Perfect Morse Function on $S O(n)$

Mehmet Solgun

Bilecik Seyh Edebali University, Faculty of Sciences and Arts, Department of Mathematics, Bilecik, TURKEY

Abstract

In this work, we define a Morse function on $S O(n)$ and show that this function is indeed a perfect Morse function.

2010 Mathematics Subject Classifications: 57R70, 58E05
Key Words and Phrases: $S O(n)$, Morse functions, Perfect Morse functions.

1. Introduction

The main point of Morse Theory, which was introduced in [6], is investigating the relation between shape of a smooth manifold M and critical points of a specific real-valued function $f: M \rightarrow \mathbb{R}$, that is called Morse function. [5] and [4] are two of main sources about this subject, so mostly we will use their beautiful tools for defining a Morse function on $S O(n)$. Also, we will refer [2] to use homological properties and to determine the Poincaré polynomial of $S O(n)$. Perfect Morse functions are widely studied in [7], that is one of our inspiration to show that the function, we defined, is also perfect.

2. Preliminaries

In this section, we give some definitions and theorems which will be used in this paper.
Definition 1. Let M be an n-dimensional smooth manifold and $f: M \rightarrow \mathbb{R}$ be a smooth function. A point $p_{0} \in M$ is said to be a critical point of M if we have

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}=0, \frac{\partial f}{\partial x_{2}}=0, \ldots, \frac{\partial f}{\partial x_{n}}=0 \tag{1}
\end{equation*}
$$

with respect to a coordinate system $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ around p_{0}.

Email address: mehmet.solgun@bilecik.edu.tr

A point $c \in \mathbb{R}$ is said to be a critical value of $f: M \rightarrow \mathbb{R}$, if $f\left(p_{0}\right)=c$ for a critical point p_{0} of f.

Definition 2. Let p_{0} be a critical point of the function $f: M \rightarrow \mathbb{R}$. The Hessian of f at he point p_{0} is the $n \times n$ matrix

$$
H_{f}\left(p_{0}\right)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left(p_{0}\right) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}\left(p_{0}\right) \tag{2}\\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}\left(p_{0}\right) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}\left(p_{0}\right)
\end{array}\right]
$$

Since $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(p_{0}\right)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\left(p_{0}\right)$, the Hessian of f is a symmetric matrix.
Let p_{0} be a critical point of f and $c_{0} \in \mathbb{R}$ such that $f\left(p_{0}\right)=c_{0}$. Then, c_{0} is said to be a critical value of f. If p_{0} is a regular point of f, then c_{0} is said to be a regular value of f.

If a is a regular value of f, it can be shown that the set $f^{-1}(a)=\{p \in M \mid f(p)=a\}$ is an $n-1$ dimensional manifold [1].

Definition 3. A critical point of a function $f: M \rightarrow \mathbb{R}$ is called "non-degenerate point of f " if $\operatorname{det} H_{f}\left(p_{0}\right) \neq 0$. Otherwise, it is called "degenerate critical point".

Lemma 1. Let p_{0} be a critical point of a smooth function

$$
f: M \rightarrow \mathbb{R},\left(U, \varphi=\left(x_{1}, \ldots, x_{n}\right)\right),\left(V, \psi=\left(X_{1}, \ldots, X_{n}\right)\right)
$$

be two charts of p_{0}, and $H_{f}\left(p_{0}\right), \mathscr{H}_{f}\left(p_{0}\right)$ be the Hessians of f at p_{0}, using the charts (U, φ), (V, ψ) respectively. Then the following holds:

$$
\begin{equation*}
\mathscr{H}_{f}\left(p_{0}\right)=J\left(p_{0}\right)^{t} H_{f}\left(p_{0}\right) J\left(p_{0}\right) \tag{3}
\end{equation*}
$$

where $J\left(p_{0}\right)$ is the Jacobian matrix for the given coordinate transformation, defined by

$$
J\left(p_{0}\right)=\left[\begin{array}{ccc}
\frac{\partial x_{1}}{\partial X_{1}}\left(p_{0}\right) & \cdots & \frac{\partial x_{1}}{\partial X_{n}}\left(p_{0}\right) \tag{4}\\
\vdots & \ddots & \vdots \\
\frac{\partial x_{n}}{\partial X_{1}}\left(p_{0}\right) & \cdots & \frac{\partial x_{n}}{\partial X_{n}}\left(p_{0}\right)
\end{array}\right]
$$

and the matrix $J\left(p_{0}\right)^{t}$ is the transpose of $J\left(p_{0}\right)$.
For a critical point p_{0}, non-degeneracy does not depend on the choice of charts around p_{0}. The same argument is also true for degenerate critical points. In fact we have

$$
\mathscr{H}_{f}\left(p_{0}\right)=J\left(p_{0}\right)^{t} H_{f}\left(p_{0}\right) J\left(p_{0}\right)
$$

by the previous lemma, and hence

$$
\begin{equation*}
\operatorname{det} \mathscr{H}_{f}\left(p_{0}\right)=\operatorname{det} J\left(p_{0}\right)^{t} \operatorname{det} H_{f}\left(p_{0}\right) \operatorname{det} J\left(p_{0}\right) \tag{5}
\end{equation*}
$$

by using determinant function on both sides. On the other hand, the determinant of the Jacobian matrix is non-zero. So the statement " $\operatorname{det} \mathscr{H}_{f}\left(p_{0}\right) \neq 0$ " and $" \operatorname{det} H_{f}\left(p_{0}\right) \neq 0$ " are equivalent. In other words,

$$
\operatorname{det} \mathscr{H}_{f}\left(p_{0}\right) \neq 0 \Leftrightarrow \operatorname{det}_{f}\left(p_{0}\right) \neq 0 .
$$

Now a function $f: M \rightarrow \mathbb{R}$ is called a Morse function if any critical point of f is non-degenerate. From now on, we only consider a Morse function f.

Now, we introduce Morse lemma on manifolds.
Theorem 1 (The Morse Lemma). Let M be an n-dimensional smooth manifold and p_{0} be a nondegenerate critical point of a Morse function $f: M \rightarrow \mathbb{R}$. Then, there exists a local coordinate system ($X_{1}, X_{2}, \ldots, X_{n}$) around p_{0} such that the coordinate representation of f has the following form:

$$
\begin{equation*}
f=-X_{1}^{2}-X_{2}^{2} \ldots-X_{\lambda}^{2}+X_{\lambda+1}^{2}+\ldots+X_{n}^{2}+c \tag{6}
\end{equation*}
$$

where $c=f\left(p_{0}\right)$ and p_{0} corresponds to the origin $(0,0, \ldots, 0)$.
One may refer to [5] for the proof.
The number λ of minus signs in the equation (6) is the number of negative diagonal entries of the matrix $H_{f}\left(p_{0}\right)$ after diagonalization. By Sylvester's law, λ does not depend on how $H_{f}\left(p_{0}\right)$ is diagonalized. So, $\boldsymbol{\lambda}$ is determined by f and p_{0}. The number $\boldsymbol{\lambda}$ is called "the index of the non-degenerate critical point $p_{0}{ }^{\prime \prime}$. Obviously, λ is an integer between 0 and n. Note that,
(i) A non-degenerate critical point is isolated.
(ii) A Morse function on a compact manifold has only finitely many critical points [5].

3. A Morse Function on $S O$ (n)

In this section, we will define a Morse function on $S O(n)$.
The set of all $n \times n$ orthogonal matrices, $O(n)=\left\{A=\left(a_{i j}\right) \in M_{n}(\mathbb{R}): A A^{t}=I_{n}\right\}$ is a group with matrix multiplication. From the definition of $O(n)$,

$$
\operatorname{det} A= \pm 1, \text { for any } A \in O(n)
$$

An orthogonal matrix with determinant 1 is called rotation matrix and the set of this kind of matrices is also a group, called special orthogonal group and denoted by $S O(n)$. On the other hand, let $S_{n}(\mathbb{R})$ denote the set of symmetric $n \times n$ matrices. Since each symmetric matrix is uniquely determined by its entries on and above the main diagonal, that is a linear subspace of $M_{n}(\mathbb{R})$ of dimension $n(n+1) / 2$.

Now we define a function $\varphi: G L_{n}(\mathbb{R}) \longrightarrow S_{n}(\mathbb{R})$ by

$$
\varphi(A):=A^{t} A .
$$

Then, the identity matrix I_{n} is a regular value of φ [3].

Let $C \in S_{n}(\mathbb{R})$ with entries c_{i}, with $0 \leq c_{1}<c_{2}<\ldots<c_{n}$ fixed real numbers and $f_{C}: S O(n) \rightarrow \mathbb{R}$ be given by,

$$
\begin{equation*}
f_{C}(A):=<C, A>=c_{1} x_{11}+c_{2} x_{22}+\ldots+c_{n} x_{n n} \tag{7}
\end{equation*}
$$

where $A=\left(x_{i j}\right) \in S O(n)$.
Obviously, f_{C} is a smooth function. Now, we will determine its critical points.
Lemma 2. The critical points of the function f_{C} defined above are:

$$
\left[\begin{array}{cccc}
\pm 1 & 0 & \cdots & 0 \tag{8}\\
0 & \pm 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \pm 1
\end{array}\right]
$$

Proof. Let A be a critical point of f_{C}. Then the derivative of f_{C} at A must be zero. Consider the matrix given by a rotation of first and second coordinate $B_{12}(\theta)$ defined by

$$
B_{12}(\theta)=\left[\begin{array}{ccccc}
\cos \theta & -\sin \theta & 0 & \cdots & 0 \\
\sin \theta & \cos \theta & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

Then, $A B_{12}(\theta) \in S O(n)$ and the matrix $B_{12}(\theta)$ forms a curve on $S O(n)$. Moreover, $B_{12}(\theta)=A$ for $\theta=0$.

By the definition of f_{C}, and after computing the matrix product, we have

$$
\begin{equation*}
f_{C}\left(A B_{12}(\theta)\right)=c_{1}\left(x_{11} \cos \theta+x_{12} \sin \theta\right)+c_{2}\left(-x_{21} \sin \theta+x_{22} \cos \theta\right)+c_{3} x_{33}+\ldots+c_{n} x_{n n} \tag{9}
\end{equation*}
$$

By differentiating f in the direction of the velocity vector $\left.\frac{d}{d \theta} A B_{12}(\theta)\right|_{\theta=0}$ of the curve $A B_{12}(\theta)$ at A, we have

$$
\begin{equation*}
\left.\frac{d}{d \theta} f_{C}\left(A B_{12}(\theta)\right)\right|_{\theta=0}=c_{1} x_{12}-c_{2} x_{21} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{d}{d \theta} f_{C}\left(B_{12}(\theta) A\right)\right|_{\theta=0}=-c_{1} x_{21}+c_{2} x_{12} \tag{11}
\end{equation*}
$$

However, by the assumption that A is a critical point of f_{C}, we require these derivatives to be zero. i.e.

$$
\begin{array}{r}
c_{1} x_{12}-c_{2} x_{12}=0 \\
-c_{1} x_{21}+c_{2} x_{12}=0
\end{array}
$$

Solving this system for x_{12}, x_{21} gives $x_{12}=x_{21}=0$. We can carry out the similar calculation for $B_{i j}(\theta)$ with $i<j$, where $B_{i j}(\theta)$ is with the entries: $(i, i)=\cos \theta,(i, j)=-\sin \theta,(j, i)=\sin \theta$
and $(j, j)=\cos \theta$. Thus, for the matrix $A, x_{i j}=0$ whenever $i \neq j$. So, that is, a critical point of f_{C} is a diagonal matrix. On the other hand $A \in S O(n)$, so we have $A A^{t}=I_{n}$. So each entry on the main diagonal of A must be ± 1.

Conversely, let A be a matrix in the form (8). In order to check that A is a critical point, we need to compute the derivative of f_{C}. If we could find $n(n-1) / 2$ curves C_{i} going through A with velocity vector at A and linearly independent from each other. Since the velocity vector of C_{i} at A plays a role of a local coordinate of A, we only need to check that the derivative of $f_{C}\left(C_{i}\right)$ vanishes to see that $D f(A)=0$. Now, the claim is the curves C_{i} 's are in fact $A B_{i j} \theta$'s defined above. Let $\epsilon_{i}=A_{i i}$ where $A_{i i}$ is the i-th diagonal entry of $A\left(\epsilon_{i}= \pm 1\right)$. Then, the derivative of the matrix $A B_{i j}(\theta)$ at A is (we did for the case B_{12}, but it is same for other indices with $i<j$),

$$
\left.\frac{d}{d \theta} A B_{12}(\theta)\right|_{\theta=0}=\left[\begin{array}{ccccc}
0 & -\epsilon_{1} & 0 & \cdots & 0 \\
\epsilon_{2} & 0 & 0 & \cdots & 0 \\
0 & 0 & \ddots & & 0 \\
\vdots & \vdots & & & \vdots \\
0 & 0 & \cdots & & 0
\end{array}\right]
$$

This matrix is regarded as a vector in $\mathbb{R}^{n^{2}}$. By considering all $1 \leq i \leq j \leq n$, these matrices (vectors) form a basis for the tangent space $T_{A} S O(n)$.

So, for a given matrix A in the form (8), it is easy to compute that, the derivative of f_{C} at A is zero. This means nothing but A is a critical point of f_{C}.

After now, we know the coordinate system of $S O(n)$ and the critical points of the the given function f_{C}. It is straightforward to compute the Hessian of f_{C} at A. Suppose that A is a critical matrix with diagonal entries $A_{i i}=\epsilon_{i}= \pm 1$. Then, we want to compute

$$
\left.\frac{\partial^{2}}{\partial \theta \partial \varphi} f_{C}\left(A B_{\alpha \beta}(\theta) B_{\gamma \delta}(\varphi)\right)\right|_{\theta=0, \varphi=0} .
$$

Notice that is linear $A B_{\alpha \beta}(\theta) B_{\gamma \delta}(\varphi)$ is linear in θ and in φ, and f_{C} is a linear function. Thus, we can bring the derivative inside f_{C}. So,

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial \theta \partial \varphi} f_{C}\left(A B_{\alpha \beta}(\theta) B_{\gamma \delta}(\varphi)\right)\right|_{\theta=0, \varphi=0} & =f_{C}\left(\left.\left.A \frac{d}{d \theta} B_{\alpha \beta}(\theta)\right|_{\theta=0} \frac{d}{d \varphi} B_{\gamma \delta}(\varphi)\right|_{\varphi=0}\right. \\
& = \begin{cases}-c_{\alpha} \epsilon_{\alpha}-c_{\beta} \epsilon_{\beta} & \text { if } \alpha=\gamma, \beta=\delta \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This calculation becomes easier if we consider the matrix multiplication $c_{i j}=\sum_{k} a_{i k} b_{k j}$. The calculation above shows that the Hessian matrix is diagonal. Since $c_{\alpha} \neq c_{\beta}$ for $\alpha \neq \beta$, the entries on the diagonal are non-zero. Therefore, A is a non-degenerate critical point of f_{C}, meaning that f_{C} is a Morse function on $S O(n)$.

Assume that the subscripts i of the diagonal entries ϵ_{i} of $A, 1 \leq i \leq n$, with $\epsilon_{i}=1$ are

$$
i_{1}, i_{2}, \ldots, i_{m}
$$

in ascending order. Then the index of the critical point A (the number of minus signs on the diagonal of Hessian) is

$$
\left(i_{1}-1\right)+\left(i_{2}-1\right)+\ldots+\left(i_{m}-1\right)
$$

And the index is 0 if all ϵ_{i} 's are -1 . Also, the critical value at the critical point is

$$
2\left(c_{i 1}+c_{i 2}+\cdots+c_{i m}\right)-\sum_{i=0}^{n} c_{i}
$$

Considering that $\operatorname{det} A=1$, there are 2^{n-1} critical points [4].

4. Perfect Morse Functions

First, we will give the basic notions.
Definition 4. The Poincaré polynomial of the n-dimensional manifold M is defined to be

$$
\begin{equation*}
P_{M}(t)=\sum_{k=0}^{n} b_{k}(M) t^{k} \tag{12}
\end{equation*}
$$

where $b_{k}(M)$ is the k-th Betti number of M.
Definition 5. Let $f: M \rightarrow \mathbb{R}$ be a Morse function. Then, the Morse polynomial of f is defined to be

$$
\begin{equation*}
P_{f}(t)=\sum_{k=0}^{n} \mu_{k} t^{k} \tag{13}
\end{equation*}
$$

where μ_{k} is the number of critical points of f of index k.
Theorem 2 (The Morse Inequality). Let $f: M \rightarrow \mathbb{R}$ be a Morse function on a smooth manifold M. Then, there exists a polynomial $R(t)$ with non-negative integer coefficients such that

$$
P_{f}(t)=P_{M}(t)+(1+t) R(t)
$$

One may refer to [7] for proof.
A Morse function $f: M \rightarrow \mathbb{R}$ is called a perfect Morse function if $P_{f}(t)=P_{M}(t)$ [7].
Now, we show that the function f_{C} on $S O(n)$ defined in the previous section is also a perfect Morse function.

Theorem 3. The function

$$
f_{C}: S O(n) \rightarrow \mathbb{R}, \quad f_{C}(A):=\langle C, A\rangle
$$

is a perfect Morse function where $C \in S_{n}(\mathbb{R})$.

Proof. First we show that the Morse polynomial is,

$$
\begin{equation*}
P_{f_{C}}(t)=(1+t)\left(1+t^{2}\right) \cdots\left(1+t^{n-1}\right) \tag{14}
\end{equation*}
$$

We use induction method. For making it easier, we label the function f_{C} with n as $f_{C n}: S O(n) \rightarrow \mathbb{R}$.

Trivially, for $n=1, P_{f_{C 1}}(t)=1$ and for $n=2, P_{f_{C 2}}(t)=1+t$. Assume that $P_{f_{C_{n}}}(t)=(1+t)\left(1+t^{2}\right)+\ldots+\left(1+t^{n-1}\right)$. Then, we need to show that $P_{f_{C_{n+1}}}(t)$ satisfies the form (14).

We may consider that $S O(n+1)$ gets all the critical points from $S O(n)$ with extra bottom entry $((n+1)$-th diagonal entry), which is either +1 or -1 . Say the set of all these points are C_{n+1}^{+}and C_{n+1}^{-}respectively.

Let $A \in C_{n+1}^{-}$. Then we have $\tilde{A} \in O(n)$ such that, A is the matrix \tilde{A} with extra bottom entry -1 . Then, by the definition of index, we obtain

$$
\operatorname{ind}(A)=\operatorname{ind}(\tilde{A})
$$

Thus, for the elements of C_{n+1}^{-}the equation (14) holds. Let $A \in C_{n+1}^{+}$. Then we have $\tilde{A} \in S O(n)$ such that, A is the matrix with \tilde{A} with the bottom entry +1 . Thus, by the definition of index, we obtain

$$
\operatorname{ind}(A)=\operatorname{ind}(\tilde{A})+n
$$

So, by the definition of Morse polynomial, we gain

$$
\begin{equation*}
P_{f_{C_{n+1}}}(t)=P_{f_{C_{n}}}(t)\left(1+t^{n}\right)=(1+t)\left(1+t^{2}\right) \ldots\left(1+t^{n-1}\right)\left(1+t^{n}\right) \tag{15}
\end{equation*}
$$

Now, we find out the Poincaré polynomial of $S O(n)$. The graded abelian group $H_{*}\left(S O(n), \mathbb{Z}_{2}\right)$ is isomorphic to the graded group coming from the exterior algebra [2]

$$
\wedge_{\mathbb{Z}_{2}}\left[e_{1}, e_{2}, \ldots, e_{n-1}\right]
$$

Let say $A(n)=\wedge_{\mathbb{Z}_{2}}\left[e_{1}, e_{2}, \ldots, e_{n-1}\right]$ where the degree of $e_{i},\left|e_{i}\right|=i$. Then, we obtain

$$
\left|e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{k}}\right|=\sum_{j=1}^{k}\left|e_{i_{j}}\right|=\sum_{j=1}^{k} i_{j}
$$

If we define $a(n)_{k}=\operatorname{dim} \mathbb{Z}_{2}\left(A(n)_{k}\right)$, then by the result in [2], $a(n)_{k}$ is nothing but the k-th Betti number of $S O(n)$. Hence, the polynomial

$$
P(A(n))=\sum_{i=0}^{\infty} a(n)_{i} t^{i}
$$

is the Poincaré polynomial of $S O(n)$.
Now, our claim is that The Poincaré polynomial of $S O(n)$ is

$$
P(A(n))=(1+t)\left(1+t^{2}\right) \ldots\left(1+t^{n-1}\right)
$$

Let $B(A(n))$ be the basis of $A(n)$. For instance, $B(A(1))=$ trivial, $B(A(2))=\left\{1, e_{1}\right\}$, $B(A(3))=\left\{1, e_{1}, e_{2}, e_{1} \wedge e_{2}\right\}$ etc.

In this sense, we obtain

$$
B(A(n+1))=\left(B(A(n)) \wedge e_{n}\right) \sqcup B(A(n)) .
$$

We use induction method. Indeed, here we have very similar arguments with the previous claim. The variable e_{n} has the same role with " the extra bottom entry ± 1 ". Then, we have the polynomial $P(A(n))=\sum_{b \in B(A(n))} a(n)_{b} t^{|b|}$. Trivially, $P(A(1))=1$ and $P(A(2))=1+t$. By the induction hypothesis, assume that

$$
P(A(n))=\sum_{b \in B(A(n))} a(n)_{b} t^{|b|}=(1+t)\left(1+t^{2}\right) \cdots\left(1+t^{n-1}\right)
$$

For the polynomial $P(A(n+1))$, pick an element $b \in B(A(n+1))$. Then, b is in either $B(A(n))$ or $B(A(n)) \wedge e_{n}$. For $b \in B(A(n+1))$, trivially, $P(A(n+1))$ has the desired form. If $b \in B(A(n)) \wedge e_{n}$, then by the definition of degree, there is $\tilde{b} \in B(A(n))$ such that $|b|=|\tilde{b}|+n$. Thus, by the definition of $P(A(n))$, we obtain

$$
\begin{equation*}
P(A(n+1))=(1+t)\left(1+t^{2}\right) \cdots\left(1+t^{n}\right) \tag{16}
\end{equation*}
$$

which completes the proof.
Thereby, we have shown that, for the given Morse function $f_{C}: S O(n) \rightarrow \mathbb{R}, P_{M}(t)=P_{f_{C}}(t)$, meaning that f_{C} is a perfect Morse function.

References

[1] D.B. Gauld. Differential topology: An Introduction. Marcel Dekker, New York, 1982.
[2] A. Hatcher. Algebraic Topology. Cambridge University Press, New York, 3rd edition, 2002.
[3] J.M. Lee. Introduction to Smooth Manifolds. Springer, New York, 2nd edition, 2012.
[4] Y. Matsumoto. An Introduction to Morse Theory. American Mathematical Society, Translations of Mathematical Monographs, 208, Providence, RI, 2002.
[5] J.W. Milnor. Morse Theory. Princeton University Press, New Jersey, USA, 1963.
[6] J. Morse. The foundations of a theory of the calculus of variations in the large in m-space. Transactions of the American Mathematical Society, 30:213-274, 1928.
[7] L.I. Nicolaescu. An Invitation to Morse Theory. Springer, New York, 2nd edition, 2011.

