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Abstract. In this paper, some properties of αgrw-closed sets are discussed and also some characteri-

zations of αgrw-closed sets are studied in topological spaces.
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1. Introduction

In 2013, αgrw-closed sets are introduced and studied by Selvanayaki and Gnanambal

Ilango [14] and some basic properties of αgrw-closed sets are investigated. The class of αgrw-

closed sets properly lies between the class of rw-closed sets and the class of gprw-closed

sets. In 2007, Benchalli and Wali [1] have introduced a new type of Kernel known as regular

semi kernel.The aim of this paper is to study some properties of αgrw-closed sets and some

characterizations of it.

Throughout this paper, space (X ,τ) (or simply X ) always means a topological space on

which no separation axioms are assumed unless explicitly stated. For a subset A of a space

X , cl(A), int(A) and X −A (or Ac)denote the closure of A, the interior of A and the complement

of A in X , respectively.

2. Preliminaries

Definition 1. A subset A of a topological space (X ,τ) is called

(i) regular open [15] if A= int(cl(A)) and regular closed if A= cl(int(A)).
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(ii) semi-open [7] if A⊆ cl(int(A)) and semi-closed if int(cl(A)) ⊆ A.

(iii) α-open [13] if A⊆ int(cl(int(A))) and α-closed [12] if cl(int(cl(A))) ⊆ A.

Definition 2 ([2]). A subset A of a space (X ,τ) is called regular semi-open if there is a regular
open set U such that U ⊆ A⊆ cl(U). The family of all regular semi-open sets of X is denoted by
RSO(X ).

Definition 3 (Noiri [10]). A subset A of a space (X ,τ) is said to be semi-regular open if it is both
semi-open and semi-closed.

The family of all semi-regular open sets of X is denoted by SR(X ). On other hand, Maio

and Noiri defined a subset A of X to be semi-regular open if A= sint(scl(A)). However, these

three notions are equivalent, which is given in the following theorem.

Theorem 1 ([10]). For a subset A of a space X , the followings are equivalent:

(i) A∈ SR(X )(= RSO(X )),

(ii) A= sint(scl(A)),

(iii) there exists a regular open set U of X such that U ⊆ A⊆ cl(U).

Definition 4. A subset A of a topological space (X ,τ) is called

(i) generalized closed (briefly g-closed) [8] if cl(A) ⊆ U whenever A⊆ U and U is open in X .

(ii) α-generalized closed (briefly αg-closed)[11] if αcl(A) ⊆ U whenever A⊆ U and U is open
in X .

(iii) α-generalized regular weakly closed (briefly αgrw-closed)[14] if αcl(A) ⊆ U whenever
A⊆ U and U is regular semi-open in X .

The set of all αgrw-closed sets in (X ,τ) is denoted by αgrwC(X ).

Definition 5 ([9]). A topological space (X ,τ) is said to be s-normal if for each pair of disjoint
closed sets A and B, there exists disjoint semi-open sets U, V such that A⊆ U and B ⊆ V .

Definition 6 ([1]). The intersection of all regular semi-open subsets of (X ,τ) containing A is
called the regular semi-kernel of A and is denoted by rsker(A).

Theorem 2 ([3]). If A is open and S is semi-open in a topological space X, then A∩S is semi-open
in X .

Lemma 1 ([1]). Let A⊆ Y ⊆ X , where X is a topological space and Y is an open subspace of X .
If A∈ RSO(X ), then A∈ RSO(Y ).

Lemma 2 ([1]). Let Y be regular open in X and U be a subset of Y . Then U is regular semi-open
in X if and only if U is regular semi-open in the subspace Y .

Lemma 3 ([6]). Let x be a point of (X ,τ). Then {x} is either nowhere dense or pre-open.

Lemma 4 ([5]). If A is regular semi-open in (X ,τ), then X − A is also regular semi-open.

Lemma 5 ([1]). For any subset A of (X ,τ), A⊆ rsker(A).
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3. αgrw-Closed Sets

Proposition 1. In a space (X ,τ), if RSO(X ) = {;, X }, then every subset of X is an αgrw-closed
set.

Proof. Let RSO(X ) = {;, X } and A be any subset of X . Suppose A= ;, then A is an αgrw-

closed set in X. Suppose A 6= ;, then X is the only regular semi-open set containing A and so

αcl(A) ⊆ X . Hence A is αgrw-closed.

Remark 1. The converse of the above proposition need not be true as seen from the following
example.

Example 1. Let X = {a, b, c} with topology τ = {;, {a}, {b, c}, X }. Then every subset of X is
αgrw-closed in X but RSO(X ) = {;, {a}, {b, c}, X }.

Proposition 2. Every subset of (X ,τ) is αgrw-closed if and only if

RSO(X ,τ) ⊆ {F ⊆ X : F c ∈ τα},

where τα is the topology generated by the α-open sets in (X ,τ).

Proof. Suppose that every subset of (X ,τ) is αgrw-closed. Let U ∈ RSO(X ,τ). Since

U ⊆ U and U is αgrw-closed, we have αcl(U) ⊆ U . Thus U ∈ {F ⊆ X : F c ∈ τα} and hence

RSO(X ,τ) ⊆ {F ⊆ X : F c ∈ τα}.
Conversely, assume that RSO(X ,τ) ⊆ {F ⊆ X : F c ∈ τα}. Let A be any subset of (X ,τ) such

that A⊆ U , where U is regular semi-open. Thus U is α-closed and so αcl(A) ⊆ U . Hence A is

αgrw-closed in X.

Proposition 3. If A is both open and g-closed in X , then it is αgrw-closed in X.

Proof. Let A be open and g-closed in X. Let A ⊆ U and U be regular semi-open in X. Now

A⊆ A, we have cl(A) ⊆ A. This implies αcl(A) ⊆ U . Hence A is αgrw-closed in X .

Remark 2. If A is both open and αgrw-closed in X , then A need not be g-closed in X .

Example 2. Let X = {a, b, c} with topology τ = {;, {a}, {b}, {a, b}, X }.Then A= {a, b} is both
open and αgrw-closed but not g-closed.

Proposition 4. If A is regular semi-open and αgrw-closed, then A is α-closed.

Proof. Suppose A is regular semi-open and αgrw-closed. We have αcl(A) ⊆ A. Since

A⊆ αcl(A) always, αcl(A) = A. Hence A is α-closed.

Example 3. In Example 2, the set {b, c} is α-closed and αgrw-closed but is not regular semi-open.

Corollary 1. Let A be regular semi-open and αgrw-closed in X. Then A∩ F is αgrw-closed in X,
where F is α-closed.
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Proof. Since A is regular semi-open and αgrw-closed then by Proposition 4, we have A is

α-closed. Therefore A∩ F is α-closed, since F is α-closed. Hence A∩ F is αgrw-closed.

Proposition 5. If A is both open and αg-closed, then A is αgrw-closed.

Proof. Let A be an open and αg-closed. Let A⊆ U and U be regular semi-open. Now A⊆ A
and by hypothesis αcl(A) ⊆ A. Therefore αcl(A) ⊆ U . Hence A is αgrw-closed.

Remark 3. If A is both open and αgrw-closed, then A need not be αg-closed.

Example 4. Let X = {a, b, c, d} with topology τ = {;, {a}, {b}, {a, b}, {a, b, c}, X }. Then the
subsets {a, b} and {a, b, c} are αgrw-closed and open but not αg-closed.

Remark 4. Difference of two αgrw-closed sets is not generally αgrw-closed.

Example 5. Let X = {a, b, c, d} with topology τ= {;, {a}, {b}, {a, b}, {a, b, c}, X }. Then the sets
A= {a, c, d} and B = {c, d} are αgrw-closed but A− B = {a} is not αgrw-closed.

Proposition 6. Let B ⊆ A⊆ X . If A is open in X , then A∈ αgrwC(X ) implies A∈ αgrwC(Y ).

Proof. Let A be αgrw-closed in X and let A⊆ G where G is regular semi-open in Y . Then

G = U ∩ Y , where U is regular semi-open in X by Lemma 1. This implies A ⊆ U . Since A is

αgrw-closed in X , αcl(A) ⊆ U and so αcl(A) ∩ Y ⊆ U ∩ Y . Therefore αclY (A) ⊆ G. Hence

A∈ αgrwC(Y ).

Proposition 7. Suppose B ⊆ A ⊆ X , B is αgrw-closed relative to A and A is both regular open
and αgrw-closed subset of X . Then B is αgrw-closed in X .

Proof. Let B ⊆ U and U be regular semi-open in X . Then we have B ⊆ A∩ U . Since A is

open and U is semi-open in X by Theorem 2, A∩ U is semi-open in X . Since every regular-

open set is regular semi-open and every regular semi-open set is semi-closed, A and U are

semi-closed. Therefore A∩ U is semi-closed in X . Thus A∩ U is regular semi-open in X . Also

A∩ U ⊆ A ⊆ X and A is open subspace of X by Lemma 1, A∩ U is regular semi-open in A.

Since B is αgrw-closed relative to A, αclA(B) ⊆ A∩ U . But αclA(B) = A∩αcl(B). This implies

A∩αcl(B) ⊆ A∩ U and we have A∩αcl(B) ⊆ U . Since A is regular open and αgrw-closed by

Proposition 4, αcl(A) = A and so αcl(B) ⊆ A. Thus αcl(B) ⊆ U and hence B is αgrw-closed in

X.

Proposition 8. If a subset A of (X ,τ) is αgrw-closed, then αcl(A) − A contains no non-empty
regular closed set.

Proof. Suppose that A isαgrw-closed in (X ,τ) and F be a regular closed subset ofαcl(A)−A.

Then A⊆ F c . Since every regular open set is regular semi-open and A is αgrw-closed,

αcl(A) ⊆ F c . Consequently F ⊆ [αcl(A)]c . Thus F ⊆ αcl(A)∩ [αcl(A)]c = ;. Hence αcl(A)− A
contains no non-empty regular closed set.
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Remark 5. The converse of the above proposition need not be true. In Example 2, let A = {a}.
Then αcl(A)−A= {c} does not contain non-empty regular closed set, but A is not an αgrw-closed
set.

Proposition 9. Let A⊆ Y ⊆ X and Y is regular open in X then A is αgrw-closed in Y whenever
A is αgrw-closed in X .

Proof. Let A be αgrw-closed in X and Y be regular open subset of X . Let U be any regular

semi-open set in Y such that A⊆ U . By Lemma 2, U is regular semi-open in X . Then we have

αcl(A) ⊆ U . That is Y ∩ αcl(A) ⊆ Y ∩ U = U . Thus αclY (A) ⊆ U and hence A is αgrw-closed

in Y .

Proposition 10. A subset A of (X ,τ) is αgrw-closed if and only if αcl(A) ⊆ rsker(A).

Proof. Suppose that A is αgrw-closed. Let x ∈ αcl(A). Suppose x /∈ rsker(A), then there

is a regular semi-open set U containing A such that x /∈ U . Since U is regular semi-open

containing A, we have x /∈ αcl(A), which is a contradiction. Thus αcl(A) ⊆ rsker(A).
Conversely, let αcl(A) ⊆ rsker(A). If U is any regular semi-open set containing A, then

αcl(A) ⊆ rsker(A) ⊆ U . Therefore A is αgrw-closed.

Remark 6 ([4]). In the notion of Lemma 3, we may consider the following decomposition of a
given topological space (X ,τ), namely X = X1 ∪ X2, where X1 = {x ∈ X : {x} is nowhere dense}
and X2 = {x ∈ X : {x} is preopen}.

Proposition 11. For any subset A of (X ,τ), X2 ∩αcl(A) ⊆ rsker(A).

Proof. Let x ∈ X2 ∩ αcl(A) and suppose that x /∈ rsker(A). Then there is a regular semi-

open set U containing A such that x /∈ U . If F = X −U , then F is regular semi-closed and so F
is semi-closed. We have scl({x}) = {x} ∪ int(cl({x})) ⊆ F . Since αcl({x}) ⊆ αcl(A), we have

int(cl({x})) ⊆ A∪ int(cl(A)). Again since x ∈ X2, we have x /∈ X1 and so int(cl({x})) 6= ;.
Therefore there has to be some point y ∈ A∩ int(cl({x})) and hence y ∈ F∩A, a contradiction.

Thus x ∈ rsker(A). Hence X2 ∩αcl(A) ⊆ rsker(A).

Proposition 12. For any subset A of (X ,τ), if X1 ∩αcl(A) ⊆ A, then A is αgrw-closed in X .

Proof. Suppose that X1 ∩ αcl(A) ⊆ A. Then X1 ∩ αcl(A) ⊆ rsker(A), since A ⊆ rsker(A).
Now αcl(A) = X ∩αcl(A) = (X1∪X2)∩αcl(A) = (X1∩αcl(A))∪(X2∩αcl(A)) ⊆ rsker(A), since

X1 ∩αcl(A) ⊆ rsker(A) and by Proposition 11. Thus A is αgrw-closed by Proposition 10.

Proposition 13. Let X be a regular space in which every regular semi-open subset is open. If A is
compact subset of X , then A is αgrw-closed.

Proof. Let A⊆ U and U be regular semi-open. By assumption U is open in X . Since A is a

compact subset of a regular space X , then there exists a closed set V such that

A⊆ V = cl(V ) ⊆ U . Thus cl(V ) ⊆ U and so αcl(A) ⊆ U . Hence A is αgrw-closed.
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Proposition 14. If (X ,τ) is s-normal and F ∩ A = ;, where F is regular semi-open and A is
αgrw-closed , then there exist disjoint semi-open sets S1 and S2 such that A⊆ S1 and F ⊆ S2.

Proof. Since F is regular semi-open and F ∩ A= ;. Then A⊆ F c and so αcl(A) ⊆ F c . Thus

αcl(A) ∩ F = ;. Since αcl(A) and F are semi-closed and X is s-normal, there exist semi-open

sets S1 and S2 such that αcl(A) ⊆ S1 and F ⊆ S2. This implies A⊆ S1 and F ⊆ S2.

Remark 7. Disjoint αgrw-closed sets in a semi-normal space cannot be separated by semi-open
sets. In Example 1, the space (X ,τ) is s-normal, but {a, b} and {c} are disjoint αgrw-closed sets
which cannot be separated by disjoint semi-open sets.

Proposition 15. If (X ,τ) is normal in which every α-closed set is closed and F ∩ A = ;, where
F is regular closed and A is αgrw-closed then there exist disjoint open sets O1 and O2 such that
A⊆ O1 and F ⊆ O2.

Proof. Similar to Proposition 14.
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