EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 1, 2016, 48-56 ISSN 1307-5543 – www.ejpam.com

A Note on Primary and Weakly Primary Submodules

Gulsen Ulucak^{1,*}and Rabia Nagehan Uregen²

- ¹ Department of Mathematics, Faculty of Science, Gebze Technical University, 141 41400, Kocaeli, Turkey
- ² Yildiz Technical University, Graduate School of Natural and Applied Sciences, 34349, Istanbul, Turkey

Abstract. In this paper, the generalizations of primary submodules and weakly primary submodules are proposed as P(N)-locally primary submodules and P(N)-locally weakly primary submodules, respectively. The relationships of these submodules are investigated extensively.

2010 Mathematics Subject Classifications: 13A15, 13C99, 13F05

Key Words and Phrases: Primary, Weakly primary, P(N)-locally primary, P(N)-locally weakly primary.

1. Introduction

Throughout this paper, we assume that all rings are commutative with identity $1 \neq 0$. An ideal I of R is called a proper ideal if $I \neq R$. Then the radical of a proper ideal I of R is denoted by rad(I) and $rad(I) = \{x \in R \mid x^n \in I \text{ for some positive integer } n\}$. A proper ideal P of R is called prime (primary) if $ab \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$ (either $a \in P$ or $b^n \in P$ for some positive integer n). A proper ideal P of R is said to be a weakly prime ideal if $0 \neq ab \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b \in P$, and it is called a weakly primary ideal if $0 \neq ab \in P$ for some $a, b \in R$ implies that either $a \in P$ or $b^n \in P$ for some positive integer n (see [2, 3]).

Let M be an R-module. A submodule N of M is called a proper submodule if $N \neq M$. A proper submodule N of M is called a prime submodule if $rm \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $rM \subseteq N$ and it is said to be a weakly prime submodule if $0 \neq rm \in N$ for some $r \in R$ and $m \in M$ implies that either $m \in N$ or $rM \subseteq N$. A non empty subset S of R is said to be multiplicative closed set if $0 \notin S$ and whenever $a, b \in S$, then $ab \in S$. Let S be a multiplicative closed set in R. It can be easily seen that M_S is an R_S -module under the operations $\frac{a}{s} + \frac{b}{u} = \frac{ua+sb}{su}$ and $\frac{r}{v} = \frac{ra}{vs}$ for any $\frac{r}{v} \in R_S$ and $\frac{a}{s}$, $\frac{b}{u} \in M_S$ [5]. A proper submodule N of M is said to be S(N)-locally prime (S(N)-weakly prime) submodule if $N_{\mathfrak{M}}$ is a prime (a weakly prime) submodule of $M_{\mathfrak{M}}$ for each maximal ideal \mathfrak{M} with $S(N) \subseteq \mathfrak{M}$ [4].

Email addresses: gulsenulucak@gtu.edu.tr (G. Ulucak), rnuregen@yildiz.edu.tr (R. Uregen)

48

^{*}Corresponding author.

A proper submodule N of M is said to be a primary submodule if $rm \in N$ for some $r \in R$, $m \in M$ implies that either $m \in N$ or $r^n M \subseteq N$ for some positive integer n and it is said to be a weakly primary submodule if $0 \neq rm \in N$ for some $r \in R$, $m \in M$ implies that either $m \in N$ or $r^n M \subseteq N$ for some positive integer n. The ideal $\{r \in R \mid rM \subseteq N\}$ will be denoted by (N : M) and $(0 : N) = \{r \in R \mid rN = 0\}$ where N is a submodule of M. Then the annihilator of M is (0 : M) where $(0 : M) = \{r \in R \mid rM = 0\}$. An R-module M is called a faithful module if (0 : M) = (0). Note that if N is a primary submodule of M, then (N : M) is a primary ideal of R and $rad(N : M) = \{r \in R \mid r^n M \subseteq N \text{ for some positive integer } n\}$ is a prime ideal of R ([1, 6, 7]).

Main aim is to obtain the two generalization on primary submodules and weakly primary submodules of an R-module M.Let N be a proper submodule of M. An element $r \in R$ is said to be primary to N if $r^n m \in N$, where $m \in M$ and n is a positive integer, then $m \in N$. Then $r \in R$ is said to be not primary to N if $r^n m \in N$ for some positive integer n and for some $m \in M \setminus N$. The set of all elements of R that are not primary to N is denoted by P(N). Then we get $P(N) = \{r \in R \mid r^n m \in N \text{ for some positive integer } n$, for some element $m \in M \setminus N\}$. If N = (0), then $P((0)) = \{r \in R \mid r^n m = 0 \text{ for some positive integer } n$, for some $0 \neq m \in M\}$. A proper submodule N of M is said to be an \mathfrak{M} -primal if P(N) forms an ideal of R.

2. P(N)-Locally Primary and P(N)-Locally Weakly Primary Submodules

Definition 1. Let N be a proper submodule of an R-module M. Then N is called a P(N)-locally primary submodule of M if $N_{\mathfrak{M}}$ is a primary submodule of $M_{\mathfrak{M}}$ for all maximal ideal \mathfrak{M} where $P(N) \subseteq \mathfrak{M}$.

Definition 2. A proper submodule N of an R-module M is called a P(N)-locally weakly primary submodule of M if $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$ for every maximal ideal \mathfrak{M} where $P(N) \subseteq \mathfrak{M}$.

Lemma 1. Let N be a proper submodule of an R-module M. Then $rad(N : M) \subseteq P(N)$.

Proof. Let $r \in rad(N : M)$. Then $r^n M \subseteq N$ for some positive integer n. There exists $m \in M \setminus N$ such that $r^n m \in N$. Then $r \in P(N)$. Thus $rad(N : M) \subseteq P(N)$.

Every primary submodule N is proposed as P(N)-locally primary submodule and every weakly primary submodule N is proposed as P(N)-locally weakly primary submodule in the following propositions, respectively.

Proposition 1. A primary submodule N of an R-module M is a P(N)-locally primary submodule.

Proof. Let \mathfrak{M} be a maximal ideal of R where $P(N) \subseteq \mathfrak{M}$. By the previous lemma, we say that $rad(N:M) \subseteq P(N) \subseteq \mathfrak{M}$. $N_{\mathfrak{M}}$ is a proper submodule of $M_{\mathfrak{M}}$. Indeed, if $N_{\mathfrak{M}} = M_{\mathfrak{M}}$, then $\frac{m}{1} \in M_{\mathfrak{M}}$ for any $m \in M$. Then $rm \in N$ for some $r \notin \mathfrak{M}$. We get $r^n \notin rad(N:M)$. Since N is a primary submodule of M, then $m \in N$. Thus N = M, a contradiction. Since $rad(N:M) \cap (R \setminus \mathfrak{M}) = \emptyset$, then $N_{\mathfrak{M}}$ is a primary submodule of $M_{\mathfrak{M}}$. Consequently, N is a P(N)-locally primary submodule. □

Proposition 2. A weakly primary submodule N of an R-module M is a P(N)-locally weakly primary submodule.

Proof. Suppose that \mathfrak{M} is a maximal ideal of R where $P(N) \subseteq \mathfrak{M}$. In the same manner as in the proof of the previous proposition, we have that $N_{\mathfrak{M}}$ is a proper submodule of $M_{\mathfrak{M}}$. Let $0_{\mathfrak{M}} \neq \frac{r}{s} \frac{m}{p} \in N_{\mathfrak{M}}$ for some $\frac{r}{s} \in R_{\mathfrak{M}}$ and $\frac{m}{p} \in M_{\mathfrak{M}}$ (for some $r \in R$, $m \in M$ and $s, p \in R \setminus \mathfrak{M}$). Then there is a $q \in R \setminus \mathfrak{M}$ such that $qrm \in N$. Assume that qrm = 0. Then $\frac{r}{s} \frac{m}{p} = \frac{q}{q} \frac{r}{s} \frac{m}{p} = \frac{qrm}{qsp} = 0_{\mathfrak{M}}$, this is a contradiction. So $0 \neq qrm \in N$. As $rad(N:M) \subseteq P(N) \subseteq \mathfrak{M}$, then $q \notin rad(N:M)$. Thus $rm \in N$ since N is a weakly primary submodule. It is clear that $rm \neq 0$. Hence $0 \neq rm \in N$ implies that $m \in N$ or $r^nM \subseteq N$ for some positive integer n. Thus we get $\frac{m}{p} \in N_{\mathfrak{M}}$ or $\frac{r^n}{s^n}M_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$ for some positive integer n by [4, Corollary 2.9]. Then we get that $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Consequently, N is a P(N)-locally weakly primary submodule.

Corollary 1. Let N be a proper submodule of an R-module M. If N is primary, then N is P(N)-locally weakly primary.

Proof. Assume that N is a primary submodule. Then N is a weakly primary submodule. Thus, N is a P(N)-locally weakly primary submodule by Proposition 2.

Note that if N is a P(N)-locally primary submodule of M, then N is a P(N)-locally weakly primary submodule of M.

We give an example to show the converse is not true.

Example 1. Consider R = F[X, Y, Z]—module $M = F[X, Y, Z] / (X^2, YZ)$ and the zero submodule N = (0) of M. One can easily see that $P(N) = \{0, X, Y, Z, \ldots\}$. Note that $P(N) \subseteq \mathfrak{M} = (X, Y, Z)$ which is the unique maximal ideal of R. Then $N_{\mathfrak{M}} = (0)$ is weakly primary submodule of $R_{\mathfrak{M}}$ —module $M_{\mathfrak{M}}$. Thus R is P(N)—weakly primary submodule. But $R_{\mathfrak{M}}$ is not primary submodule since, $\frac{Y}{1} \cdot \frac{Z}{1} = \frac{\bar{0}}{1} \in N_{\mathfrak{M}}$ but $\left(\frac{Y}{1}\right)^n \notin (N_{\mathfrak{M}} : M_{\mathfrak{M}})$, $\left(\frac{Z}{1}\right) \notin N_{\mathfrak{M}}$ for all positive integer R. Thus R is not R0 is not R1.

In the following example, it is illustrated that a submodule N can be both P(N)-locally primary submodule of M and P(N)-locally weakly primary submodule of M but it is neither primary submodule of M nor weakly primary submodule of M.

Example 2. Let $R = \mathbb{Z}$ and consider the $R-module\ M=\mathbb{Z}_{12}$. Let N be the submodule of \mathbb{Z}_{12} generated by $\overline{6}$. It is easily seen that $\overline{0} \neq 2\overline{3} (=3\overline{2}) \in N$ but $2 \notin (N:M)$ and $\overline{3} \notin N$ ($3 \notin (N:M)$ and $\overline{2} \notin N$), that is, N is not a weakly primary submodule of M, hence N is not a primary submodule of M. Assume that N is not a P(N)-locally primary submodule of M. Then there exists a maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$ where $N_{\mathfrak{M}}$ is not a primary submodule of $M_{\mathfrak{M}}$. Note that $2,3 \in P(N)$. Thus $1 \in \mathfrak{M}$, a contradiction. Therefore, N is a P(N)-locally primary submodule of M. Hence N is a P(N)-locally weakly primary submodule of M.

Theorem 1. Let N be a proper submodule of an R-module M. Then the following statements hold:

- (i) N is a primary submodule if and only if P(N) = rad(N : M).
- (ii) Let $P(0) \subseteq rad(N : M)$. Then N is a primary submodule if and only if N is a weakly primary submodule.

Proof. (*i*) Assume that *N* is a primary submodule. Let $r \in P(N)$. Then $r^n m \in N$ for some positive integer n and for some $m \in M \setminus N$. Since N is a primary submodule, then $(r^n)^k M = r^{nk} M \subseteq N$ for some positive integer k, that is, $r \in rad(N : M)$. Hence $P(N) \subseteq rad(N : M)$. By Lemma 1, we get P(N) = rad(N : M).

Suppose that P(N) = rad(N : M). Let $rm \in N$ and $m \in M \setminus N$ where $r \in R$, $m \in M$. Then $r \in P(N)$. Thus $r \in rad(N : M)$, that is, $r^kM \subseteq N$ for some positive integer k. Consequently, N is a primary submodule.

(ii) It is clear that every primary submodule is a weakly primary submodule.

Now, assume that N is a weakly primary submodule. Let $r \in P(N)$. Then $r^n m \in N$ for some positive integer n and for some $m \in M \setminus N$. Suppose that $r^n m = 0$. Since $m \in M \setminus N$, then we get $m \neq 0$. So $r \in P(0)$. Thus $r \in rad(N : M)$, by assumption. Hence P(N) = rad(N : M) by Lemma 1. Suppose that $0 \neq r^n m \in N$. Since $m \in M \setminus N$ and N is a weakly primary submodule, then $(r^n)^k M \subseteq N$ for some positive integer k, that is, $r \in rad(N : M)$ and so P(N) = rad(N : M). By (i), N is a primary submodule.

Corollary 2. Let N be a proper submodule of an R-module M with P(N) = rad(N : M). Then N is a P(N)-locally primary submodule and P(N)-locally weakly primary submodule.

Proof. We get that N is a primary submodule by Theorem 1(i). Then N is a P(N)-locally primary submodule by Proposition 1. Since N is primary submodule, then N is weakly primary submodule. Therefore, N is P(N)-locally weakly primary submodule by Proposition 2.

Note that, by [4, Lemma 2.19], if \mathfrak{M} is a maximal ideal of R, then $(N:M)_{\mathfrak{M}} \subseteq (N_{\mathfrak{M}}:M_{\mathfrak{M}})$. Now, we explain that $rad((N:M)_{\mathfrak{M}}) = rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$ when \mathfrak{M} is a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$.

Proposition 3. Let N be a proper submodule of an R-module M. Then $rad((N:M)_{\mathfrak{M}}) = rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$ for any maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$.

Proof. Since $S(N) \subseteq P(N)$ for any proper submodule N of M, it is clear from [4, Lemma 2.19 and Lemma 2.20].

Lemma 2. Let N be a proper submodule of an R-module M. Then $rad((N : M)_{\mathfrak{M}}) = (rad(N : M))_{\mathfrak{M}}$ for any maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$.

Proof. Let $\frac{r}{p} \in rad((N:M)_{\mathfrak{M}})$ for some $r \in R$ and $p \in R \setminus \mathfrak{M}$. Then $(\frac{r}{p})^n = \frac{r^n}{p^n} \in (N:M)_{\mathfrak{M}}$ for some positive integer n. There exists an element $q \in R \setminus \mathfrak{M}$ such that $qr^n \in (N:M)$, that is, $qr^nm \in N$ for every $m \in M$. Then $r^nm \in N$ for every $m \in M$ since $q \notin P(N)$. Thus $r \in rad(N:M)$. Then $\frac{r}{p} \in rad((N:M)_{\mathfrak{M}})$. Conversely, assume that $\frac{r}{p} \in rad((N:M)_{\mathfrak{M}})$. There is an $u \in R \setminus \mathfrak{M}$ such that $ur \in rad(N:M)$. Then $(ur)^n = u^n r^n \in (N:M)$. Hence $\frac{u^n}{u^n} \frac{r^n}{p^n} \in (N:M)_{\mathfrak{M}}$. Consequently, $\frac{r^n}{p^n} = (\frac{r}{p})^n \in (N:M)_{\mathfrak{M}}$ and so $\frac{r}{p} \in rad((N:M)_{\mathfrak{M}})$. □

Corollary 3. Let N be a proper submodule of an R-module. If \mathfrak{M} is any maximal ideal of R with $P(N) \subseteq \mathfrak{M}$, then $rad((N:M)_{\mathfrak{M}}) = rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$.

Proof. It is clear from Proposition 3 and Lemma 2. □

Proposition 4. Let N be a proper submodule of an R-module M and $m \in M$. Then $rad((N : Rm)_{\mathfrak{M}}) = rad(N_{\mathfrak{M}} : (Rm)_{\mathfrak{M}})$ for any maximal ideal \mathfrak{M} of R with $P(N) \subseteq \mathfrak{M}$.

Proof. It is clear. □

If we put N = 0 in Proposition 4, we have the following corollary.

Corollary 4. Let M be an R-module and $m \in M$. Then $rad((0:Rm)_{\mathfrak{M}}) = rad(0_{\mathfrak{M}}:(Rm)_{\mathfrak{M}})$ for any maximal ideal \mathfrak{M} of R with $P(0) \subseteq \mathfrak{M}$.

Proposition 5. Let N be a proper submodule of an R-module M and \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. Then the following statements hold:

- (i) Let $P(0) \subseteq P(N)$. Then rad(N : M) is a weakly prime ideal of R if and only if $rad((N : M)_{\mathfrak{M}})$ is a weakly prime ideal of $R_{\mathfrak{M}}$.
- (ii) rad(N:M) is a prime ideal of R if and only if $rad((N:M)_m)$ is a prime ideal of R_m .

Proof. (i) Suppose that rad(N:M) is a weakly prime ideal of R. If $rad(N:M)_{\mathfrak{M}}=R_{\mathfrak{M}}$, then $\frac{1}{1}\in rad((N:M)_{\mathfrak{M}})=(rad(N:M))_{\mathfrak{M}}$ and so $q1=q\in rad(N:M)$ for some $q\in R\setminus \mathfrak{M}$. But by Lemma 1, $rad(N:M)\subseteq P(N)\subseteq \mathfrak{M}$, which is a contradiction. So $rad((N:M)_{\mathfrak{M}})\neq R_{\mathfrak{M}}$, that is, $rad((N:M)_{\mathfrak{M}})$ is a proper ideal of $R_{\mathfrak{M}}$. Let $0\neq \frac{r}{p}\frac{s}{q}\in rad((N:M)_{\mathfrak{M}})$, where $r,s\in R$ and $p,q\in R\setminus \mathfrak{M}$. Then we have $\frac{r}{p}\frac{s}{q}=\frac{rs}{pq}\in (rad(N:M))_{\mathfrak{M}}$, then there exists an $u\in R\setminus \mathfrak{M}$ such that $urs\in rad(N:M)$. If urs=0, then $\frac{r}{p}\frac{s}{q}=\frac{u}{u}\frac{r}{p}\frac{s}{q}=\frac{urs}{upq}=0$, this is a contradiction. So $urs\neq 0$. Since $0\neq urs\in rad(N:M)$ and rad(N:M) is a weakly prime ideal of R, then $ur\in rad(N:M)$ or $s\in rad(N:M)$. Hence $\frac{r}{p}=\frac{u}{u}\frac{r}{p}\in (rad(N:M))_{\mathfrak{M}}$ or $\frac{s}{q}\in (rad(N:M))_{\mathfrak{M}}$, that is, $\frac{r}{p}\in rad((N:M)_{\mathfrak{M}})$ or $\frac{s}{q}\in rad((N:M)_{\mathfrak{M}})$.

Assume that $rad((N:M)_{\mathfrak{M}})$ is a weakly prime ideal of $R_{\mathfrak{M}}$. If rad(N:M) = R, then $rad((N:M)_{\mathfrak{M}}) = R_{\mathfrak{M}}$, a contradiction. So rad(N:M) is a proper ideal of R. Let $0 \neq ab \in rad(N:M)$ for some $a,b \in R$. Then $\frac{ab}{1} = \frac{a}{1} \frac{b}{1} \in rad((N:M)_{\mathfrak{M}})$. If $\frac{a}{1} \frac{b}{1} = 0$, then qab = 0 for some $q \in R \setminus \mathfrak{M}$. As $0 \neq ab$, then $q \in P(0)$. Thus $q \in \mathfrak{M}$, which is a contradiction. So $0 \neq \frac{a}{1} \frac{b}{1} \in rad((N:M)_{\mathfrak{M}})$. Since $rad((N:M)_{\mathfrak{M}})$ is a weakly prime ideal of $R_{\mathfrak{M}}$, then $\frac{a}{1} \in rad((N:M)_{\mathfrak{M}})$ or $\frac{b}{1} \in rad((N:M)_{\mathfrak{M}})$. Therefore $pa \in rad(N:M)$ for some $p \in R \setminus \mathfrak{M}$ or $sb \in rad(N:M)$ for some $s \notin \mathfrak{M}$. As $p \in R \setminus \mathfrak{M}$ and $s \in R \setminus \mathfrak{M}$, then $p, s \notin P(N)$. Consequently, $a \in rad(N:M)$ or $b \in rad(N:M)$.

(ii) Assume that rad(N:M) is a prime ideal of R. In a similar way, we get $rad((N:M)_{\mathfrak{M}})$ is a proper ideal of $R_{\mathfrak{M}}$. Now, let $\frac{r}{p}\frac{s}{q}\in rad((N:M)_{\mathfrak{M}})$, where $r,s\in R$ and $p,q\in R\setminus \mathfrak{M}$. Then we have $\frac{rs}{pq}\in (rad(N:M))_{\mathfrak{M}}$ and so we have $urs\in rad(N:M)$ for some $u\in R\setminus \mathfrak{M}$. Since rad(N:M) is a prime ideal of R, then $ur\in rad(N:M)$ or $s\in rad(N:M)$. Consequently, $\frac{r}{p}=\frac{u}{u}\frac{r}{p}\in (rad(N:M))_{\mathfrak{M}}$ or $\frac{s}{q}\in (rad(N:M))_{\mathfrak{M}}$, that is, $\frac{r}{p}\in rad((N:M)_{\mathfrak{M}})$ or $\frac{s}{q}\in rad((N:M)_{\mathfrak{M}})$.

Suppose that $rad((N:M)_{\mathfrak{M}})$ is a prime ideal of $R_{\mathfrak{M}}$. From (i), it is clear that rad(N:M) is a proper ideal of R. Then $\frac{ab}{1} = \frac{a}{1} \frac{b}{1} \in rad((N:M)_{\mathfrak{M}})$ for some $a, b \in R$ and since $rad(N:M)_{\mathfrak{M}}$ is a prime ideal of $R_{\mathfrak{M}}$, then $\frac{a}{1} \in rad((N:M)_{\mathfrak{M}})$ or $\frac{b}{1} \in rad((N:M)_{\mathfrak{M}})$. Thus $pa \in rad(N:M)$ for some $p \in R \setminus \mathfrak{M}$ or $sb \in rad(N:M)$ for some $s \in R \setminus \mathfrak{M}$. As $p \in R \setminus \mathfrak{M}$ and $s \in R \setminus \mathfrak{M}$, then $p, s \notin P(N)$. Therefore, $a \in rad(N:M)$ or $b \in rad(N:M)$.

Proposition 6. Let M be a faithful cyclic R-module and N be a proper submodule of M with $P(0) \subseteq P(N)$. If N is a P(N)-locally weakly primary submodule of M, then rad(N:M) is a weakly prime ideal of R.

Proof. Let \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. By [4, Proposition 2.18], $M_{\mathfrak{M}}$ is a faithful cyclic $R_{\mathfrak{M}}$ -module. Then $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Thus by [1, Proposition 2.3], $rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$ is a weakly prime submodule of $M_{\mathfrak{M}}$. By Proposition 3, $rad((N:M)_{\mathfrak{M}})$ is a weakly prime submodule of $M_{\mathfrak{M}}$. By Proposition 5 i), rad(N:M) is a weakly prime ideal of R. □

Proposition 7. Let M be an R-module. Suppose that N is an \mathfrak{M} -primal and a P(N)-locally weakly primary submodule of M not primary submodule of M. If $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq rad(N:M)$, then IN = 0. Particularly, rad(N:M)N = 0.

Proof. Suppose that $P(0) \subseteq P(N)$ and I is an ideal of R such that $I \subseteq rad(N:M)$. Since N is \mathfrak{M} -primal, then P(N) is an ideal of R. As $1 \notin P(N)$, then P(N) is a proper ideal. Hence there is a maximal ideal \mathfrak{M} of R such that $P(N) \subseteq \mathfrak{M}$. Then, $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$ because N is a P(N)-locally weakly primary submodule of M. Our aim is to show that $N_{\mathfrak{M}}$ is not a primary submodule of $M_{\mathfrak{M}}$. Assume that $N_{\mathfrak{M}}$ is a primary submodule of $M_{\mathfrak{M}}$. Let $rm \in N$ for some $r \in R$, $m \in M$. Then $\frac{rm}{1} = \frac{r}{1} \frac{m}{1} \in N_{\mathfrak{M}}$. By assumption, $\frac{m}{1} \in N_{\mathfrak{M}}$ or $(\frac{r}{1})^n M_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$ for some positive integer n. By using a similar technique in the previous proofs, $m \in N$ or $r^n M \subseteq N$ for some positive integer n since $P(N) \subseteq \mathfrak{M}$, but this contradicts with N which is not a primary submodule of M. By [4, Lemma 2.19], $I_{\mathfrak{M}} \subseteq rad((N:M)_{\mathfrak{M}}) \subseteq rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$. By [1, Corollary 3.4], $I_{\mathfrak{M}}N_{\mathfrak{M}} = 0$. We get $\frac{r}{1} \frac{m}{1} = \frac{rm}{1} = 0$ for every $r \in I$ and every $m \in N$. Therefore qrm = 0 for some $q \in R \setminus \mathfrak{M}$. If $rm \neq 0$, then $q \in P(0)$ and so $q \in \mathfrak{M}$, which is a contradiction. Hence rm = 0, that is, IN = 0. Particularly, by putting I = rad(N:M), we have rad(N:M)N = 0.

Proposition 8 ([4, Proposition 2.16]). Let M be an R-module and \mathfrak{M} be a maximal ideal of R. If \overline{I} is an ideal of $R_{\mathfrak{M}}$ and \overline{N} is a submodule of $M_{\mathfrak{M}}$, then

- (i) $I = \{a \in R \mid \frac{a}{1} \in \overline{I}\}$ is an ideal of R and $\overline{I} = I_{\mathfrak{M}}$.
- (ii) $N = \{m \in M \mid \frac{m}{1} \in \overline{N}\}$ is a submodule of M and $\overline{N} = N_{\mathfrak{M}}$.

Theorem 2. Let N be an \mathfrak{M} -primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a P(N)-locally weakly primary submodule of M if and only if $0 \neq ID \subseteq N$ for some ideal I of R and some submodule D of M implies $I \subseteq rad(N : M)$ or $D \subseteq N$.

Proof. Assume that *N* is a *P*(*N*)-locally weakly primary submodule of *M*. Let $0 \neq ID \subseteq N$ for some ideal *I* of *R* and some submodule *D* of *M*. Since *N* is \mathfrak{M} -primal, then *P*(*N*) is an ideal of *R*. As $1 \notin P(N)$, then P(N) is a proper ideal. So we have $P(N) \subseteq \mathfrak{M}$ for some maximal ideal \mathfrak{M} of *R*. Thus $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Now, $I_{\mathfrak{M}}$ is an ideal of $R_{\mathfrak{M}}$ and $D_{\mathfrak{M}}$ is a submodule of $M_{\mathfrak{M}}$ with $(ID)_{\mathfrak{M}} = I_{\mathfrak{M}}D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Suppose that $I_{\mathfrak{M}}D_{\mathfrak{M}} = 0_{\mathfrak{M}}$. Then $\frac{r}{1}\frac{m}{1} = \frac{rm}{1} = 0$ for every $r \in I$ and every $m \in D$. So there exists a $q \in R \setminus \mathfrak{M}$ such that qrm = 0. If $rm \neq 0$, then $q \in P(0)$. Thus $q \in \mathfrak{M}$, which is a contradiction. So rm = 0, hence ID = 0, that is a contradiction. Then $0_{\mathfrak{M}} \neq I_{\mathfrak{M}}D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Since *N* is a P(N)-locally weakly primary submodule of *M*, then $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. By [1, Theorem 3.6], either $I_{\mathfrak{M}} \subseteq rad(N_{\mathfrak{M}} : M_{\mathfrak{M}})$ or $D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Since $P(N) \subseteq \mathfrak{M}$, then $I \subseteq rad(N : M)$ or $D \subseteq N$.

Let \mathfrak{M} be a maximal ideal of R with $P(N) \subseteq \mathfrak{M}$. Since N is a proper ideal of R, then there is an $a \in M \setminus N$, but $\frac{a}{1} \in M_{\mathfrak{M}}$. If $\frac{a}{1} \in N_{\mathfrak{M}}$, then $qa \in N$ such that $q \in R \setminus \mathfrak{M}$. As $a \in M \setminus N$, then $q \in P(N)$, that is, $q \in \mathfrak{M}$, which is a contradiction. So $\frac{a}{1} \in M_{\mathfrak{M}} \setminus N_{\mathfrak{M}}$. Hence $N_{\mathfrak{M}}$ is a proper ideal of $R_{\mathfrak{M}}$. Let \overline{I} be an ideal of $R_{\mathfrak{M}}$ and \overline{D} be a submodule of $M_{\mathfrak{M}}$ with $0_{\mathfrak{M}} \neq \overline{ID} \subseteq N_{\mathfrak{M}}$. By [4, Proposition 2.16], $\overline{I} = I_{\mathfrak{M}}$, for some ideal I of R and $\overline{D} = D_{\mathfrak{M}}$, for some submodule D of M. So $0_{\mathfrak{M}} \neq I_{\mathfrak{M}}D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$, that is, $0_{\mathfrak{M}} \neq (ID)_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. Since $P(N) \subseteq \mathfrak{M}$, then $ID \subseteq N$. Also $0 \neq ID$. On the contrary, $(ID)_{\mathfrak{M}} = 0_{\mathfrak{M}}$. By the hypothesis, we have either $I \subseteq rad(N : M)$ or $D \subseteq N$. If $I \subseteq rad(N : M)$, then $\overline{I} = I_{\mathfrak{M}} \subseteq rad((N : M)_{\mathfrak{M}})$. If $D \subseteq N$, then $\overline{D} = D_{\mathfrak{M}} \subseteq N_{\mathfrak{M}}$. From [1, Theorem 3.6], $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Therefore, N is a P(N)-locally weakly primary submodule of M.

Corollary 5. Let N be an \mathfrak{M} -primal submodule of an R-module M with $P(0) \subseteq P(N)$. Then N is a P(N)-locally weakly primary submodule of M if and only if N is a weakly primary submodule of M.

Proof. It is clear from Theorem 2 and [1, Theorem 3.6].

Theorem 3. Let M be an R-module and N be an \mathfrak{M} -primal submodule of M with $P(0) \subseteq P(N)$. Then the following statements are equivalent:

- (i) N is a P(N)-locally weakly primary submodule of M.
- (ii) For any $m \in M \setminus N$, $rad(N : Rm) = rad(N : M) \cup (0 : Rm)$.
- (iii) For any $m \in M \setminus N$, rad(N : Rm) = rad(N : M) or rad(N : Rm) = (0 : Rm).

Proof. (*i*) ⇒ (*ii*): Let *N* be a P(N)-locally weakly primary submodule of *M* and let $m \in M \setminus N$. Since *N* is \mathfrak{M} -primal, then P(N) is an ideal of *R*. As $i \notin P(N)$, then P(N) is a proper ideal. So we have $P(N) \subseteq \mathfrak{M}$ for some maximal ideal \mathfrak{M} of *R*. Hence $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. As $m \in M$, then $\frac{m}{1} \in M_{\mathfrak{M}}$, but $\frac{m}{1} \in M_{\mathfrak{M}} \setminus N_{\mathfrak{M}}$. If $\frac{m}{1} \in N_{\mathfrak{M}}$, then $pm \in N$ for some $p \in R \setminus \mathfrak{M}$. Since $p \notin P(N)$, then $m \in N$, this is a contradiction. By [2, Theorem 2.15], $rad(N_{\mathfrak{M}} : R_{\mathfrak{M}} \frac{m}{1}) = rad(N_{\mathfrak{M}} : M_{\mathfrak{M}}) \cup (0_{\mathfrak{M}} : R_{\mathfrak{M}} \frac{m}{1})$ and from [4, Corollary 2.9], $rad(N_{\mathfrak{M}} : (Rm)_{\mathfrak{M}}) = rad(N_{\mathfrak{M}} : M_{\mathfrak{M}}) \cup (0_{\mathfrak{M}} : (Rm)_{\mathfrak{M}})$. Then by Proposition 3, Proposition 4 and Corollary 4, $rad((N : Rm)_{\mathfrak{M}}) = rad((N : M)_{\mathfrak{M}}) \cup (0 : Rm)_{\mathfrak{M}}$. Let $r \in rad(N : Rm)$. Then $\frac{r}{1} \in rad((N : Rm)_{\mathfrak{M}})$ and so $\frac{r}{1} \in rad((N : M)_{\mathfrak{M}})$ or $\frac{r}{1} \in (0 : Rm)_{\mathfrak{M}}$. If $\frac{r}{1} \in rad((N : M)_{\mathfrak{M}})$, then

REFERENCES 55

 $\frac{r^n}{1} \in (N:M)_{\mathfrak{M}}$ for some positive integer n and thus $qr^n \in (N:M)$ for some $q \in R \setminus \mathfrak{M}$, that is, $qr^nM \subseteq N$. Assume that $r^nM \not\subseteq N$. Then $r^nm \notin N$ for some $m \in M$, however $qr^nm \in N$. Hence $q \in P(N)$. Then $q \in \mathfrak{M}$, which is a contradiction. So $r^nM \subseteq N$ for some positive integer n, that is, $r \in rad(N:M)$. If $\frac{r}{1} \in (0:Rm)_{\mathfrak{M}}$, then $pr \in (0:Rm)$ for some $p \in R \setminus \mathfrak{M}$. Thus prRm = 0. Assume that $rRm \neq 0$. Then $rsm \neq 0$ for some $s \in R$, but prsm = 0. Therefore $p \in P(0)$. As $P(0) \subseteq \mathfrak{M}$, then $p \in \mathfrak{M}$, which is a contradiction. So rRm = 0. Then $r \in (0:Rm)$. Hence $r \in rad(N:M) \cup (0:Rm)$. Conversely, let $r \in rad(N:M) \cup (0:Rm)$. If $r \in rad(N:M)$, then $r^nM \subseteq N$ for some positive integer n and so we get $r^nRm \subseteq r^nM \subseteq N$. Thus $r \in rad(N:Rm)$. If $r \in (0:Rm)$, then $rRm = 0 \subseteq N$. Thus $r \in (N:Rm) \subseteq rad(N:Rm)$. $(ii) \Rightarrow (iii)$: Clear.

 $(iii)\Rightarrow (i)$: Let \mathfrak{M} be a maximal ideal of R with $P(N)\subseteq \mathfrak{M}$. Let $\frac{m}{p}\in M_{\mathfrak{M}}\setminus N_{\mathfrak{M}}$ where $m\in M$, $p\in R\setminus \mathfrak{M}$. Then $m\in M\setminus N$. By the condition of the theorem, rad(N:Rm)=rad(N:M) or rad(N:Rm)=(0:Rm) for some $m\in M\setminus N$. If rad(N:Rm)=rad(N:M), then $rad((N:Rm)_{\mathfrak{M}})=rad((N:M)_{\mathfrak{M}})$ and from Proposition 3 and Proposition 4 $rad(N_{\mathfrak{M}}:(Rm)_{\mathfrak{M}})=rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$. By [4, Proposition 2.8], $rad(N_{\mathfrak{M}}:R_{\mathfrak{M}}\frac{m}{p})=rad(N_{\mathfrak{M}}:M_{\mathfrak{M}})$. If rad(N:Rm)=(0:Rm), then $rad((N:Rm)_{\mathfrak{M}})=(0:Rm)_{\mathfrak{M}}$ and by Proposition 4 and Corollary 4, $rad(N_{\mathfrak{M}}:(Rm)_{\mathfrak{M}})=(0_{\mathfrak{M}}:(Rm)_{\mathfrak{M}})$. By [4, Proposition 2.8], $rad(N_{\mathfrak{M}}:R_{\mathfrak{M}}\frac{m}{p})=(0_{\mathfrak{M}}:R_{\mathfrak{M}}\frac{m}{p})$. By [2, Theorem 2.15], $N_{\mathfrak{M}}$ is a weakly primary submodule of $M_{\mathfrak{M}}$. Thus N is a P(N)-locally weakly primary submodule of M.

Theorem 4. Let M be an R-module and N be an \mathfrak{M} -primal submodule of M with $P(0) \subseteq P(N)$. Then the following statements are equivalent:

- (i) N is a P(N)-locally weakly primary submodule of M.
- (ii) $0 \neq ID \subseteq N$ for any ideal I of R and any submodule D of M implies either $I \subseteq rad(N : M)$ or $D \subseteq N$.
- (iii) $rad(N : Rm) = rad(N : M) \cup (0 : Rm)$ for any $m \in M \setminus N$.
- (iv) rad(N : Rm) = rad(N : M) or rad(N : Rm) = (0 : Rm) for any $m \in M \setminus N$,

Proof. It is clear from Theorem 2 and Theorem 3.

References

- [1] A.E. Ashour. *On Weakly Primary Submodules*, Journal of Al Azhar University-Gaza(Natural Sciences), 13, 31-40. 2011.
- [2] S.E. Atani and F. Farzalipour. *On Weakly Primary Ideals*, Georgian Mathematical Journal, 12, 423-429. 2005.
- [3] S.E. Atani and F. Farzalipour. *On Weakly Prime Submodules*, Tamkang Journal of Mathematics, 38, 247-252. 2007.

REFERENCES 56

[4] A.K. Jabbar. *A Generalization of Prime and Weakly Prime Submodules*, Pure Mathematical Sciences, 2, 1-11. 2013.

- [5] R.Y. Sharp. Steps in Commutative Algebra, Cambridge University Press, Cambridge, 1990.
- [6] U. Tekir. *A Note on Multiplication Modules*, International Journal of Pure and Applied Mathematics, 27, 103-107. 2006.
- [7] U. Tekir. *On Primary Submodules*, International Journal of Pure and Applied Mathematics, 27, 283-289. 2006.