EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 2, 2016, 152-164 ISSN 1307-5543 – www.ejpam.com

New Generalized Classes of τ_{ω}

Otchana Thevar Ravi^{1,*}, Ilangovan Rajasekaran¹, Soundararajan Satheesh Kanna² and Malliharjunaiah Paranjothi³

 ¹ Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
² Department of Mathematics, Research Scholar, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India.
³ Department of Mathematics, Sree Sowdambiga College of Engineering, Aruppukottai, Virudhunagar District, Tamil Nadu, India.

Abstract. The purpose of this paper is to introduce a new class of sets called semi- ω -open which lies between the class of $\alpha - \omega$ -open sets and the class of $\beta - \omega$ -open sets and to investigate the basic properties of such sets. This apart, some new generalized classes of τ_{ω} are introduced and investigated on the line of research.

2010 Mathematics Subject Classifications: 54C05, 54C08, 54C10

Key Words and Phrases: ω -open set, $\alpha - \omega$ -open set, pre- ω -open set, $\beta - \omega$ -open set, $b - \omega$ -open set, $\omega - t$ -set, $\delta - \omega$ -open set, semi^{*} - ω -closed set.

1. Introduction

In 1982, the notions of ω -closed sets and ω -open sets were introduced and studied by Hdeib [7]. In 2009, Noiri et al. [10] introduced some generalizations of ω -open sets and investigated some properties of the sets. Moreover, they used them to obtain decompositions of continuity.

In this paper, we introduce and investigate the new notion called semi- ω -open sets which is weaker than $\alpha - \omega$ -open sets and stronger than $\beta - \omega$ -open sets. Also we introduce and investigate some new generalized classes of τ_{ω} .

http://www.ejpam.com

© 2016 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: siingam@yahoo.com (O. Ravi), rajasekarani@yahoo.com (I. Rajasekaran), satheesh_kanna@yahoo.co.in (S. Kanna) and jothimp123@gmail.com (M. Paranjothi)

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{Q} , \mathbb{Q}^*) denotes the set of all real numbers (resp. the set of all rational numbers, the set of all irrational numbers).

By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $H \subset X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) . τ_H denotes the relative topology on H and τ_u denotes the usual topology on \mathbb{R} .

Definition 1. A subset H of a space (X, τ) is said to be semi-open [9] if $H \subset cl(int(H))$.

Definition 2 ([11]). Let *H* be a subset of a space (X, τ) , a point *p* in *X* is called a condensation point of *H* if for each open set *U* containing *p*, $U \cap H$ is uncountable.

Definition 3 ([7]). A subset *H* of a space (X, τ) is called ω -closed if it contains all its condensation points.

The complement of an ω -closed set is called ω -open.

It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by int_{ω} and cl_{ω} respectively.

Lemma 1 ([7]). Let H be a subset of a space (X, τ) . Then

- (i) *H* is ω -closed in *X* if and only if $H = cl_{\omega}(H)$.
- (ii) $cl_{\omega}(X \setminus H) = X \setminus int_{\omega}(H)$.
- (iii) $cl_{\omega}(H)$ is ω -closed in X.
- (iv) $x \in cl_{\omega}(H)$ if and only if $H \cap G \neq \phi$ for each ω -open set G containing x.
- (v) $cl_{\omega}(H) \subset cl(H)$.
- (vi) $int(H) \subset int_{\omega}(H)$.

Remark 1. For a subset of a space (X, τ) , the following property holds: Every closed set is ω -closed but not conversely [2, 7].

Definition 4. [1] A space (X, τ) is called anti-locally countable if each non-empty open set is uncountable.

Lemma 2 ([8]). Let (H, τ_H) be an anti-locally countable subspace of a space (X, τ) . Then $cl(H) = cl_{\omega}(H)$.

Lemma 3 ([6]). If U is an open set, then $cl(U \cap H) = cl(U \cap cl(H))$ and hence $U \cap cl(H) \subset cl(U \cap H)$ for any subset H.

Lemma 4 ([1, 4]). If (X, τ) is an anti-locally countable space, then $int_{\omega}(H) = int(H)$ for every ω -closed set H of X and $cl_{\omega}(H) = cl(H)$ for every ω -open set H of X.

Definition 5 ([10]). A subset H of a space (X, τ) is called

- (i) $\alpha \omega$ -open if $H \subset int_{\omega}(cl(int_{\omega}(H)));$
- (ii) pre- ω -open if $H \subset int_{\omega}(cl(H))$;
- (iii) $\beta \omega$ -open if $H \subset cl(int_{\omega}(cl(H)));$
- (iv) $b \omega$ -open if $H \subset int_{\omega}(cl(H)) \cup cl(int_{\omega}(H))$.

Definition 6 ([10]). A subset H of a space (X, τ) is called an $\omega - t$ -set if $int(H) = int_{\omega}(cl(H))$.

Definition 7. A space (X, τ) is called submaximal [5] if every dense subset is open.

Definition 8. A subset H of a space (X, τ) is called ω -dense [3] if $cl_{\omega}(H) = X$.

3. Properties of Semi- ω -Open Sets

Definition 9. A subset H of a space (X, τ) is said to be

- (i) semi- ω -open if $H \subset cl(int_{\omega}(H))$.
- (ii) semi- ω -closed if $int(cl_{\omega}(H)) \subset H$.

The complement of semi- ω -open set is called semi- ω -closed.

Example 1. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then $\{a\}$ is semi- ω -open.

Example 2. Let $X = \mathbb{R}$ with the usual topology τ_u . Let $H = (0, 1) \cap \mathbb{Q}$. Then H is not semi- ω -open, since $cl(int_{\omega}(H)) = cl(\phi) = \phi$.

Proposition 1. In a space (X, τ) , every semi-open subset is semi- ω -open.

Proof. Let *H* be semi-open in (X, τ) . Then $H \subset cl(int(H)) \subset cl(int_{\omega}(H))$. This proves that H is semi- ω -open.

Remark 2. The converse of Proposition 1 is not true.

Example 3. Let $X = \mathbb{R}$ with the usual topology τ_u . Then $H = \mathbb{Q}^*$ is semi- ω -open for $cl(int_{\omega}(H)) = cl(H) = \mathbb{R}$ and $H \subset cl(int_{\omega}(H))$. But H is not semi-open for $cl(int(H)) = cl(\phi) = \phi$ and $H \not\subseteq cl(int(H))$.

From the above Example, we observe that the converse fails in an anti-locally countable space also.

Theorem 1. In an anti-locally countable space, an ω -closed and a semi- ω -open subset is semiopen.

Proof. Let (X, τ) be an anti-locally countable space and H be an ω -closed and a semi- ω -open subset.

Since H is semi- ω -open, $H \subset cl(int_{\omega}(H))$. Since (X, τ) is anti-locally countable and H is ω -closed, $int_{\omega}(H) = int(H)$ by Lemma 4. Hence $H \subset cl(int_{\omega}(H)) = cl(int(H))$ and thus H is semi-open.

Theorem 2. For a subset of space (X, τ) , the following properties hold:

- (i) Every ω -open set is semi- ω -open.
- (ii) Every $\alpha \omega$ -open set is semi- ω -open.
- (iii) Every semi- ω -open set is $\beta \omega$ -open.
- (iv) Every semi- ω -open set is $b \omega$ -open.

Proof. (i). If H is an ω -open set, then $H = int_{\omega}(H) \subset cl(int_{\omega}(H))$. Therefore H is semi- ω -open.

(*ii*). If H is an $\alpha - \omega$ -open set, then $H \subset int_{\omega}(cl(int_{\omega}(H))) \subset cl(int_{\omega}(H))$. Therefore H is semi- ω -open.

(*iii*). If H is an semi- ω -open set, then $H \subset cl(int_{\omega}(H)) \subset cl(int_{\omega}(cl(H)))$. Therefore H is $\beta - \omega$ -open.

(*iv*). If H is an semi- ω -open set, then $H \subset cl(int_{\omega}(H)) \subset int_{\omega}(cl(H)) \cup cl(int_{\omega}(H))$. Therefore H is $b - \omega$ -open.

The following Examples support that the separate converses of Theorem 2 are not true in general.

Example 4. Let $X = \mathbb{R}$ with the usual topology τ_u .

- (i) Let H = (0, 1]. Then H is semi- ω -open set but not ω -open, since $H = (0, 1] \neq (0, 1) = int_{\omega}(H)$.
- (ii) Let H = (0, 1]. Then H is semi- ω -open set but not $\alpha \omega$ -open, since $int_{\omega}(cl(int_{\omega}(H))) = int_{\omega}(cl(0, 1)) = int_{\omega}([0, 1]) = (0, 1)$.
- (iii) Let $H = [0,1] \cap \mathbb{Q}$. Then H is $\beta \omega$ -open set but not semi- ω -open, since $cl(int_{\omega}(H)) = cl(\phi) = \phi$.
- (iv) Let $H = \mathbb{Q}$. Then H is $b \omega$ -open set but not semi- ω -open, since $cl(int_{\omega}(H)) = cl(\phi) = \phi$.

Theorem 3. Let *H* be a subset of a space (X, τ) . Then *H* is $\alpha - \omega$ -open if and only if it is semi- ω -open and pre- ω -open.

Proof. Let H be an $\alpha - \omega$ -open. Then $H \subset int_{\omega}(cl(int_{\omega}(H)))$. It implies that $H \subset int_{\omega}(cl(int_{\omega}(H))) \subset cl(int_{\omega}(H))$ and $H \subset int_{\omega}(cl(int_{\omega}(H))) \subset int_{\omega}(cl(H))$. Thus H is semi- ω -open and pre- ω -open.

Conversely, let H be semi- ω -open and pre- ω -open. Then we have $H \subset cl(int_{\omega}(H))$ and $H \subset int_{\omega}(cl(H))$. Hence $H \subset int_{\omega}(cl(H)) \subset int_{\omega}(cl(int_{\omega}(H)))$ which implies that H is $\alpha - \omega$ -open.

Remark 3. The concepts of semi- ω -openness and pre- ω -openness are independent.

Example 5. Let $X = \mathbb{R}$ with the usual topology τ_u . The interval H = (0, 1] is semi- ω -open but not pre- ω -open, since $int_{\omega}(cl(H)) = int_{\omega}([0, 1]) = (0, 1)$.

Example 6. Let $X = \mathbb{R}$ with the usual topology τ_u . Let $H = \mathbb{Q}$. Then H is pre- ω -open but not semi- ω -open, since $cl(int_{\omega}(H)) = cl(\phi) = \phi$.

Proposition 2. The intersection of a semi- ω -open set and an open set is semi- ω -open.

Proof. Let H be a semi- ω -open and U be an open set in X. Then $H \subset cl(int_{\omega}(H))$ and int(U) = U. By Lemma 3, we have

$$U \cap H \subset U \cap cl(int_{\omega}(H)) \subset cl(U \cap int_{\omega}(H))$$

= cl(int(U) \circ int_{\omega}(H)) \circ cl(int_{\omega}(U) \circ int_{\omega}(H))
= cl(int_{\omega}(U \circ H)).

Therefore $U \cap H$ is semi- ω -open.

Remark 4. The intersection of two semi- ω -open sets need not be semi- ω -open. This can be seen from the following Example.

Example 7. Let $X = \mathbb{R}$ with the usual topology τ_u . Let A = (0, 1] and B = [1, 2), then A and B are semi- ω -open, but $A \cap B = \{1\}$ which is not semi- ω -open, since $cl(int_{\omega}(A \cap B)) = cl(\phi) = \phi$.

Theorem 4. Let *H* be a subset of a space (X, τ) . If *H* is both closed and $\beta - \omega$ -open, then *H* is semi- ω -open.

Proof. Since H is a $\beta - \omega$ -open set, $H \subset cl(int_{\omega}(cl(H))) = cl(int_{\omega}(H))$, H being closed. Therefore H is semi- ω -open.

Theorem 5. Let *H* be a subset of a space (X, τ) . If *H* is both $\beta - \omega$ -open and $\omega - t$ -set, then *H* is semi- ω -open.

Proof. Since H is a $\omega - t$ -set, $int(H) = int_{\omega}(cl(H))$. Since H is $\beta - \omega$ -open also,

$$H \subset cl(int_{\omega}(cl(H))) \subset cl(int(H)) \subset cl(int_{\omega}(H)).$$

Therefore H is semi- ω -open.

Theorem 6. Let *H* be a subset of a space (X, τ) . If *H* is both $b - \omega$ -open and $\omega - t$ -set, then *H* is semi- ω -open.

Proof. Since H is $\omega - t$ -set, $int_{\omega}(cl(H)) = int(H) \subset int_{\omega}(H)$. Since H is $b - \omega$ -open also, $H \subset int_{\omega}(cl(H)) \cup cl(int_{\omega}(H)) \subset int_{\omega}(H) \cup cl(int_{\omega}(H)) = cl(int_{\omega}(H))$. Therefore H is semi- ω -open.

Proposition 3. Let H be a subset of a space (X, τ) . Then H is semi- ω -open if and only if $cl(H) = cl(int_{\omega}(H))$.

Proof. Let H be semi- ω -open. Then $H \subset cl(int_{\omega}(H))$ and $cl(H) \subset cl(int_{\omega}(H))$. But always $cl(int_{\omega}(H)) \subset cl(H)$. Thus, we obtain that $cl(H) = cl(int_{\omega}(H))$.

Conversely, let the condition hold. We have $H \subset cl(H) = cl(int_{\omega}(H))$, by the given condition. Thus $H \subset cl(int_{\omega}(H))$ and hence H is semi- ω -open.

Proposition 4. Let $H \subset (X, \tau)$ be a $b - \omega$ -open set such that $cl(H) = \phi$. Then H is semi- ω -open.

Theorem 7. For a subset H of a submaximal space (X, τ) , the following properties are equivalent.

- (i) H is semi- ω -open,
- (ii) *H* is $\beta \omega$ -open.

Proof. (*i*) \Rightarrow (*ii*): It follows from the fact that every semi- ω -open set is $\beta - \omega$ -open.

 $(ii) \Rightarrow (i)$: Let H be a $\beta - \omega$ -open set in X. Then $H \subset cl(int_{\omega}(cl(H)))$ and

 $cl(H) \subset cl(int_{\omega}(cl(H)))$. Thus, cl(H) is semi- ω -open. Put A = cl(H) and $K = H \cup (X \setminus cl(H))$. We have $H = cl(H) \cap K$ and cl(K) = X. This implies that $H = A \cap K$, where A is semi- ω -open and K is dense. Since X is submaximal, then K is open. By Proposition 2, $H = A \cap K$ is semi- ω -open.

Theorem 8. A subset H of a space (X, τ) is semi- ω -open if and only if there exists $U \in \tau_{\omega}$ such that $U \subset H \subset cl(U)$.

Proof. Let H be semi- ω -open. Then $H \subset cl(int_{\omega}(H))$. Take $int_{\omega}(H) = U$. Then, we have $U \subset H \subset cl(U)$.

Conversely, let $U \subset H \subset cl(U)$ for some $U \in \tau_{\omega}$. Since $U \subset H$, we have $U \subset int_{\omega}(H)$ and hence $cl(U) \subset cl(int_{\omega}(H))$. Thus we obtain $H \subset cl(int_{\omega}(H))$ and H is semi- ω -open.

Corollary 1. If A is a semi- ω -open set in a space (X, τ) and $A \subset B \subset cl(A)$, then B is semi- ω -open in X.

Proof. Since A is semi- ω -open, $A \subset cl(int_{\omega}(A)) \subset cl(int_{\omega}(B))$ for $A \subset B$. So $cl(A) \subset cl(int_{\omega}(B))$. Since $B \subset cl(A), B \subset cl(int_{\omega}(B))$. Thus B is semi- ω -open.

4. Properties of $\delta - \omega$ -Open Sets

Definition 10. A subset H of a space (X, τ) is said to be

- (i) $\delta \omega$ -open if $int_{\omega}(cl(H)) \subset cl(int_{\omega}(H))$.
- (ii) $\delta \omega$ -closed if $int(cl_{\omega}(H)) \subset cl_{\omega}(int(H))$.

The complement of $\delta - \omega$ -open set is called $\delta - \omega$ -closed.

Example 8. Let $X = \mathbb{R}$ with the usual topology τ_u . Let $H = \mathbb{Q}$. Then H is not $\delta - \omega$ -open, since $int_{\omega}(cl(\mathbb{Q})) = int_{\omega}(\mathbb{R}) = \mathbb{R}$ and $cl(int_{\omega}(\mathbb{Q})) = cl(\phi) = \phi$.

Example 9. Let $X = \mathbb{R}$ with the usual topology τ_u . Let H = (0, 1]. Then H is $\delta - \omega$ -open, since $int_{\omega}(cl((0, 1])) = int_{\omega}([0, 1]) = (0, 1)$ and $cl(int_{\omega}(H)) = cl(0, 1) = [0, 1]$.

Proposition 5. For a subset of a space (X, τ) , the following properties hold:

- (i) Every $\alpha \omega$ -open set is $\delta \omega$ -open.
- (ii) Every ωt -set is $\delta \omega$ -open.

Proof. (*i*) Since H is an $\alpha - \omega$ -open set, $H \subset int_{\omega}(cl(int_{\omega}(H))) \subset cl(int_{\omega}(H))$. Then we obtain $cl(H) \subset cl(int_{\omega}(H))$ and $int_{\omega}(cl(H)) \subset cl(H) \subset cl(int_{\omega}(H))$. Therefore H is $\delta - \omega$ -open.

(*ii*) Since H is an $\omega - t$ -set, $int_{\omega}(cl(H)) = int(H) \subset H$. Then we obtain

$$int_{\omega}(cl(H)) \subset int_{\omega}(H) \subset cl(int_{\omega}(H)).$$

Therefore H is $\delta - \omega$ -open.

Example 10. Let $X = \mathbb{R}$ with the usual topology τ_u .

- (i) Let H = (0, 1]. Then H is $\delta \omega$ -open but not $\alpha \omega$ -open, since $int_{\omega}(cl(H)) = (0, 1)$ and $cl(int_{\omega}(H)) = [0, 1]$.
- (ii) Let $H = \mathbb{Q}^*$. Then H is $\delta \omega$ -open but not ωt -set, since $int(\mathbb{Q}^*) = \phi$, $int_{\omega}(cl(\mathbb{Q}^*)) = \mathbb{R}$ and $cl(int_{\omega}(\mathbb{Q}^*)) = cl(\mathbb{Q}^*) = \mathbb{R}$.
- **Definition 11.** A subset H of a space (X, τ) is said to be $\beta \omega$ -closed if $int(cl_{\omega}(int(H))) \subset H$. The complement of $\beta - \omega$ -open set is called $\beta - \omega$ -closed.

Proposition 6. Let *H* be a subset of a space (X, τ) . Then *H* is $\beta - \omega$ -closed if and only if $int(cl_{\omega}(int(H))) = int(H)$.

Proof. Since H is $\beta - \omega$ -closed set, $int(cl_{\omega}(int(H))) \subset H$ and then we obtain $int(cl_{\omega}(int(H))) \subset int(H)$. But $int(H) \subset int(cl_{\omega}(int(H)))$. Thus we have $int(H) = int(cl_{\omega}(int(H)))$.

Conversely, let the condition hold. We have $int(cl_{\omega}(int(H))) = int(H) \subset H$. Therefore H is $\beta - \omega$ -closed.

Theorem 9. For a subset H of a space (X, τ) , the following properties are equivalent:

- (i) H is semi- ω -closed.
- (ii) *H* is $\beta \omega$ -closed and $\delta \omega$ -closed.

Proof. (*i*) \Rightarrow (*ii*): Let H be semi- ω -closed. By Theorem 2(iii), H is $\beta - \omega$ -closed. Since H is semi- ω -closed, $int(cl_{\omega}(H)) \subset H$ and $int(cl_{\omega}(H)) \subset int(H)$. It gives that $cl_{\omega}(int(cl_{\omega}(H))) \subset cl_{\omega}(int(H))$. Thus $int(cl_{\omega}(H)) \subset cl_{\omega}(int(cl_{\omega}(H))) \subset cl_{\omega}(int(H))$ and so H is $\delta - \omega$ -closed.

 $(ii) \Rightarrow (i)$: Since H is $\delta - \omega$ -closed, $int(cl_{\omega}(H)) \subset cl_{\omega}(int(H))$ and $int(cl_{\omega}(H)) \subset int(cl_{\omega}(int(H)))$. Since H is $\beta - \omega$ -closed, $int(cl_{\omega}(int(H))) \subset H$. Then $int(cl_{\omega}(H)) \subset H$ and so H is semi- ω -closed.

Remark 5. The concepts of $\beta - \omega$ -closedness and $\delta - \omega$ -closedness are independent.

Example 11.

- (i) Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, X, \mathbb{Q}^*\}$. Let $H = \mathbb{Q}^*$. Then H is $\delta \omega$ -closed but not $\beta \omega$ -closed, since \mathbb{Q} is not $\beta \omega$ -open.
- (ii) Let $X = \mathbb{R}$ with the usual topology τ_u . Let $H = \mathbb{Q}^*$. Then H is $\beta \omega$ -closed but not $\delta \omega$ -closed, since \mathbb{Q} is not $\delta \omega$ -open.

Theorem 10. Let (X, τ) be a space. Then a subset of X is $\alpha - \omega$ -open if and only if it is both $\delta - \omega$ -open and pre- ω -open.

Proof. Necessity: Let H be an $\alpha - \omega$ -open set. Then $H \subset int_{\omega}(cl(int_{\omega}(H)))$. It implies that $cl(H) \subset cl(int_{\omega}(H))$ and $int_{\omega}(cl(H)) \subset int_{\omega}(cl(int_{\omega}(H))) \subset cl(int_{\omega}(H))$. Hence, H is a $\delta - \omega$ -open set. On the other hand, since H is an $\alpha - \omega$ -open set, H is a pre- ω -open set.

Sufficiency: Let H be both $\delta - \omega$ -open and pre- ω -open. Since H is $\delta - \omega$ -open, we have $int_{\omega}(cl(H)) \subset cl(int_{\omega}(H))$ and hence $int_{\omega}(cl(H)) \subset int_{\omega}(cl(int_{\omega}(H)))$. Since H is pre- ω -open, we have $H \subset int_{\omega}(cl(H))$. Therefore we obtain that $H \subset int_{\omega}(cl(int_{\omega}(H)))$ which proves that H is an $\alpha - \omega$ -open set.

Remark 6. The concepts of $\delta - \omega$ -openness and pre- ω -openness are independent.

Example 12. Let $X = \mathbb{R}$ with the usual topology τ_{u} .

- (i) H = (0, 1] is $\delta \omega$ -open but not pre- ω -open.
- (ii) $H = \mathbb{Q}$ is pre- ω -open but not $\delta \omega$ -open.

Proposition 7. Let A and B be subsets of a space (X, τ) . If $A \subset B \subset cl(A)$ and A is $\delta - \omega$ -open in X, then B is $\delta - \omega$ -open in X.

Proof. Suppose that $A \subseteq B \subseteq cl(A)$ and A is $\delta - \omega$ -open in X. Then, we have $int_{\omega}(cl(A)) \subseteq cl(int_{\omega}(A))$. Since $A \subseteq B, cl(int_{\omega}(A)) \subseteq cl(int_{\omega}(B))$ and $int_{\omega}(cl(A)) \subseteq cl(int_{\omega}(B))$. Since $B \subseteq cl(A)$, we have $cl(B) \subseteq cl(cl(A)) = cl(A)$ and $int_{\omega}(cl(B)) \subseteq int_{\omega}(cl(A))$. Therefore we obtain that $int_{\omega}(cl(B)) \subseteq cl(int_{\omega}(B))$. This shows that B is a $\delta - \omega$ -open set.

Corollary 2. Let (X, τ) be a space. If $A \subset X$ is $\delta - \omega$ -open and dense in (X, τ) , then every subset of X containing A is $\delta - \omega$ -open.

Proof. It is obvious by Proposition 7.

5. Properties of Semi * – ω -Open Sets

Definition 12. A subset H of a space (X, τ) is said to be

- (i) semi^{*} ω -open if $H \subset cl_{\omega}(int(H))$.
- (ii) semi^{*} ω -closed if int_{ω}(cl(H)) \subset H.

The complement of a semi^{*} – ω -open set is called semi^{*} – ω -closed.

Example 13. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$.

- (i) Let $H = \{a\}$. Then H is semi^{*} ω -open, since $int(H) = \{a\}$ and $cl_{\omega}(int(H)) = \{a\}$.
- (ii) Let $H = \{c\}$. Then H is not semi^{*} ω -open, since $int(H) = \phi$ and $cl_{\omega}(int(H)) = \phi$.

Proposition 8. For a subset of a space (X, τ) , every semi^{*} – ω -open set is semi- ω -open.

Proof. If H is semi^{*} – ω -open set, then $H \subset cl_{\omega}(int(H)) \subset cl(int_{\omega}(H))$. Therefore H is semi- ω -open.

Example 14. Let $X = \mathbb{R}$ with the usual topology τ_u . Let $H = \mathbb{Q}^*$. Then H is semi- ω -open but not semi^{*} - ω -open, since $cl(int_{\omega}(H)) = cl(\mathbb{Q}^*) = \mathbb{R}$ and $cl_{\omega}(int(H)) = cl_{\omega}(\phi) = \phi$.

Proposition 9. A subset H of a space (X, τ) is semi^{*} $-\omega$ -open if and only if $cl_{\omega}(H) = cl_{\omega}(int(H))$.

Proof. If H is semi^{*} – ω -open set, then $H \subset cl_{\omega}(int(H))$ and $cl_{\omega}(H) \subset cl_{\omega}(int(H))$. But $cl_{\omega}(int(H)) \subset cl_{\omega}(H)$. Hence $cl_{\omega}(H) = cl_{\omega}(int(H))$.

Conversely, let the condition hold. We have $H \subset cl_{\omega}(H)$ and $cl_{\omega}(H) = cl_{\omega}(int(H))$. Therefore H is semi^{*} – ω -open.

Definition 13. A subset H of a space (X, τ) is said to be $\omega^* - t$ -set if $int_{\omega}(cl(H)) = int_{\omega}(H)$.

Example 15. Let $X = \mathbb{R}$ with the usual topology τ_u .

(*i*) Let H = (0, 1]. Then H is a $\omega^* - t$ -set.

(ii) Let $H = \mathbb{Q}^*$. Then H is not a $\omega^* - t$ -set.

Proposition 10. In a space (X, τ) , every closed set is a $\omega^* - t$ -set.

Proof. Let H be a closed set. Then H = cl(H) and we have $int_{\omega}(cl(H)) = int_{\omega}(H)$ which proves that H is a $\omega^* - t$ -set.

The converse of Proposition 10 is not true as can be seen from the following Example.

Example 16. Let $X = \mathbb{R}$ with the usual topology τ_u . Let H = (0, 1]. Then H is $\omega^* - t$ -set but not closed.

Proposition 11. In a space (X, τ) , every $\omega - t$ -set is a $\omega^* - t$ -set.

Proof. If H is a $\omega - t$ -set, then $int_{\omega}(cl(H)) = int(H) \subset int_{\omega}(H) \subset int_{\omega}(cl(H))$. Thus we have $int_{\omega}(cl(H)) = int_{\omega}(H)$ and hence H is a $\omega^* - t$ -set.

Example 17. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then $H = \{c\}$ is a $\omega^* - t$ -set but not a $\omega - t$ -set. Since $int_{\omega}(H) = H$, $int(H) = \phi$ and $int_{\omega}(cl(H)) = int_{\omega}(H) = H$, we have $int_{\omega}(cl(H)) = int_{\omega}(H)$ and $int_{\omega}(cl(H)) \neq int(H)$. This proves that H is a $\omega^* - t$ -set but not a $\omega - t$ -set.

Theorem 11. A subset H of a space (X, τ) is semi^{*} – ω -closed if and only if H is a ω^* – t-set.

Proof. Let H be a semi^{*} – ω -closed set in X. Then $X \setminus H$ is semi^{*} – ω -open. By Proposition 9, we have $cl_{\omega}(X \setminus H) = cl_{\omega}(int(X \setminus H))$. It follows that

$$X \setminus int_{\omega}(H) = cl_{\omega}(X \setminus cl(H)) = X \setminus int_{\omega}(cl(H)).$$

Thus, $int_{\omega}(cl(H)) = int_{\omega}(H)$ and hence H is a $\omega^* - t$ -set in X.

Conversely, let H be a $\omega^* - t$ -set. Then $int_{\omega}(cl(H)) = int_{\omega}(H) \subset H$. Therefore H is semi^{*} - ω -closed.

Proposition 12. If A and B are $\omega^* - t$ -sets of a space (X, τ) , then $A \cap B$ is a $\omega^* - t$ -set.

Proof. Let A and B be $\omega^* - t$ -sets. Then we have

$$int_{\omega}(A \cap B) \subset int_{\omega}(cl(A \cap B)) \subset int_{\omega}(cl(A) \cap cl(B))$$
$$= int_{\omega}(cl(A)) \cap int_{\omega}(cl(B)) = int_{\omega}(A) \cap int_{\omega}(B) = int_{\omega}(A \cap B).$$

Then $int_{\omega}(A \cap B) = int_{\omega}(cl(A \cap B))$ and hence $A \cap B$ is an $\omega^* - t$ -set.

Definition 14. A subset H of a space (X, τ) is said to be semi- ω -regular if H is semi- ω -open and a $\omega^* - t$ -set.

Example 18. Let $X = \mathbb{R}$ with the usual topology τ_u .

- (i) Let H = (0, 1]. Then H is semi- ω -regular.
- (ii) Let $H = \mathbb{R} \setminus \mathbb{Q}$. Then H is not semi- ω -regular, since H is not $\omega^* t$ -set.

Theorem 12. Let *H* be a subset of a space (X, τ) . Then *H* is semi- ω -regular if and only if *H* is both $\beta - \omega$ -open and semi^{*} $- \omega$ -closed.

Proof. If H is semi- ω -regular, then H is both semi- ω -open and a $\omega^* - t$ -set. Since every semi- ω -open set is $\beta - \omega$ -open, H is both $\beta - \omega$ -open and a $\omega^* - t$ -set. By Theorem 11, we obtain the result.

Conversely, let H be semi^{*} – ω -closed and $\beta - \omega$ -open. Since H is a semi^{*} – ω -closed, by Theorem 11 H is a $\omega^* - t$ -set. Since H is $\beta - \omega$ -open, $H \subset cl(int_{\omega}(cl(H))) = cl(int_{\omega}(H))$. Therefore H is semi- ω -open. Since H is both semi- ω -open and a $\omega^* - t$ -set, H is semi- ω -regular.

Remark 7. The concepts of $\beta - \omega$ -openness and semi^{*} – ω -closedness are independent.

- **Example 19.** (i) Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, X, \mathbb{Q}^*\}$. Then $H = \mathbb{Q}$ is semi^{*} $-\omega$ -closed but not $\beta \omega$ -open. Since $int_{\omega}(cl(H)) = int_{\omega}(H) = \phi \subset H$, H is semi^{*} $-\omega$ -closed. Again since $H \not\subseteq cl(int_{\omega}(cl(H))) = \phi$, H is not $\beta \omega$ -open.
 - (ii) Let $X = \mathbb{R}$ with the usual topology τ_u . Let $H = \mathbb{Q}$. Then H is $\beta \omega$ -open but not semi^{*} ω -closed, since $int_{\omega}(cl(H)) = int_{\omega}(\mathbb{R}) = \mathbb{R}$.

6. Properties of $\omega - \mathcal{R}$ -Closed Sets

Definition 15. A subset H of a space (X, τ) is called $\omega - \mathcal{R}$ -closed if $H = cl(int_{\omega}(H))$.

Theorem 13. Let (X, τ) be a space and H a subset of X. Then the following properties are equivalent.

- (i) $H \neq \phi$ is $\omega \mathcal{R}$ -closed.
- (ii) There exists a non-empty ω -open set G such that $G \subset H = cl(G)$.
- (iii) There exists a non-empty ω -open set G such that $H = G \cup (cl(G) G)$.

Proof. (*i*) \Rightarrow (*ii*): Suppose $H \neq \phi$ is an $\omega - \mathscr{R}$ -closed set. Then $H = cl(int_{\omega}(H))$. Let $G = int_{\omega}(H)$. G is the required ω -open set such that $G \subset H = cl(G)$.

 $(ii) \Rightarrow (iii)$: Since $H = cl(G) = G \cup (cl(G) - G)$ where G is a nonempty ω -open set, (iii) follows.

 $(iii) \Rightarrow (i): H = G \cup (cl(G) - G)$ implies that $H = cl(G) = cl(int_{\omega}(G)) \subset cl(int_{\omega}(H))$, since G is ω -open and $G \subset H$. Again $int_{\omega}(H) \subset H$ implies that $cl(int_{\omega}(H)) \subset cl(H) = cl(G) = H$. Therefore $H = cl(int_{\omega}(H))$ which implies that H is $\omega - \mathcal{R}$ -closed.

Theorem 14. Let *H* be a subset of a space (X, τ) . If *H* is $\beta - \omega$ -open, then cl(H) is $\omega - \Re$ -closed.

Proof. Suppose H is $\beta - \omega$ -open. Then $H \subset cl(int_{\omega}(cl(H)))$ and so $cl(H) \subset cl(int_{\omega}(cl(H))) \subset cl(H)$ which implies that $cl(H) = cl(int_{\omega}(cl(H)))$. Therefore cl(H) is $\omega - \mathscr{R}$ -closed.

Theorem 15. Let H be a subset of a space (X, τ) . Then the following properties are equivalent.

- (i) *H* is $\omega \mathcal{R}$ -closed.
- (ii) H is semi- ω -open and closed.
- (iii) *H* is $\beta \omega$ -open and closed.

Proof. (*i*) \Rightarrow (*ii*): If H is $\omega - \Re$ -closed, then $H = cl(int_{\omega}(H))$ and $cl(H) = cl(int_{\omega}(H))$. Since $H \subset cl(int_{\omega}(H))$, H is semi- ω -open. Also, H = cl(H) and so H is closed.

 $(ii) \Rightarrow (iii)$: It follows from the fact that every semi- ω -open set is a $\beta - \omega$ -open.

 $(iii) \Rightarrow (i)$: Suppose H is $\beta - \omega$ -open and closed. Then $H \subset cl(int_{\omega}(cl(H)))$ and H = cl(H). Now $cl(int_{\omega}(H)) \subset cl(H) = H$. Also, $H \subset cl(int_{\omega}(H))$. Therefore $H = cl(int_{\omega}(H))$ which implies that H is $\omega - \Re$ -closed.

Remark 8. (i) The concepts of semi- ω -openness and closedness are independent.

- (ii) The concepts of $\beta \omega$ -openness and closedness are independent.
- **Example 20.** (i) Let $X = \mathbb{R}$ with the usual topology τ . Let H = (0, 1]. Then H is semi- ω -open but not closed.
 - (ii) Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$. Let $H = \mathbb{Q}$. Then H is closed but not semi- ω -open.
- **Example 21.** (i) Let $X = \mathbb{R}$ with the usual topology τ_u . Let H = (0, 1]. Then H is $\beta \omega$ -open but not closed.
 - (ii) Let $X = \mathbb{R}$ with the topology $\tau_u = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$. Let $H = \mathbb{Q}$. Then H is closed but not $\beta \omega$ -open.

7. Further Properties

Definition 16. A space (X, τ) is called ω -submaximal if every ω -dense subset of X is ω -open.

Proposition 13. Every submaximal space is ω -submaximal.

Proof. Let $H \subset X$ be ω -dense. Then $X = cl_{\omega}(H) \subset cl(H)$ and X = cl(H). Thus H is dense in X. Since X is submaximal, H is open and hence ω -open in X. Therefore, X is ω -submaximal. \Box

Example 22. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{c\}, \{b, c\}\}$. Set $H = \{a, c\}$. Then cl(H) = X and $H \notin \tau$. Hence X is not submaximal but it is ω -submaximal, since the only ω -dense set is X.

Definition 17. A subset H of a space (X, τ) is called ω -codense if $X \setminus H$ is ω -dense.

Theorem 16. For a space (X, τ) , the following are equivalent.

- (i) X is ω -submaximal,
- (ii) Every ω -codense subset H of X is ω -closed.

Proof. (*i*) \Rightarrow (*ii*): Let H be a ω -codense subset of X. Then $X \setminus H$ is ω -dense and therefore $X \setminus H$ is ω -open, X being ω -submaximal by assumption. Thus H is ω -closed.

 $(ii) \Rightarrow (i)$: Let H be a ω -dense subset of X. Then $X \setminus H$ is ω -codense in X and by assumption $X \setminus H$ is ω -closed. Hence H is ω -open and thus X is ω -submaximal.

ACKNOWLEDGEMENTS The authors thank the referee(s) for his/her/their suggestions.

References

- [1] S. Al-Ghour. *Certain covering properties related to paracompactness*, Ph.D Thesis, University of Jordan, Amman, 1999.
- [2] A. Al-Omari and M. S. M. Noorani. *Regular generalized ω-closed sets*, International Journal of Mathematics and Mathematical Sciences, Article ID 16292, 11 pages. 2007. doi:10.1155/2007/1629
- [3] A. Al-Omari and M.S.M. Noorani. Contra- ω- continuous and Almost contra- ω- continuous, International Journal of Mathematics and Mathematical Sciences, Article ID 40469, 13 pages. 2007. doi:10.1155/2007/40469
- [4] K. Al-Zoubi and B. Al-Nashef. The topology of ω -open sets, Al-Manarch, 9(2), 169 179. 2003.
- [5] J. Dontchev. On submaximal spaces, Tamkang Journal of Mathematics, 26, 253 260. 1995.
- [6] R. Engelking. General topology, Heldermann Veriag Berlin, 2nd edition, 1989.
- [7] H. Z. Hdeib. ω-closed mappings, Revista Colombiana De Mathematics, 16, 65 78. 1982.
- [8] Khalid Y. Al-Zoubi. On generalized ω -closed sets, International Journal of Mathematics and Mathematical Sciences, 13, 2011 2021. 2005.
- [9] N. Levine. *Semi-open sets and semi-continuity in topological spaces*, American Mathematical Monthly, 70, 36 - 41. 1963.
- [10] T. Noiri, A. Al-Omari, and M. S. M. Noorani. *Weak forms of* ω *-open sets and decompositions of continuity*, European Journal of Pure and Applied Mathematics, 2, 73 84. 2009.
- [11] S. Willard. General Topology, Addison-Wesley, Reading, Mass, USA, 1970.