lnbX + s2/2
� σ2/
p

Var(X t)p
exp(σ2)− 1

+ (1−w)2exp
�

2lnbX + s2
� Var(ln bX t)

Var(X t)

†Application program EMC, Inc., http://www.fourcast.net/fourcast, Version 2012.1, File: CompanyX.zip
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+ 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var(X t)

«
exp
�

lnbX + s2/2
� Cov
�
X t−1, ln bX t

�

Var
�
X t

�
�

Var
�
X t

�

From Appendix C, per unit reduction in MSE due to combining is given by (C1):

PMSEc
�
σ2
�
=

A+ B

1−
§
Φ+

Cov(ǫt ,X t−1)
Var(X t)

ª2 ,

where

A=−




¨

1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−1

− 1




2¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+



1−
¨

1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−2




× σ2

�
exp (σ2)− 1
�

and

B =− 2

¨
1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−1


1−
¨

1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−1



¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× Cov
�
X t−1, ln bX t

�

exp
¦
µ+ σ

2

2

©�
exp (σ2)− 1
�

and substituting for Var
�
X t

�

PMSEc
�
σ2
�
=

C + D

1−
§
Φ+

Cov(ǫt ,X t−1)
exp{2µ+σ2}(exp(σ2)−1)

ª2 ,

where

C =−




¨

1− Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−1

− 1




2¨
Φ+

Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«2

+



1−
¨

1− Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−2


 σ2

�
exp (σ2)− 1
�

D =− 2

¨
1− Cov

�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−1


1−
¨

1− Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−1



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×
¨
Φ+

Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«

Cov
�
ǫt , X t−1

�

exp
¦
µ+ σ

2

2

©�
exp (σ2)− 1
�

where
Cov(ǫt ,X t−1)

exp{2µ+σ2}(exp(σ2)−1)
6= 1.

We are interested in the per unit reduction in MSE for time series with different variances.

Setting µ= 0,

PMSEc
�
σ2
�
=

E + F

1−
§
Φ+

Cov(ǫt ,X t−1)
exp{σ2}(exp(σ2)−1)

ª2 , (5)

where

E =−




¨

1− Cov
�
ǫt , X t−1

�

exp {σ2} �exp (σ2)− 1
�
«−1

− 1




2¨
Φ+

Cov
�
ǫt , X t−1

�

exp {σ2} �exp (σ2)− 1
�
«2

+



1−
¨

1− Cov
�
ǫt , X t−1

�

exp {σ2} �exp (σ2)− 1
�
«−2


 σ2

�
exp (σ2)− 1
� ,

F =− 2

¨
1− Cov
�
ǫt , X t−1

�

exp {σ2} �exp (σ2)− 1
�
«−1


1−
¨

1− Cov
�
ǫt , X t−1

�

exp {σ2} �exp (σ2)− 1
�
«−1




×
¨
Φ+

Cov
�
ǫt , X t−1

�

exp {σ2} �exp (σ2)− 1
�
«

Cov
�
X t−1, ln X̂ t

�

exp
¦
σ2

2

©�
exp (σ2)− 1
� ,

and
Cov(ǫt ,X t−1)

exp{σ2}(exp(σ2)−1)
6= 1.

This analytic function (5) for the per unit reduction in MSE due to combining is somewhat

complicated. The errors ǫt are unobservable. Furthermore, since the model estimate of pa-

rameter Φ is biased, its true value is unknown. The objective of antithetic time series analysis

is not to correct the bias in the model parameter. The objective is to correct the bias in the

model fitted values. Still, due to these unknowns, it is not possible to evaluate this function.

An illustration of how combining reduced MSE, and how it changes with variance, can be

accomplished by computer simulations. The simulations and results are explained below in

Section 5.

5. Simulated Percentage Reduction in MSE and Variance

The ability to reverse the correlation (limp→0−,σ→0ρX X p = −1) depends on small variance.

Therefore, the ability to reduce bias and combined fitted MSE also depends on small variance.
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However, the sample variance will depend on the particular data. To illustrate the effect of

variance, let us consider the results of hypothetical simulations for the lognormal time series

X t = exp
�
Yt

�
, where Yt = βYt−1 + et , t = 2,3, . . . , 1000, et ∼ N

�
0,η
�

and σ2 =
η2

(1−β2)
. Let

the model to be fitted to X t be X t = ΦX t−1+ εt , t = 2,3, . . . , 1000. The least squares estimate
bΦ of Φ and the fitted values X̂ t obtained from bΦX t−1 will be biased if there is any deficiency

(eg. inter alia, lack of normality, non-stationarity, unavoidably missing variables, sampling

bias, serial correlation in the errors) resulting in the covariance Cov
�
ǫt , X t−1

� 6= 0. Since X t

are positive and stationary, k and λ (see section 3) are both zero.

Consider the case of η2 = 0, σ2 = 0. That is, no variance, no variations in the time series to

be explained by the time series model, and no MSE. Then, no improvement in MSE is possible

by antithetic combining. Antithetic combining does not include σ2 = 0. To simulate small

variance, consider η2 = 0.01, σ2 = 0.027 and p = −0.001 as shown in Figure 1a. The correla-

tion rX̂ X̂ p starts out at approximately −1 where the combining contribution to MSE reduction

is near maximum. As the variance is increased, the amount of variance unexplained by the

fitted model increases, contributing to the MSE improvement that is possible. At the same

time, the correlation moves away from −1 (see Figure 1b), reducing the ability for antithetic

combining to improve MSE. The net effect is illustrated below in Figures 2 and 3.

(a) Correlation coefficient vs p (b) Correlation coefficient vs σ2

Figure 1: Correlation coefficient of simulated population values ρX X p and fitted values rX̂ X̂ p .

Figure 2a shows the percentage improvement in MSE for different levels of variance

(σ2 = 2,4,8,10) as the autoregressive coefficient β increases. For σ2 = 2, the percentage

improvement increases until about β = 0.55 then falls. For larger σ2, the percentage improve-

ment increases until about β = 0.8 then falls. Figure 2b shows the percentage improvement

in MSE for different levels of autoregressive coefficient (β = 0.4,0.6,0.8) as σ2 increases. For

all values of β , the improvement increases up to a maximum value then falls. For example,

when β = 0.8, the maximum improvement in MSE is about 10.5% and occurs when σ2 is

about 15. Therefore, in practice, antithetic combining will perform more or less well depend-

ing on the variance of an actual time series. Forecasting is outside the scope of this paper,

but Ridley and Ngnepieba [30] demonstrated how small idiopathic error bias accumulates to

produce large ex ante multiple-period-ahead forecast errors that are corrected dynamically by

antithetic combining.
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(a) Percentage improvement in MSE vs β (b) Percentage improvement in MSE vs σ2

Figure 2: Percentage improvement in MSE for p = −0.001 and versus β and σ2.

Figure 3a shows the percentage improvement in MSE for different levels of variance

(η2 = 2,4,8,10) as the autoregressive coefficient β increases. For all levels of η2, the percent-

age improvement increases until about β = 0.8 then falls. Figure 3b shows the percentage

improvement in MSE for different levels of autoregressive coefficient (β = 0.4,0.6,0.8) as η2

increases. For all values of β , the improvement increases up to a maximum value then falls.

For example, when β = 0.8, the maximum improvement in MSE is about 10.6% and occurs

when η2 is about 4.

(a) Percentage improvement in MSE vs β (b) Percentage improvement in MSE vs η2

Figure 3: Percentage improvement in MSE for p = −0.001 and versus β and η2.

6. Conclusions

The variance of the logarithm of a time series is naturally small. Therefore, combining

antithetic time series to reduce idiopathic bias in the fitted values from a time series model

is generally applicable. Furthermore, as the variance increases, the percentage improvement

in fitted MSE is actually better. This is due to the higher potential to improve MSE. As the

variance continues to increase, thereby departing from the strict requirements of antithetic

time series theory, the ability of antithetic combining to reverse correlation and improve MSE

diminishes (some similarity in the loss of efficacy of feedforward control was reported by Shi

and Kapur [34] [33]). As the two effects interact, the net percentage improvement in fitted

MSE increases to a maximum then it declines.
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Appendix A: MSE Before Combining

Substituting from (4), the total error in X̂ t , including purely random error and systematic

error due to bias is X̂ t − X t = +Φ
�
X t−1 −µX

�
+

§
Cov(ǫt ,X t−1)

Var(X t)

ª�
X t−1 −µX

�− X t . Since µX , Φ

and
Cov(ǫt ,X t−1)

Var(X t)
are constant for a specified time series and model, the variance of the total

error before combining is the MSE, given by

MSE
�
σ2
�
=Var
�
X̂ t − X t

�

=Var

�
µX +Φ
�
X t−1 −µX

�
+

¨
Cov
�
ǫt , X t−1

�

Var
�
X t

�
�
X t−1 −µX

�− X t

«�

=




¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1



Var
�
X t

�− 2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

Cov
�
X t , X t−1

�

From (1), Cov
�
X t , X t−1

�
= ΦVar
�
X t

�
+Cov
�
ǫt , X t−1

�
. Therefore,

MSE
�
σ2
�
=




¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1



Var
�
X t

�

− 2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«¨
ΦVar
�
X t

�
+

Cov
�
ǫt , X t−1

�

Var
�
X t

� Var
�
X t

�
«

=




¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1− 2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«
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×
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«�

Var
�
X t

�

=




¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1− 2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�

=



1−
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�
(A1)

Appendix B: MSE After Combining

Consider the combined fitted values bX c,t = wbX t + (1−w) bX ′t , where

bX t = µX +Φ
�
X t−1 −µX

�
+

¨
Cov
�
ǫt , X t−1

�

Var
�
X t

�
«
�
X t −µX

�
(B1)

and bX ′t = limsbX→0, p→0−
n

X + rX̂ X̂ p

�
sX̂/sX̂ p

��bX p
t − bX p

t

�o
. Since we are investigating the effect

of changing variance, consider only the limit as p → 0−, and allow sx to retreat from 0 as

follows
bX c,t = wbX t + (1−w)

n
X + rX̂ X̂ p

�
sX̂/sX̂ p

��bX p
t − bX p

t

�o
, p→ 0−. (B2)

For the case of lognormal X t , such that ln X t ∼ N(µ,σ), the expected values and standard

deviations are E
�
X t

�
= exp
�
µ+ σ

2

2

�
, E
�
X

p
t

�
= exp
�

pµ++
p2σ2

2

�
and

σX = exp
¦
µ+ σ

2

2

©p
exp (σ2)− 1,σX p = exp

n
pµ+

p2σ2

2

oq
exp
�
p2σ2
�− 1, respectively. Re-

placing population values with sample values and substituting in (B2),

bX c,t =wbX t + (1−w)



X + rX̂ X̂ p

�
sX̂/sX̂ p

� exp
n

ln X̂ + s2

2

op
exp (s2)− 1

exp
n

pln X̂ +
p2s2

2

oq
exp
�
p2s2
�− 1

×
�
bX p

t − exp

�
pln X̂ +

p2s2

2

���
, p→ 0− (B3)

=wbX t + (1−w)
�
X +ϕ
�
p, bX t , s
��

, p→ 0−,

where

ϕ
�
p, bX t , s
�
= rX̂ X̂ p

exp
n

ln X̂ + s2

2

op
exp (s2)− 1

exp
n

pln X̂ +
p2s2

2

oq
exp
�
p2s2
�− 1

�
bX p

t − exp

�
pln X̂ +

p2s2

2

��
, p→ 0−.

From Appendix D,

lim
p→0−

ϕ
�
p, bX t , s
�
= exp

�
ln X̂ +

s2

2

�n
−ln X̂ + ln X̂ t

o
.
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Therefore, as p→ 0−, (B3) becomes

bX c,t = wbX t + (1−w)

�
X + exp

�
ln X̂ +

s2

2

�n
−ln X̂ + ln X̂ t

o�
. (B4)

The combined mean square error MSEc= Var
�bX c,t − X t

�
. Substituting for bX c,t from (B4)

MSEc
�
σ2
�
= Var

�
wbX t + (1−w)

�
X + exp

�
ln X̂ +

s2

2

��
−ln X̂ + ln X̂ t

��
− X t

�

where s2 is the variance of the logarithm ln bX t and w=

§
1− Cov(ǫt ,X t−1)

Var(X t)

ª−1

(Ridley [29]).

Substituting for bX t from (B1)

MSEc
�
σ2
�
=Var

�
w

¨
µX +Φ
�
X t−1 −µX

�
+

¨
Cov
�
ǫt , X t−1

�

Var
�
X t

�
«
�
X t−1 −µX

�
«

+ (1−w)

�
X + exp

�
ln X̂ +

s2

2

��
−ln X̂ + ln X̂ t

��
− X t

�

Since X → µX as n→∞ and µX , Φ, and
Cov(ǫt ,X t−1)

Var(X t)
are constant for a specified time series

and model, then the post combining MSEc, is given by

MSEc
�
σ2
�
=Var

�
w

¨
ΦX t−1 +

Cov
�
ǫt , X t−1

�

Var
�
X t

� X t−1

«
+ (1− w)exp

�
ln X̂ +

s2

2

�
ln X̂ t − X t

�

=w2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�
+ (1− w)2exp
�

2ln X̂ + s2
�

Var
�
ln X̂ t

�
+ Var
�
X t

�

+ 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

exp

�
ln X̂ +

s2

2

�
Cov
�
X t−1, ln X̂ t

�
(B5)

− 2w

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

Cov
�
X t , X t−1

�− 2 (1−w)exp

�
ln X̂ +

s2

2

�
Cov
�
X t , ln X̂ t

�

From (1) Cov
�
X t , X t−1

�
=
�
ΦVar
�
X t

�
+Cov
�
ǫt , X t−1

�	
=

§
Φ+

Cov(ǫt ,X t−1)
Var(X t)

ª
Var
�
X t

�
. From

the Ridley [29] antithetic time series theorem, ρln X̂ t ,X t
= σp

exp(σ2)−1
=

Cov(ln X t ,X t)q
Var(ln X t)
q

Var(X t)
,

and for a stationary time series, as n→∞, ln X̂ t → ln X t , Var
�
ln X̂ t

�
= s2, Var
�
X̂ t

�
= σ2 and

s2→ σ2. So,

Cov
�
ln X̂ t , X t

�
=

σp
exp(σ2)− 1

Ç
Var
�
ln X t

�Ç
Var
�
X t

�
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=
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1
Var
�
X t

�
.

Substituting for Cov
�
X t−1, X t

�
and Cov
�
ln X̂ t , X t

�
in (B5),

MSEc
�
σ2
�
=w2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�
+ (1− w)2exp
�

2ln X̂ + s2
�

Var
�
ln X̂ t

�
+ Var
�
X t

�

+ 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

exp

�
ln X̂ +

s2

2

�
Cov
�
X t−1, ln X̂ t

�

− 2w

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

Var
�
X t

�− 2 (1−w)exp

�
ln X̂ +

s2

2

�

× σ
2/
q

Var
�
X t

�
p

exp(σ2)− 1
Var
�
X t

�

=w2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�
+ (1− w)2exp
�

2ln X̂ + s2
�

Var
�
ln X̂ t

�
+ Var
�
X t

�

+ 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

exp

�
ln X̂ +

s2

2

�
Cov
�
X t−1, ln X̂ t

�
(B6)

− 2w

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�− 2 (1−w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1
Var
�
X t

�

=



�w2 − 2w
�
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1− 2 (1−w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1

+ (1−w)2exp
�

2ln X̂ + s2
� Var
�
ln X̂ t

�

Var
�
X t

� + 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× exp

�
ln X̂ +

s2

2

�
Cov
�
ln X̂ t , X t−1

�

Var
�
X t

�
�

Var
�
X t

�

Appendix C: Per Unit Reduction in MSE

Denoting the per unit reduction in MSE due to combining as

PMSEc
�
σ2
�
=

MSE
�
σ2
�−MSEc
�
σ2
�

MSE (σ2)
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Substituting for MSE
�
σ2
�

and MSEc
�
σ2
�

from Appendix A and Appendix B.

MSE
�
σ2
�
=



1−
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�

MSEc
�
σ2
�
=



�w2 − 2w
�
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1− 2 (1−w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1

+ (1−w)2exp
�

2ln X̂ + s2
� Var
�
ln X̂ t

�

Var
�
X t

� + 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× exp

�
ln X̂ +

s2

2

�
Cov
�
ln X̂ t , X t−1

�

Var
�
X t

�
�

Var
�
X t

�

From which

MSE
�
σ2
�−MSEc
�
σ2
�
=



1−
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2

Var
�
X t

�− ��w2 − 2w
�

×
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 1− 2 (1−w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1

+ (1−w)2exp
�

2ln X̂ + s2
� Var
�
ln X̂ t

�

Var
�
X t

� + 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× exp

�
ln X̂ +

s2

2

�
Cov
�
ln X̂ t , X t−1

�

Var
�
X t

�
�

Var
�
X t

�

=



− �w2 − 2w+ 1
�
¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 2 (1−w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1

− (1−w)2exp
�

2ln X̂ + s2
� Var
�
ln X̂ t

�

Var
�
X t

� − 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× exp

�
ln X̂ +

s2

2

�
Cov
�
ln X̂ t , X t−1

�

Var
�
X t

�
�

Var
�
X t

�

=



−(w− 1)2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 2 (1−w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1

− (1−w)2exp
�

2ln X̂ + s2
� Var
�
ln X̂ t

�

Var
�
X t

� − 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«
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× exp

�
ln X̂ +

s2

2

�
Cov
�
ln X̂ t , X t−1

�

Var
�
X t

�
�

Var
�
X t

�
.

Substituting and canceling Var
�
X t

�
,

PMSEc
�
σ2
�
=

A1

1−
§
Φ+

Cov(ǫt ,X t−1)
Var(X t)

ª2 ,

where

A1 =− (w− 1)2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 2 (1− w)exp

�
ln X̂ +

s2

2

�
σ2/
q

Var
�
X t

�
p

exp(σ2)− 1

− (1−w)2exp
�

2ln X̂ + s2
� Var
�
ln X̂ t

�

Var
�
X t

� − 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× exp

�
ln X̂ +

s2

2

�
Cov
�
ln X̂ t , X t−1

�

Var
�
X t

� .

Since ln X̂ → µ and s → σ, as n → ∞ then writing
q

Var
�
X t

�
, Var
�
X t

�
and Var
�
ln bX t

�
in

terms of σ and simplifying,

PMSEc
�
σ2
�
=

A2

1−
§
Φ+

Cov(ǫt ,X t−1)
Var(X t)

ª2 ,

A2 =− (w− 1)2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+ 2 (1−w)exp

�
µ+
σ2

2

�

× σ2

p
exp(σ2)− 1 exp

�
µ+ σ

2

2

�p
exp(σ2)− 1

− (1−w)2exp
�
2µ+σ2
� σ2

exp
�
2µ+σ2
� �

exp(σ2)− 1
�

− 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

exp

�
µ+
σ2

2

�

× Cov
�
ln X̂ t , X t−1

�

exp
�
2µ+σ2
� �

exp(σ2)− 1
� .
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PMSEc
�
σ2
�
=

A3

1−
§
Φ+

Cov(ǫt ,X t−1)
Var(X t)

ª2 ,

A3 =− (w− 1)2

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+
�
1− w2
� σ2

�
exp(σ2)− 1
�

− 2w (1−w)

¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

Cov
�
ln X̂ t , X t−1

�

exp
�
µ+ σ

2

2

� �
exp(σ2)− 1
� .

Substituting for w

PMSEc
�
σ2
�
=

A+ B

1−
§
Φ+

Cov(ǫt ,X t−1)
Var(X t)

ª2 , (C1)

where

A=−




¨

1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−1

− 1




2¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«2
+



1−
¨

1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−2




×
�

σ2

�
exp (σ2)− 1
�
�

and

B =− 2

¨
1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−1


1−
¨

1− Cov
�
ǫt , X t−1

�

Var
�
X t

�
«−1



¨
Φ+

Cov
�
ǫt , X t−1

�

Var
�
X t

�
«

× Cov
�
X t−1, ln bX t

�

exp
¦
µ+ σ

2

2

©�
exp (σ2)− 1
�

and
Cov(ǫt ,X t−1)

exp{2µ+σ2}(exp(σ2)−1)
6= 1.

Substituting for Var
�
X t

�

PMSEc
�
σ2
�
=

C + D

1−
§
Φ+

Cov(ǫt ,X t−1)
exp{2µ+σ2}(exp(σ2)−1)

ª2 , (C2)

where

C =−




¨

1− Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−1

− 1




2¨
Φ+

Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«2
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+



1−
¨

1− Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−2


 σ2

�
exp (σ2)− 1
�

D =− 2

¨
1− Cov

�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−1


1−
¨

1− Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«−1




×
¨
Φ+

Cov
�
ǫt , X t−1

�

exp
�
2µ+σ2
	�

exp (σ2)− 1
�
«

Cov
�
ǫt , X t−1

�

exp
¦
µ+ σ

2

2

©�
exp (σ2)− 1
� .

Appendix D: Limit as p→ 0−

We wish to find

lim
p→0−, s→0

ϕ
�
p, bX t , s
�
= lim

p→0−
rbzbzp

exp
n

ln bX + s2/2
op

exp (s2)− 1

exp
n

pln bX + p2s2/2
oq

exp
�
p2s2
�− 1

×
h
bX p

t − exp
�

p · ln bX + p2s2/2
�i

.

Consider the Taylor expansion at p = 0 of

exp(p) = 1+ p+
p2

2
+

p3

6
+

p4

24
+ o
�
p4
�

. (D1)

Using (D1), we derive the Taylor expansion at p = 0 of exp(p2s2)−1= p2s2+
p4s4

2 +
p6s6

6 +o
�
p6
�
.

Hence,

1q
exp
�
p2s2
�− 1

=
1Ç

p2s2 +
p4s4

2 +
p6s6

6 + o
�
p6
� =

1

s|p|
Ç

1+
p2s2

2 +
p4s4

6 + o
�
p4
� (D2)

Using equation (D1), we derive the Taylor expansion at p = 0 of

exp
�

p · ln bX + p2s2/2
�
=1+ p · ln bX + p2s2/2+

1

2

n
p · ln bX + p2s2/2

o2
+ o
�
p2
�

=1+ p · ln bX + p2s2/2+
p2

2
· ln bX

2

+ o
�
p2
�

(D3)

The Taylor expansion at p = 0 of
�bX t

�p
is

bX p
t = 1+ p · ln bX + p2

2
· ln2 bX + o
�
p2
�

(D4)
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By subtracting (D3) from (D4), we obtain the Taylor expansion at p = 0 of

n
bX p

t − exp
�

p · ln bX + p2s2/2
�o
=p

�
−ln bX + ln bX t

�
(D5)

+
p2

2

�
−ln bX

2

− s2 + ln2 bX t

�
+ o
�
p2
�

The Taylor expansion of ϕ
�
p, bX t , s
�

at p = 0 may now be obtained by multiplication of

rbX bX p

exp
n

ln bX+s2/2
op

exp(s2)−1

exp
n

p·ln bX+p2s2/2
o and the expansions (D2) and (D5) as follows.

ϕ
�
p, bX t , s
�
=rbX bX p

exp
�

ln bX + s2/2
�p

exp (s2)− 1

exp
�

p · ln bX + p2s2/2
� · 1

s|p|
Ç

1+
p2s2

2 +
p4s4

6 + o
�
p4
�

×
�

p

�
−ln bX + ln bX t

�
+

p2

2

�
−ln bX

2

− s2 + ln2 bX t

�
+ o
�
p2
��

.

From Ridley [29] antithetic time series theorem, rbX bX p ↓ − sp
exp(s2)−1

as p ↓ 0−. Also,

limp→0−
p

|p| = −1, and, therefore,

lim
p→0−,

ϕ
�
p, bX t , s
�
= exp

�
ln bX + s2

2

��
−ln bX + ln bX t

�
.


