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Abstract. Two different notions of "essential" subsemimodules were introduced in the theory of semi-

modules over a semiring with identity, in order to generalize the same notion of "essential" submodules

in the theory of modules over a ring with identity.

In this paper, we introduce a new class of essential subsemimodules called weakly essential subsemi-

modules. We prove that this new class contains the others two kind of classes of "essential" subsemi-

modules. Futhermore, we studie the properties of weakly essential subsemimodules. For applications

we introduce and investigate the co-hopfian semimodules with this new definition of semi-essential.

2010 Mathematics Subject Classifications: 16Y60

Key Words and Phrases: Semiring, subsemimodule, R-congruence relation, essential, cancellative,

subtractive, direct sum, cohopfian semimodules

1. Introduction

The theory of semimodules over semirings with identity (see Golan [6], Abuhlail [1], Taka-

hashi [9–11]) can be regarded as a generalization of the theory of modules over rings with

identity (see Anderson-Fuller[2], Lam [8], Wisbauer [15] ). Many results for semirings and

semimodules also hold for rings and modules, but not conversely [5, 12–14].

The concept of "essential submodule" in an R-module M [2], introduced by Johnson, Eck-

man and Schpof [4, 7], plays an important role in the context of commutative and noncom-

mutative algebras.

In module theory, for a ring R, a submodule N of a module M is said to be essential (denoted

by N Ã M) if K ∩N = 0=⇒ K = 0 for all submodule K of M . A monomorphism f : M −→ M ′

is said to be essential if f (M)Ã M ′. It is known that an R-monomorphism f : M −→ M ′ of left

R-modules is essential iff for any R-homomorphism g : M ′ −→ M”, g ◦ f is a monomorphism

implies that g is a monomorphism. A submodule N of a module M is essential iff the injective

map i : N −→ M : x 7→ x is essential.
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The previous characterisations of "essential" are not equivalents in semimodules theory.

Hence this notion of "essential" was generalized in semimodules theory in two different ways.

In Golan book’s [6], it was proposed the following definitions. An R-monomorphism

f : M −→ M ′ of left R-semimodules is essential if for any R-homomorphism g : M ′ −→ M ′′,

g ◦ f is a monomorphism implies that g is a monomorphism. A subsemimodule N of a left

R-semimodule M is essential (or large) in M if the inclusion map iN : N −→ M is an essential

R-monomorphism. Note that f : M −→ M ′ is an essential R-homomorphism if and only if

f (M) is a large subsemimodule of M ′.

Another way for defining the notion of "essential" is proposed in [5] as follows. A left

R-subsemimodule N of M is said to be semi-essential in M , written as N Ãs M , if for every R-

subsemimodule K of M : N ∩K = 0⇒ K = 0. A monomorphism (respectively: semimonomor-

phism) f : M −→ M ′ of left R-semimodules is said to be semi-essential if: f (M)Ãs M ′.

These two differents notions of "essential subsemimodules" in the theory of semimodules

(see [5]) are the same in the theory of modules.

Also, it was proved [5] that the class of essential subsemimodules is not contained and

doesn’t contain the class of semi-essential subsemimodules. Furthermore, the intersection of

these two classes is not empty.

In this paper, we investigate a new class of "essential" subsemimodules (called here: semi-

weakly-essential subsemimodules).

In modules theory, it is well known that the congruence relations are defined by the sub-

modules but not in theory of semimodules. So in the new class we consider the congruence

relations defined only by the subsemimodules.

We show that this new class contains the two known classes of "essential" subsemimodules.

Futhermore, we study some interesting properties of this new class.

As applications we introduce three notions of semi-weakly-co-hopfian semimodules.

All semirings are associative with identity 1 (if R is a semiring, we assume that 1 6= 0), all

semimodules are unital and all semiring extensions contain the common identity.

Throughout this paper, for semimodule theoretic notions and notations we will follow [1]

and [6]. In the following, we recall some definitions and notations that will be used in this

paper.

This work is organized as follows:

• In section 1: Preliminaries: We give some results which we will use in the sequel.

• In section 2: New notions of essential: Some properties of semi-weakly-essential sub-

semimodules are investigated.

• In section 3: Applications: Three types of semi-weakly-co-hopfian semimodules are in-

troduced.

2. Preliminaries

We recall briefly some basic notions about semimodules.
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We denote by N ≤ M , if N is a subsemimodule of a semimodule M and by homomorphism,

we mean a homomorphism of left R-semimodules.

Throughout this paper, we consider the left R-semimodules, but the results are also true

for right R-semimodules and the proofs are similar.

Definition 1. Let M be a left R-semimodule.

• An R-congruence relation on a semimodule M is an equivalence relation ρ on M such that

mρm′ and nρn′ =⇒ (m+ n)ρ(m′ + n′) and (rm)ρ(rm′), ∀m, m′, n, n′ ∈ M and r ∈ R.

• The congruence relation ρ defined on M by mρm′⇐⇒ m= m′ is called a trivial congru-

ence relation on M.

• The congruence relation ρ defined on M by mρm′ ∀m, m′ ∈ M is called universal con-

gruence relation on M.

• M is a R-simple semimodule if any congruence relation defined over M is trivial or universal.

Remark 1. The set of all R-congruence relation on M, R− cong(M), is partially-ordered by the

relation ≤ defined by ρ ≤ ρ′ if and only if mρm′ =⇒ mρ′m′ ∀m, m′ ∈ M. For m, m′ ∈ M,

ρ(m,m′) is the unique smallest element ρ of R− cong(M) satisfying mρm′.

Definition 2.

• A subsemimodule N of a semimodule M is called subtractive if for all m, m′ ∈ M, m+m′ ∈ N

and m ∈ N implies m′ ∈ N.

• The subtractive closure of a subsemimodule N of a semimodule M is the smallest subtractive

subsemimodule of M containing N.

• A semimodule M is said to be cancellative (additively cancellative) if for all m, m′, m′′ ∈ M,

m+m′ = m+m′′ =⇒ m′ = m′′.

Definition 3. Let N be a subsemimodule of a left R-semimodule M. N induces on M an R-

congruence relation ≡N , know as the Bourne relation: ∀m, m′ ∈ M; m ≡N m′ ⇐⇒ ∃n, n′ ∈ N

such that: m+ n= m′ + n′.

• M/N denotes the factor R-semimodule M/ ≡N , and m/N denotes an element of M/N for

some m ∈ M.

• 0/N = N = {m ∈ M/∃n ∈ N/m+ n ∈ N} is the subtractive closure of N.

Definition 4. Let M1 and M2 be subsemimodules of a left R-semimodule M. If M1 and M2 span

M (i.e M = M1 + M2), and the restriction of ≡M2
to M1 and the restriction of ≡M1

to M2 are

trivial, then M is the direct sum of its subsemimodules M1 and M2. And we write M = M1 ⊕M2.

In this case for each m ∈ M, there exists unique pair (m1, m2) ∈ M1×M2 such that: m= m1+m2.

In [6], we have the following characterization of essential subsemimodules.

Notation: The class of essential subsemimodules of a left R-semimodule M is denoted by

C
RM .
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Lemma 1. If N is a subsemimodule of a left R-semimodule, M then the following conditions are

equivalent:

(i) N is essential (or large) in M;

(ii) If ρ is a nontrivial R-congruence relation on M then the restriction of ρ to N is also non-

trivial;

(iii) If m and m′ are distinct elements of M then there exist distinct elements n and n′ of N

satisfying nρ(m,m′)n
′.

In [5], we have the following characterisation of semi-essential subsemimodules.

Notation: The class of semi-essential subsemimodules of a left R-semimodule M is denoted

by C
RM .

Lemma 2. A subsemimodule K of a left R-semimodule M is semi-essential if, and only if, for all

x 6= 0, elements of M, there exists r ∈ R such that: 0 6= r x ∈ K.

3. New Notions of Essential: On Semi-Weakly-Essential Subsemimodules

In [5] the class C
RM of essential subsemimodules and the class C

RM of semi-essential sub-

semimodules were studied and neither one of these two classes is contained in the other. In

this section these two classes are embedded in a new class namely the class wC
RM of semi-

weakly-essential subsemimodules.

Definition 5. A subsemimodule N of a semimodule M is said to be semi-weakly-essential in M

(denoted by N Ãswe M), if ∀h : M −→ M ′ R-homomorphism, the restriction of ≡Kerh to N is

trivial =⇒ Kerh= 0.

Proposition 1. If N is a subsemimodule of a left R-semimodule M then the following conditions

are equivalent:

(i) N is semi-weakly-essential in M;

(ii) ∀K ≤ M, the restriction of ≡K to N is trivial⇒ K = 0.

Proof. (i) =⇒ (ii). Let K ≤ M such that the restriction of ≡K to N is trivial. Let

h : M −→ M/K be the surjection map. So Kerh= K . Since ≡K and ≡K are equivalent and the

restriction of ≡K to N is trivial then restriction of ≡Kerh to N is trivial.

N is semi-weakly-essential in M by assumption, so the restriction of ≡Kerh to N is trivial

=⇒ Kerh= 0 i.e. K = 0 whence K = 0 is trivial.

(ii) =⇒ (i). Indeed let h : M −→ M ′ an R-homomorphism such that the restriction of

≡Kerh to N is trivial. So by assumption we have the restriction of ≡Kerh to N is trivial =⇒
Kerh= 0.

Proposition 2. If N is a subsemimodule of a left R-semimodule M, then we have:
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(i) N Ã M =⇒ N Ãswe M.

(ii) N Ãs M =⇒ N Ãswe M.

Proof.

(i) N Ã M =⇒ N Ãswe M?

Let h : M −→ M ′ an R-homomorphism such that the restriction of ≡Kerh to N is trivial.

Suppose that ≡Kerh is nontrivial on M . So, we have an R-congruence relation on M

namely ρ =≡Kerh which is nontrivial on M and whose restriction on N is trivial; con-

tradiction because N Ã M . So ≡Kerh is trivial on M and we deduce that Kerh = 0, then

N Ãswe M .

(ii) N Ãs M =⇒ N Ãswe M?

Let h : M −→ M ′ an R-homomorphism such that the restriction of ≡Kerh to N is trivial.

So Kerh∩ N = 0 . Since N Ãs M , then Kerh∩ N = 0=⇒ Kerh= 0, then N Ãswe M .

The previous proposition shows that the class of semi-weakly-essential subsemimodules

of a semimodule M contains the two classes constituted by essential subsemimodules and

semi-essential subsemimodules of M .

Since R-congruence relations in modules theory are characterized by submodules, then

the three notions of essential in semimodules theory, defined in this paper, are the same for

modules theory.

Recall that:

Essential: ∀ρ ∈ R-Cong(M), ρ trivial on N =⇒ ρ trivial on M

Semi-essential: ∀L ≤ M , L ∩ N = 0=⇒ L = 0

Semi-weakly essential: ∀L ≤ M , ≡L trivial on N =⇒ L = 0

Here we give some examples for the different notions of "essential" in semimodules theory.

Example 1. In this example, we propose a finite semi-weakly-essential subsemimodule which is

neither essential nor semi-essential.

Set R= {0,1, . . . , n} (with n ∈ N and n≥ 2) and define on R the two commutative operations

(⊕,⊗) as follows:

(i) ∀x , y ∈ R : x ⊕ y =min(x , y)

(ii) ∀x , y ∈ R : x ⊗ y =max(x , y).

(R,⊕,⊗) is a semiring with 0R = n, 1R = 0.

Let

M ={0,
1

n
,

1

n− 1
,

1

n− 2
, . . .

1

2
,1,1+

1

n
, 1+

1

n− 1
,
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. . . 1+
1

2
,2,2+

1

n
, . . . n− 1, (n− 1) +

1

n
, . . . (n− 1) +

1

2
, n}.(M ,⊕)

is a commutative monoid with 0M = n. Let "⋆" be the external operation defined by :

⋆ :R×M −→ M

(r, m) 7−→ r ⋆m=max(r, m)

It is clear that (M ,⊕,⋆) is an R-semimodule.

Let a ∈ {0,1, . . . , n− 1}. Set Na = {a, . . . , n− 1
2 , n}; then Na is a subsemimodule of M.

Now let us show that Na is semi-weakly-essential but is neither essential nor semi-essential.

• Let us prove that Na is semi-weakly-essential.

Let K ≤ M. Let us prove that the restriction of ≡K to Na is trivial if and only if K = {0M}.

(=⇒) If K 6= {0M} then let k be an element of K such that k 6= 0M .

Since k 6= n, we have [n− 1
2]⊕ k = n⊕ k, so n ≡K n− 1

2 with n 6= n− 1
2 , contradiction.

Thus K = {0M}.

(⇐=) Trivial.

• Let us prove that Na is not semi-essential.

Set L = {(n− 1) + 1
3 , n}. So L is a subsemimodule of M such that L 6= 0 and L ∩ Na = 0,

then Na is not semi-essential.

• Let us prove that Na is not semi-essential.

Let ρ be the relation defined on M by: ∀(x , y) ∈ M×M, xρ y ⇐⇒max(x , 1) =max(y, 1).

ρ is a congruence relation on M. Clearly ρ is not trivial on M and ρ is trivial on Na, hence

Na is not essential.

Example 2. In this example, we give an infinite semi-weakly-essential subsemimodule which is

neither semi-essential nor essential.

Recall the semiring R of the previous example. So M = [0, n] is a R-semimodule. Set

Na = Q ∩ [a, n] where a ∈ Q∗+. By a same way as in previous example, we show that Na is

semi-weakly-essential but is neither essential nor semi-essential.

Example 3 ([5]). In this example, we propose a semi-essential subsemimodule which is a semi-

weakly essential subsemimodule but not an essential subsemimodule.

Let n ≥ 1 be an integer. Consider the set R = {r ∈ Q+/r ≤ n} ∪ {−∞} in which Q+ is the

set of all nonnegative rational numbers, −∞ is assumed to satisfy the conditions that −∞ ≤ i

and −∞ + i = −∞, ∀i ∈ R. Define on R the operations ⊕ and ⊗ as following: ∀i, j ∈ R;

i ⊕ j =max(i; j) and i ⊗ j =min(i + j; n).

We easily verify that (R;⊕;⊗) is a commutative semiring having −∞ as additive identity.

R is also a left R-semimodule. Put R∗ = R\ {0}, then R∗ is an ideal of R. R∗ is a semi-essential

subsemimodule of R, hence R∗ is a semi-weakly essential subsemimodule, but R∗ is not essential.
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Example 4 ([5]). In this example, we propose an essential subsemimodule which is a semi-weakly

essential subsemimodule but not an semi-essential subsemimodule.

Set R= {0,1, a} and define on R the two commutative operations (+,×) as following:

(i) 0R = 0; 1R = 1

(ii) 1+ 1= 1+ a = 1; a+ 0= a+ a = a

(iii) 0× 0= 0× 1= 0× a = 0; 1× 1= 1; 1× a = a× a = a.

Then (R,+,×, 0, 1) is a commutative semiring.

Let M = {0,1, a, b} with the same operations defined in R and 1M = 1R = 1, 0M = 0R = 0,

b+ 0= b+ b = b, b+ 1= b+ a = a, 0× b = b× a = 0, b× 1= b× b = b. It’s easy to see that

(M ,+,×, 0, 1) is a commutative R-semimodule.

Now, put N = R= {0; 1; a}, then N is a semi-weakly essential subsemimodule of M, but N is

not semi-essential.

In the class of semi-weakly-essential subsemimodules, we have the following result:

Proposition 3. Let M be a left R-semimodule, K and N be subsemimodules of M such that:

K ≤ N ≤ M . Then we have:

(i) K Ãs M ⇐⇒ (K Ãs N and N Ãs M).

(ii) K Ã M ⇐⇒ (K Ã N and N Ã M).

(iii) K Ãswe M =⇒ (K Ãswe N and N Ãswe M).

Proof.

(i) Similar methods to [5].

(ii) =⇒ Suppose that K Ã M .

• Let n 6= n′ ∈ N . Since N ≤ M and K Ã M , there exist k 6= k′ ∈ K such that

kρ(n,n′)k
′. Therefore K Ã N .

• Let m 6= m′ ∈ M . Since K Ã M , there exist k 6= k′ ∈ K such that kρ(m,m′)k
′. But

K ≤ N , so k, k′ ∈ N , therefore N Ã M .

⇐= Suppose that K Ã N and N Ã M . Let ρ be an R-congruence of M such that ρ is

not trivial on M . Since N Ã M , we have the restriction of ρ to N is not trivial and since

K Ã N , we have the restriction of ρ to K is not trivial, hence K Ã M .

(iii) Trivial.
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Remark 2. We have the following remark.

Let N ≤ K ≤ M and let ρ be and congruence relation which is trivial on K. So ρ is trivial on

N but is not trivial in general on M.

In the following lemma, we prove a particular case where we can enlarge a trivial congruence

relation.

Lemma 3. Let M be a left R-semimodule. Suppose that

K1 ≤ M1 ≤ M ; K2 ≤ M2 ≤ M ; L1 ≤ M1; L2 ≤ M2

and M = M1 ⊕M2. Then:

(i) ≡L1
trivial on K1 =⇒≡L1

trivial on K1 ⊕ K2.

(ii) ≡L1⊕L2
trivial on K1 ⊕ K2 =⇒≡L1

trivial on K1 and ≡L2
trivial on K2.

Proof.

(i) Let k1 + k2, k′1 + k′2 be two elements of K1 ⊕ K2.

We have k1 + k2 ≡L1
k′1 + k′2 =⇒ k1 + k2 + l1 = k′1 + k′2 + l ′1 =⇒ k1 + l1 ≡M2

k′1 + l ′1 and

k2 ≡M1
k′2. Now by definition of M = M1 ⊕M2 and by hypothesis we have: k1 + l1 ≡M2

k′1 + l ′1 =⇒ k1 = k′1 and k2 ≡M1
k′2 =⇒ k2 = k′2. So k1 + k2 = k′1 + k′2 and therefore ≡L1

is trivial on K1 ⊕ K2.

(ii) Suppose that ≡L1⊕L2
trivial on K1 ⊕ K2.

Let k1, k′1 be two elements of K1 such that k1 ≡L1
k′1.

So there exist l1, l ′1 ∈ L1 such that k1 + l1 = k′1 + l ′1. But k1 = k1 + 0 ∈ K1 ⊕ K2,

l1 = l1 + 0 ∈ L1 ⊕ L2, idem we have k′1 ∈ K1 ⊕ K2, l1 ∈ L1 ⊕ L2.

Since ≡L1⊕L2
trivial on K1 ⊕ K2, we deduce that k1 = k′1. Thus ≡L1

is trivial on K1 and a

same way shows that ≡L2
is trivial on K2.

Proposition 4. Let M be a left R-semimodule. Suppose that K1 ≤ M1 ≤ M; K2 ≤ M2 ≤ M and

M = M1 ⊕M2.

Then (K1 ⊕ K2)Ãswe (M1 ⊕M2) =⇒ (K1 Ãswe M1 and K2 Ãswe M2)

Proof. Let us show that K1 Ãswe M1. Let L1 ≤ M1 such that ≡L1
is trivial on K1. By

Lemma 3(i) we have ≡L1
trivial on K1 ⊕ K2. Now ≡L1

is trivial on K1 ⊕ K2 and K1 ⊕ K2 Ãswe

M1 ⊕M2 so L1 = 0.

Proposition 5. Let M be a left R-semimodule. Suppose that K1 ≤ M1 ≤ M; K2 ≤ M2 ≤ M and

M = M1 ⊕M2.

Then (K1 ⊕ K2)Ãs (M1 ⊕M2)⇐⇒ (K1 Ãs M1 and K2 Ãs M2).
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Proof. =⇒. Suppose for example K1 s M1. Then there exists a subsemimodule L1 6= 0 of

M1 such that: L1 ∩ K1 = 0. So let us prove that L1 ∩ (K1 + K2) = 0.

Let l1 ∈ L1 ∩ (K1 + K2). There exists (k1; k2) ∈ K1 × K2 such that: l1 = k1 + k2. We have:

l1 ∈ L1 ≤ M1; k1 ∈ K1 ≤ M1 and k2 ∈ K2 ≤ M2, so by the direct sum M1 ⊕M2 we deduce that

k2 = 0 and l1 = k1; hence l1 ∈ L1 ∩ K1 = 0, whence l1 = 0. Consequently L1 ∩ (K1 ⊕ K2) = 0

which contradicts the fact that (K1⊕K2)Ãs (M1⊕M2). So K1 Ãs M1. A same argument prove

that K2 Ãs M2.

⇐=. Suppose that Ki Ãs Mi for all i ∈ {1,2}.
Let 0 6= x ∈ M1 ⊕M2. Then, there exists (0,0) 6= (x1, x2) ∈ M1 ×M2 such that:

0 6= x = x1 + x2. Without lost of generality we can suppose that: 0 6= x1 ∈ M1. Since

K1 Ãs M1 then from Lemma 1, there exists a r1 ∈ R such that: r1 x1 ∈ K1 and r1 x1 6= 0.

• If r1 x2 ∈ K2 then r1 x1+r1 x2 ∈ K1+K2 therefore r1(x1+x2) ∈ K1⊕K2 with r1(x1+x2) 6= 0

because if r1 x1 + r1 x2 = 0, then by the sum direct we have r1 x1 = 0, which is absurd.

Consequently (K1 ⊕ K2)Ãs (M1 ⊕M2).

• If r1 x2 isn’t in K2 then there exists r2 ∈ R such that: 0 6= r2r1 x2 ∈ K2. We have

r2r1 x1 ∈ K1 then r2r1(x1+ x2) ∈ K1⊕K2. If we put r = r2r1 then there exists r ∈ R such

that: r(x1 + x2) ∈ K1 ⊕ K2 with r(x1 + x2) 6= 0 because if r x1 + r x2 = 0, then by the

direct sum we have r x1 = 0, which is absurd. Therefore (K1 ⊕ K2) Ãs (M1 ⊕M2). Thus

Ki Ãs Mi for all i ∈ {1; 2} =⇒ (K1 ⊕ K2)Ãs (M1 ⊕M2).

Definition 6. Let N be a subsemimodule of a left R-semimodule M. A subsemimodule N ′ of M is

called M-w-complement of N if the restriction of ≡N ′ to N is trivial and N ′ is maximal with this

property.

Proposition 6.

(i) Every subsemimodule N of a left R-semimodule M has a M-w-complement.

(ii) If N ′ is a M-w-complement of a subsemimodule N of M and if N ⊕ N ′ exists then:

N ⊕ N ′ Ãswe M.

Proof.

(i) Let $ = {A≤ M/ the restriction of ≡A to N , is trivial}. 0 ∈ $, then $ 6= ∅. ($;⊆) is an

ordered poset. It is easy to show that $ is a non-empty inductive poset. Therefore $ has

at least one maximal element N ′. And N ′ is a M -ω-complement of N .

(ii) • If N = 0 then N ′ = M , and so N ⊕ N ′ Ãswe M .

• If N 6= 0, then let 0 6= L ≤ M such that the restriction of ≡L to N ⊕ N ′ is trivial.

Let us show that ≡L is trivial on M .

First of all we show that the restriction of ≡N ′+L to N is trivial. Let n1, n2 ∈ N such

that n1 ≡N ′+L n2.
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n1 ≡N ′+L n2 =⇒ ∃n
′
1, n′2 ∈ N , l1, l2 ∈ L such that n1 + n′1 + l1 = n2 + n′2 + l2. So

by hypothesis and by the direct sum N ⊕ N ′ we deduce that n1 = n2. Therefore

the restriction of ≡N ′+L to N is trivial. We deduce that N ′ + L ∈ $. Since N ′ is

maximal, then N ′ + L = N ′ or N ′ + L = M . We have N ′ + L 6= M , otherwise, since

the restriction of ≡N ′+L to N is trivial, we obtain (N ′ + L) ∩ N = M ∩ N = N = 0

which is a contradiction. So N ′ + L = N ′ and consequently L ⊆ N ′. Moreover we

have (N⊕N ′)∩L = 0 because the restriction of≡L to N⊕N ′ is trivial; so N ′∩L = 0.

Thus we have L ⊆ N ′ and N ′ ∩ L = 0, so L = 0 .

We conclude that N ⊕ N ′ Ãswe M

Definition 7. Let N be a subsemimodule of a left R-semimodule M. A subsemimodule N ′ of M is

called M-s-complement of N if the restriction of ≡N to N ′ is trivial, the restriction of ≡N ′ to N is

trivial and N ′ is maximal with this property.

Proposition 7.

(i) Every subsemimodule N of a left R-semimodule M has a M-s-complement.

(ii) If M is a cancellative left R-semimodule and N a subsemimodule of M, then:

(a) Every M-w-complement of N is a M-s-complement of N

(b) If N ′ is a M-s-complement of N then: N ⊕ N ′ Ãswe M.

Proof. (i). Similar to the above proof.

For (2)(a) it suffices to see that, if M is cancellative and if the restriction of ≡N ′ to N is

trivial, then the restriction of ≡N to N ′ is trivial.

(2)(b). Similar to the above proof by using the fact that M is cancellative.

4. Applications: On Weakly Co-Hopfian Semimodules

We have three differents notions of essential subsemimodules, so we can define three dif-

ferents types of weakly co-hopfian semimodules

4.1. On Weakly Co-Hopfian Semimodules of Type 1

Definition 8. A nonzero left R-semimodule RM is said to be weakly co-hopfian-1 (denoted by

wch-1) if every monomorphism f : M → M is semi-weakly-essential i.e f (M)Ãswe M.

Proposition 8. The following are equivalent conditions on a left R-semimodule M.

(i) M is weakly co-hopfian-1.

(ii) ∀{0} 6= N ≤ M, if g ∈ End(M) is injective, then the restriction of≡N to g(M) is not trivial.
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Proof. (i)⇒(ii) Let {0} 6= N ≤ M and let g be an injective endomorphism of M . By

assumption g(M) is semi-weakly-essential in M , so, since N ≤ M and N 6= {0}, we deduce

that the restriction of ≡N to g(M) is not trivial.

(ii)⇒(i) Let g : M → M be an injective endomorphism of M and let N be a subsemimodule

of M such that the restriction of≡N to g(M) is trivial. Suppose that N 6= {0}. So by hypothesis

the restriction of ≡N to g(M) is not trivial which contradicts the assumption. So N = {0}
whence g(M) is semi-weakly-essential and so M is weakly co-hopfian-1.

Proposition 9. For a left R-semimodule M, consider the following statements.

(i) M is weakly co-hopfian-1.

(ii) For any left R-semimodule N, if there is an R-monomorphism ˙M ⊕ N → M then N = {0}.

Then (i) =⇒ (ii) and if M is cancellative we have (i)⇐⇒ (ii).

NB:

- A module M which verifies (ii) is said Dedekind finite.

- A semimodule which is finite verifies (ii).

- In the sequel, a semimodule M which verifies (ii) is said a F -semimodule.

Proof. (i)⇒(ii) Suppose that f : ˙M ⊕ N → M is a monomorphism where N is a left R-

semimodule. Let M
i
−→ ˙M ⊕ N

f
−→ M be an sequence where i is the canonical injection.

Then f ◦ i is a monomorphism, hence ( f ◦ i)(M) is semi-weakly-essential in M by assumption.

In an easy way one can show that f (N) = f ( ˙0⊕ N) = 0.

Since f is monic, f (N) = 0=⇒ N = 0.

(ii)⇒(i) By hypothesis we deduce this property (P): For any left R-semimodule N , if
˙M ⊕ N → M is an semi-weakly-essential monomorphism then N = {0}.
Now let g : M → M be a monomorphism with non semi-weakly-essential image. Then, by

Proposition 7 there exists a nonzero subsemimodule K with g(M)⊕ K Ãswe M .

Define f : ˙M ⊕ K → M : (m, k) 7→ g(m) + k. By the direct sum g(M) ⊕ K and the fact

that M is cancellative, f is monic. We have g(M) ⊕ K ⊆ f ( ˙M ⊕ K) ⊆ M , hence by Propo-

sition 3 f ( ˙M ⊕ K) Ãswe M (because g(M) ⊕ K Ãswe M). So f is an semi-weakly-essential

monomorphism contradicting the property (P) . Hence g(M)Ãswe M as desired.

Proposition 10. The following are equivalent conditions on a left R-semimodule M.

(i) M is weakly co-hopfian-1.

(ii) M is a F-semimodule and the image of any injective endomorphism of M is either semi-

weakly-essential or a proper direct summand.
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Proof. (i)⇒(ii) By hypothesis and by the previous proposition, we have: for any left R-

semimodule N , if there is an R-monomorphism ˙M ⊕ N → M then N = {0}.
Now suppose that ˙M ⊕ K ∼= M , then there is a monomorphism f : ˙M ⊕ K → M and we have

K = {0}, hence M is a F -semimodule. By hypothesis the image of any injective endomorphism

of M is in fact a semi-weakly-essential subsemimodule.

(ii)⇒(i) Let g : M → M be an injective endomorphism and suppose that g(M) is not semi-

weakly-essential in M . Then by hypothesis g(M) is a proper direct summand of M . So there

exits a nonzero subsemimodule K of M such that g(M)⊕ K = M .

Define f : ˙M ⊕ K → M : (m, k) 7→ g(m) + k. Then f is a monomorphism.

We have M = g(M)⊕ K ⊆ f ( ˙M ⊕ K) ⊆ M , hence f ( ˙M ⊕ K) = M , whence f is surjective.

Therefore there is an isomorphism ˙M ⊕ K ∼= M which contradicts the fact that M is a F -

semimodule. Thus g(M)Ãswe M .

Proposition 11.

(i) The following are equivalent conditions on a left R-semimodule M.

(a) M is weakly co-hopfian-1.

(b) There exists a subsemimodule K of M such that g(K)Ãswe M for all injective

g ∈ End(M).

(ii) A direct summand of a weakly co-hopfian-1 semimodule is weakly co-hopfian-1.

Proof.

(i) (b)⇒(a) Trivial by Proposition 3.

(a)⇒(b) Trivial.

(ii) Suppose that M is a weakly co-hopfian-1 semimodule.

Let M = N ⊕ K and let f : N −→ N be an injective endomorphism of N . Then the map

f ⊕ IdK : M = N ⊕ K → M = N ⊕ K

defined by n+ k 7→ ( f ⊕ IdK)(n+ k) = f (n) + k is an injective endomorphism of M and

( f ⊕ IdK)(M) Ãswe M . Then ( f ⊕ IdK)(M) Ãswe M ⇒ f (N) ⊕ K Ãswe N ⊕ K and by

Proposition 4 f (N)Ãswe N , therefore N is weakly co-hopfian-1.

4.2. On Weakly Co-Hopfian Semimodules of Type 2

Definition 9. A nonzero left R-semimodule RM is said to be weakly co-hopfian-2 (denoted by

wch-2) if every monomorphism f : M → M is semi-essential i.e f (M)Ãs M (see definition in the

introduction).
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Proposition 12. If M is wch-2, then M is wch-1.

Proof. By the Proposition 2.

Proposition 13. The following are equivalent conditions on a left R-semimodule M.

(i) M is weakly co-hopfian-2.

(ii) For every monomorphism f : M → M, if x is an nonzero element of M, then there exists

r ∈ R such that 0 6= r x ∈ f (M).

(iii) Injective endomorphisms of M map semi-essential subsemimodules to semi-essential sub-

semimodules.

Proof. (i)⇐⇒(ii) By Definition 9 and Lemma 2.

(iii)⇐⇒(i) is trivial.

(i)⇐⇒(iii) Let g : M → M be an injective endomorphism of M, and let K be a semi-essential

subsemimodule of M. Let us prove that g(K)Ãs M.

We have g(K)≤ g(M)≤ M and by hypothesis g(M)Ãs M, so, according to the Proposition 3,

to obtain g(K)Ãs M, it suffices to prove that g(K)Ãs g(M).

Let x ∈ g(M). So there exists m ∈ M such that x = g(m). Since K Ãs M, we deduce that there

exists an r ∈ R such that rm ∈ K. So g(rm) = r g(m) = r x ∈ g(K); thus g(K)Ãs g(M).

Proposition 14.

(i) A direct summand of a weakly co-hopfian-2 semimodule is weakly co-hopfian-2.

(ii) Let M = M1 ⊕ M2 such that each Mi is fully invariant. Then M is weakly co-hopfian-2 if

and only if so is each Mi .

Proof. (i) Suppose that M is a weakly co-hopfian-2 semimodule.

Let M = N ⊕ K and let f : N −→ N be an injective endomorphism of N . Then the map

f ⊕ IdK : M = N ⊕ K → M = N ⊕ K defined by n + k 7→ ( f ⊕ IdK)(n + k) = f (n) + k is an

injective endomorphism of M and so ( f ⊕ IdK)(M) Ãs M . Since ( f ⊕ IdK)(M) ≤ f (N)⊕ K ,

we deduce by Proposition 3 that f (N) ⊕ K Ãs N ⊕ K and by Proposition 5 that f (N) Ãs N ,

therefore N is weakly co-hopfian-2.

(2)=⇒) By (i).

⇐=) Let f : M = M1⊕M2 −→ M = M1⊕M2 be an injective endomorphism of M = M1⊕M2.

We have f (M1)⊕ f (M2) ⊆ f (M1 ⊕M2) ⊆ M1 ⊕M2. By assumption we have f (M1) Ãs M1

and f (M2) Ãs M2, and by the Proposition 5, we obtain f (M1) ⊕ f (M2) Ãs M1 ⊕ M2 and

consequently f (M1 ⊕M2)Ãs M1 ⊕M2.
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4.3. On Weakly Co-Hopfian Semimodules of Type 3

Definition 10. A nonzero left R-semimodule RM is said to be weakly co-hopfian-3 (denoted by

wch-3) if every monomorphism f : M → M is essential i.e f (M)Ã M.

Proposition 15. The following are equivalent conditions on a left R-semimodule M.

(i) M is weakly co-hopfian-3.

(ii) If m and m′ are distinct elements of M then for every monomorphism f : M → M, there

exist distinct elements f (m1) and f (m2) of f (M) satisfying f (m1)ρ(m,m′) f (m2).

Proof. By Definition 10 and Lemma 1.

Proposition 16. If M is wch-3, then M is wch-1.

Proof. By Proposition 2.

By a same way as above, we show the following results.

Proposition 17.

(i) The following are equivalent conditions on a left R-semimodule M.

(a) M is weakly co-hopfian-3.

(b) There exists a subsemimodule K of M such that g(K)Ã M for all injective

g ∈ End(M).

(ii) A direct summand of a weakly co-hopfian-3 semimodule is weakly co-hopfian-3.

(iii) Let M = M1 ⊕ M2 such that each Mi is fully invariant.Then M is weakly co-hopfian-3 if

and only if so is each Mi .

Proposition 18. Any R−simple semimodule is wch-3

Proof. Obvious.

4.4. Examples of Co-Hopfian Semimodules

Here we give examples of co-hopfian semimodules.

Example 5. Recall the semimodule (M ,⊕,⋆) of Example 1. Let us show that M is wch-1, wch-2

and wch-3.

Let g : M −→ M be an injective endomorphism of M. So g verifies the following property:

∀m, m′ ∈ M: m≤ m′ =⇒ g(m)≤ g(m′).

This property with the injectivity of g make that there exists an unique injective endomorphism

of M, namely the identity map on M. We deduce that the image of any injective endomorphism of

M is both semi-weakly-essential,semi-essential and essential and consequently that M is wch-1,

wch-2 and wch-3.
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Example 6. Let N be the set of natural integers and put (N,⊕,⊙) the semiring where ∀a, b ∈ N,

a⊕b = gcd(a, b) is the greatest common divisor of a, b and a⊙b = lcm(a, b) is the least common

divisor of a, b.

So N is a left N-semimodule. Every subsemimodule of N is in form < p >= pN = {pn/n ∈ N}
where p ∈ N and pn is the usual product of p and n (see [3]).

Every subsemimodule pN of N is semiessential on N because ∀n ∈ N there exists r ∈ N such

that rn ∈ pN.

So the image of any injective endomorphism of N is of the form pN, and therefore we deduce

that N is weakly-co-hopfian-2.

Example 7. Let R= {0; 1} be a set. (R;+;×) and (R;+;⊗) (where for all i, j ∈ R,

i + j = max(i, j), i × j = 0, i ⊗ j = 0 except 1⊗ 1 = 1) are semirings (see [16]). It’s easy to see

that (RR;+;×) and (RR;+;⊗) are two R-simples semimodules, therefore they are wch-3 by the

Proposition 18.
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