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Abstract. For a semigroup S, actions of S on non-empty sets, namely S-acts, are of interest to
consider for their applications in many branches of science. The well known generalization of a
semigroup is the Γ-semigroup. The notion of a Γ-act over a Γ-semigroup is a generalization of
actions over semigroups. In this paper, certain intrinsic and basic properties of Γ-acts including
cyclic, indecomposable and free are studied as well. Among other results, it is shown that a Γ-act
is free only if |Γ| = 1.
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1. Introduction

Nobusawa [10] introduced the notion of a Γ-ring, which is more general than a ring.
Then Barnes [2] studied Γ-rings in a different way than that of Nobusawa. Motivated
by these generalizations of rings, Sen [12] defined the concept of a Γ-semigroup, as a
generalization of a semigroup. The investigation on Γ-semigroups was done by certain
mathematicians which are parallel to the results in semigroup theory, for example, one
may see [11, 13, 14]. Recently on this area some new papers appeared, such as [3–5]. The
algebraic structure of a module over a ring has also been generalized to the Γ-module
over a Γ-ring in [1]. A useful algebraic structure in a variety of applications like algebraic
automata theory, theoretical computer science and information theory is the notion of S-
act over a semigroup S which is more general than a module over a ring (see, for example,
[8]). A generalization of an S-act to the Γ-act over a Γ-semigroup can be found in [14]
in connection with the consideration of radicals of Γ-semigroups. Here we study some
properties of Γ-acts originating by the basic properties of S-acts. First, we describe a
Γ-act in terms of a Γ-representation of a Γ-semigroup by Γ-transformations of a set. Then

∗Corresponding author.

Email addresses: hrasouli@srbiau.ac.ir; hrasouli5@yahoo.com (H. Rasouli),
ashabani@srbiau.ac.ir (A.R. Shabani)

http://www.ejpam.com 739 c© 2017 EJPAM All rights reserved.



H. Rasouli, A.R. Shabani / Eur. J. Pure Appl. Math, 10 (4) (2017), 739-748 740

some particular morphisms in the category of Γ-acts are characterized. Finally, some
results concerning cyclic, indecomposable and free Γ-acts are presented.

In the sequel we recall the definitions of S-act and Γ-semigroup.
For a semigroup S, a non-empty set A together with a mapping µ : S ×A→ A where

(s, a) 7→ sa := µ(s, a) is called a (left) S-act if for all s, t ∈ S and a ∈ A, (st)a = s(ta)
holds. This is written as SA. For a monoid S with an identity 1, we add the condition
1a = a, for all a ∈ A. The definition of an S-act, in this form, first proposed by Hoehnke in
[6, 7], with a different name in connection with the consideration of radicals of semigroups.
For more information on this basic concept, see [9].

There are some different definitions for a Γ-semigroup in the literature (see for example
[11–14]). Here we consider the one which is introduced in [11] as follows. Let S and
Γ be non-empty sets. Then S is said to be a Γ-semigroup if there exists a mapping
λ : S × Γ × S → S, writing λ(a, γ, b) as aγb satisfying the identity (aγb)βc = aγ(bβc)
for all a, b, c ∈ S and γ, β ∈ Γ. Let S be a Γ-semigroup. An element e of S is said to
be a left (right) identity of S if, eγs = s (sγe = s) for all s ∈ S and γ ∈ Γ. A left
as well as right identify is an identity of S. A Γ-semigroup with an identity is called a
Γ-monoid. A non-empty subset I of S satisfying SΓI ⊆ I is called a left Γ-ideal of S. By
a left Γ-congruence on S we mean an equivalence relation ρ on S for which sρs′ implies
(tγs)ρ(tγs′) for s, s′, t ∈ S and γ ∈ Γ. Let S and T be two Γ-semigroups with left identities
e and e′, respectively. A map f : S → T satisfying f(e) = e′ and f(sγs′) = f(s)γf(s′) for
all s, s′ ∈ S, γ ∈ Γ, is called a Γ-semigroup homomorphism.

2. The structure of Γ-S-acts

The purpose of this section is to study some basic properties of Γ-S-acts. Let us first
give some definitions.

Let S be a Γ-semigroup and A be a non-empty set. Recall from [14] that if there exists a
mapping λ : S×Γ×A→ A where (s, γ, a) 7→ sγa := λ(s, γ, a) such that (sγt)βa = sγ(tβa)
for all a ∈ A, s, t ∈ S and γ, β ∈ Γ, and if S has a left identity e, eγa = a for every a ∈ A
and γ ∈ Γ, then A is called a (left) Γ-S-act. If no confusion arises, a Γ-S-act A is simply
called a Γ-act and is denoted by ΓA. A non-empty subset A′ of A is said to be a Γ-subact
of A if SΓA′ ⊆ A′, that is, sγa′ ∈ A′ for all s ∈ S, a′ ∈ A′ and γ ∈ Γ. Clearly, S itself is a
Γ-S-act with its Γ-operation as the Γ-action. Also any left Γ-ideal of S is a Γ-subact of S.
Let A be a Γ-S-act. An element θ ∈ A is called a zero element of A if sγθ = θ for every
s ∈ S and γ ∈ Γ. Let ΓA, ΓB be two Γ-S-acts. A mapping f : ΓA → ΓB is called a Γ-
S-homomorphism, or simply Γ-homomorphism, if f(sγa) = sγf(a) for every s ∈ S, a ∈ A
and γ ∈ Γ. If S is a Γ-monoid with identity 1 and A is a Γ-S-act, then for every s, t ∈ S
and γ, β ∈ Γ, we have sγt = sβt and sγa = sβa. Indeed, sγt = (sβ1)γt = sβ(1γt) = sβt;
and sγa = (sβ1)γa = sβ(1γa) = sβa. Then it is more interesting to consider Γ-S-acts for
a Γ-semigroup S with a left identity (not necessarily an identity). Therefore, from now
on, S stands for a Γ-semigroup with a left identity e unless otherwise stated.

The idea of representing something by some other objects which are better known at
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least in some respects is quite familiar in mathematics. It is well known that every repre-
sentation of a ring by endomorphisms of an abelian group gives a module over that ring
and vice versa. Analogously, representations of semigroups (monoids) by transformations
of sets give rise to the notion of acts over semigroups (monoids) (see [9, Proposition I.4.4]).
In the same way, we here describe Γ-acts in terms of Γ-representations of Γ-semigroups.

Let A be a non-empty set and A denote the set of all maps ϕ : Γ→ AA, the so called
Γ-transformations of A, where AA is the monoid of all transformations of A with the usual
composition of mappings as its operation. Now we have

Lemma 1. The set A is a Γ-semigroup with a left (not necessarily right) identity under
the Γ-operation ϕγϕ′ : Γ → AA defined by ϕγϕ′(γ′) := ϕ(γ)ϕ′(γ′) for all ϕ,ϕ′ ∈ A and
γ, γ′ ∈ Γ.

Proof. Let ϕ,ϕ′, ϕ′′ ∈ A and γ, γ′. Then (ϕγϕ′)γ′ϕ′′ = ϕγ(ϕ′γ′ϕ′′). Indeed, for any
γ′′ ∈ Γ we have

[(ϕγϕ′)γ′ϕ′′](γ′′)

= (ϕγϕ′)(γ′)ϕ′′(γ′′)

= ϕ(γ)ϕ′(γ′)ϕ′′(γ′′)

= ϕ(γ)(ϕ′γ′ϕ′′)(γ′′)

= [ϕγ(ϕ′γ′ϕ′′)](γ′′),

as desired. Also the constant mapping ε : Γ→ AA which maps every element of Γ to idA
is a left identity element of A which is not necessarily a right identity.

In the following, the notion of representations of a semigroup by transformations of a
set is generalized.

Definition 1. A Γ-representation of a Γ-semigroup S by Γ-transformations of a non-
empty set A is a Γ-semigroup homomorphism Φ : S → A, where A is the Γ-semigroup
described in Lemma 1.

Proposition 1. Every Γ-representation of a Γ-semigroup S by Γ-transformations of a
non-empty set A in A turns A into a Γ-S-act. Conversely, for every Γ-S-act ΓA, there is
an associated Γ-representation of S by Γ-transformations of A in A.

Proof. Let A be a non-empty set and S be a Γ-semigroup. If Φ : S → A is a Γ-
representation, define λ : S × Γ × A → A by sγa = λ(s, γ, a) := Φ(s)(γ)(a), for all
s ∈ S, γ ∈ Γ, a ∈ A. Then A is a Γ-S-act. For this, let s, s′ ∈ S, γ, γ′ ∈ Γ, a ∈ A. We have

(sγs′)γ′a = Φ(sγs′)(γ′)(a) = (Φ(s)γΦ(s′))(γ′)(a) =

(Φ(s)(γ))(Φ(s′)(γ′)(a)) = (Φ(s)(γ))(s′γ′a) = sγ(s′γ′a).

Also if e and ε are left identities of S and A, respectively, then eγa = Φ(e)(γ)(a) =
ε(γ)(a) = idA(a) = a. For the converse, consider any Γ-S-act ΓA. Define Φ : S → A
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by Φ(s) = ϕs : Γ → AA, where ϕs(γ)(a) := sγa for all s ∈ S, γ ∈ Γ, a ∈ A. It must
be shown that Φ is a Γ-semigroup homomorphism. Let s, s′ ∈ S and γ ∈ Γ. Then
Φ(sγs′) = Φ(s)γΦ(s′), or equivalently, ϕsγs′ = ϕsγϕs′ . To see this, let β ∈ Γ and a ∈ A.
We get

ϕsγs′(β)(a) = (sγs′)βa = sγ(s′βa) = sγ(ϕs′(β)(a))

= ϕs(γ)ϕs′(β)(a) = (ϕsγϕs′)(β)(a).

Therefore, Φ is a Γ-representation.

Remark 1. (i) Every S-act A over a semigroup S can be generalized to a Γ-S-act over
the induced Γ-semigroup S. Indeed, first note that a semigroup S can be made into a
Γ-semigroup by setting sγt := st for every s, t ∈ S and γ ∈ Γ. Now define a mapping from
S × Γ × A to A by sγa := sa for every s ∈ S, γ ∈ Γ and a ∈ A. Then A is a Γ-S-act.
Moreover, if A is a Γ-S-act over a Γ-semigroup S and γ is a fixed element of Γ, then S is a
semigroup under the operation st := sγt for all s, t ∈ S, and A with the action sa := sγa,
for every s ∈ S and a ∈ A, is an S-act.

(ii) A Γ-S-act can have more than one zero, for instance, any non-empty set A becomes
a Γ-S-act by definition sγa = a for every a ∈ A, s ∈ S and γ ∈ Γ, i.e. all elements of A
are zero. If S has a right zero z, i.e. sαz = z for any s ∈ S, α ∈ Γ, then every element
zγa for a ∈ A and γ ∈ Γ is a zero element of A. Indeed, for every s ∈ S and α ∈ Γ,
sα(zγa) = (sαz)γa = zγa. Note that every Γ-S-act A can be extended to a Γ-S-act with
a zero θ by taking the disjoint union A ∪ {θ}.

In the following, we give some examples of Γ-S-acts.

Example 1. (i) Let S,Γ and M be the sets of all 3 × 2, 2 × 3 and 3 × 3 matrices over
Z, respectively. Under the usual matrix products, S is a Γ-semigroup and M is a Γ-S-act
but not an S-act.

(ii) Let S = {5n + 4 : n ∈ N}, Γ = {5n + 1 : n ∈ N} and A = {5n : n ∈ N}. Under
the usual addition of natural numbers, S is a Γ-semigroup and A is a Γ-S-act but not an
S-act.

(iii) If A is a Γ-S-act, then the power set of A, P (A), is a Γ-S-act under the Γ-action
sγX =: {sγx | x ∈ X} for s ∈ S,X ∈ P (A) and γ ∈ Γ.

(iv) Let S be a Γ-semigroup. Then the set of all 2 × 2 matrices over S is a Γ-S-act
under the Γ-action:

s1γ

(
s s′

t t′

)
:=

(
s1γs s1γs

′

s1γt s1γt
′

)
for s1, s, s

′, t, t′ ∈ S and γ ∈ Γ.
(v) Let S and T be Γ-semigroups. Clearly, the cartesian product S×T is a Γ-semigroup

with the Γ-operation (s1, t1)γ(s2, t2) := (s1γs2, t1γt2) for every s1, s2 ∈ S, t1, t2 ∈ T and



H. Rasouli, A.R. Shabani / Eur. J. Pure Appl. Math, 10 (4) (2017), 739-748 743

γ ∈ Γ. Now suppose S and T contain right zero elements z, z′, respectively. Then the set

A = {
(

s z
z′ t

)
: s ∈ S, t ∈ T} is a Γ-S × T -act under the Γ-action:

(s1, t1)γ

(
s2 z
z′ t2

)
:=

(
s1γs2 z
z′ t1γt2

)
for s1, s2 ∈ S, t1, t2 ∈ T and γ ∈ Γ. To see this, let s1, s2, s ∈ S, t1, t2, t ∈ T and α, γ ∈ Γ.
We have:

((s1, t1)α(s2, t2))γ

(
s z
z′ t

)
= (s1αs2, t1αt2)γ

(
s z
z′ t

)

=

(
(s1αs2)γs z

z′ (t1αt2)γt

)
=

(
s1α(s2γs) z

z′ t1α(t2γt)

)

= (s1, t1)α((s2, t2)γ

(
s z
z′ t

)
).

Hence, A is a Γ-S × U -act.

We here generalize some basic properties of S-acts to Γ-S-acts.

Since the composition of two Γ-homomorphisms is a Γ-homomorphism, and the iden-
tity map on a Γ-act is a Γ-homomorphism, we conclude that all Γ-acts together with all
Γ-homomorphisms between them forms a category which is denoted by Γ-S-Act, or sim-
ply Γ-Act if no confusion arise. The notions of Γ-monomorphisms, Γ-epimorphisms and
Γ-isomorphisms in their categorical forms are defined as monomorphisms, epimorphisms
and isomorphisms, respectively, in the category Γ-Act. Here we characterize these no-
tions in terms of injective, surjective and bijective Γ-homomorphisms. Let us list some
preliminaries.

If ΓA is a Γ-act, a ∈ ΓA and γ ∈ Γ, then the map λa,γ : ΓS → ΓA defined by
λa,γ(s) = sγa for every s ∈ S is a Γ-homomorphism. To see this, for every t ∈ S and
β ∈ Γ we have λa,γ(tβs) = (tβs)γa = tβ(sγa) = tβλa,γ(s).

Let ΓA be a Γ-S-act. An equivalence relation ρ on A is called a Γ-S-congruence, or
simply a Γ-congruence, on ΓA if aρa′ implies (sγa)ρ(sγa′) for every a, a′ ∈ ΓA, s ∈ S
and γ ∈ Γ. The set ΓA

ρ = {[a]ρ : a ∈ ΓA} with the Γ-action sγ[a]ρ = [sγa]ρ for every
s ∈ S and γ ∈ Γ is called the factor Γ-act of ΓA by ρ, and the canonical surjection
πρ : ΓA → ΓA

ρ where a 7→ [a]ρ is called the canonical Γ-epimorphism. Also for a Γ-

homomorphism f : ΓA→ ΓB, the Γ-congruence ρ = kerf on ΓA where aρa′ if and only if
f(a) = f(a′), for all a, a′ ∈ A, is called the kernel Γ-congruence of f . For each Γ-subact ΓB
of ΓA, the Rees Γ-congruence ρB on A is given as aρBa

′ if and only if a = a′ or a, a′ ∈ B,
for any a, a′ ∈ A. The resulting factor Γ-act ΓA

ρB
is simply denoted by ΓA

ΓB
.
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Proposition 2. In the category Γ-Act, Γ-monomorphisms, Γ-epimorphisms and Γ-iso-
morphisms are exactly injective, surjective and bijective Γ-homomorphisms, respectively.

Proof. It is easy to see that every injective Γ-homomorphism is a Γ-monomorphism,
every surjective Γ-homomorphism is a Γ-epimorphism, and every Γ-isomorphism is bijec-
tive. Take any Γ-homomorphism f : ΓA → ΓB. Suppose f is a Γ-monomorphism and
f(a) = f(a′) for any a, a′ ∈ A. We show that a = a′. Let γ ∈ Γ. Consider the Γ-
homomorphisms λa,γ , λa′,γ : ΓS → ΓA. We claim that fλa,γ = fλa′,γ . For every s ∈ S,
fλa,γ(s) = f(λa,γ(s)) = f(sγa) = sγf(a) = sγf(a′) = f(sγa′) = f(λa′,γ(s)) = fλa′,γ(s).
Since f is a Γ-monomorphism, λa,γ = λa′,γ . Hence, a = eγa = λa,γ(e) = λa′,γ(e) = eγa′ =
a′, where e is a left identity of S. Then f is injective. Now let f be a Γ-epimorphism.
Clearly, Imf is a Γ-subact of B. Consider Γ-homomorphisms g, h : ΓB → ΓB

Imf defined by
g(b) = Imf and h(b) = [b]Imf for every b ∈ B, respectively. Clearly, gf = hf and then
g = h because f is a Γ-epimorphism. It follows that for every b ∈ B, Imf = g(b) = h(b) =
[b]Imf whence Imf = B, i.e. f is surjective. Finally, assume that f is bijective. It suffices
to show that f−1 is a Γ-homomorphism. Let s ∈ S, γ ∈ Γ, b ∈ B. Then there exists a ∈ A
such that f(a) = b and hence f−1(sγb) = f−1(sγf(a)) = f−1(f(sγa)) = sγa = sγf−1(b).
This implies that f is a Γ-isomorphism.

Remark 2. Let S be a Γ-semigroup, ΓA a Γ-S-act and f : ΓA→ ΓS a Γ-homomorphism.
Then A is a Γ-semigroup under the Γ-operation aγa′ := f(a)γa′ for every a, a′ ∈ A and
γ ∈ Γ. For this, let a, a′, a′′ ∈ A and α, γ ∈ Γ. Then

(aαa′)γa′′ = (f(a)αa′)γa′′ = f(f(a)αa′)γa′′ = (f(a)αf(a′))γa′′

= f(a)α(f(a′)γa′′) = aα(f(a′)γa′′) = aα(a′γa′′).

Theorem 2 (Homomorphism Theorem for Γ-Acts). Let f : ΓA→ ΓB be a Γ-homomorphism
and ρ be a Γ-congruence on ΓA such that aρa′ implies f(a) = f(a′), i.e. ρ ≤ kerf . Then
f ′ : ΓA

ρ → ΓB with f ′([a]ρ) := f(a), a ∈ ΓA, is the unique Γ-homomorphism such that

f ′πρ = f . If ρ=kerf , then f ′ is injective. Also if f is surjective, then so is f ′.

Proof. The mapping f ′ is well-defined, because for every [a]ρ, [a
′]ρ ∈ ΓA

ρ , [a]ρ = [a′]ρ ⇔
aρa′ ⇒ f(a) = f(a′)⇒ f ′([a]ρ) = f ′([a′]ρ). For every s ∈ S,γ ∈ Γ and a ∈ A, f ′(sγ[a]ρ) =
f ′([sγa]ρ) = f(sγa) = sγf(a) = sγf ′([a]ρ). Hence, f ′ is a Γ-homomorphism. Also for
every a ∈ ΓA, (f ′πρ)(a) = f ′(πρ(a)) = f ′([a]ρ) = f(a). Now we show that f ′ is unique.
Suppose there exists f ′′ : ΓA

ρ → ΓB such that f ′′πρ = f . This implies that f ′′πρ = f ′πρ.

Since πρ is an epimorphism, f ′′ = f ′. The remainder is an easy verification.

Corollary 1. Let f : ΓA→ ΓB be a Γ-epimorphism. Then ΓA
kerf
∼= ΓB.

3. Cyclic, Indecomposable and Free Γ-S-Acts

In this section we study the notions of cyclic, free and indecomposable Γ-S-acts and
investigate their properties. For each Γ-act, a unique decomposition into indecomposable
Γ-subacts is obtained. It is also proved that if a Γ-act is free, then Γ is a singleton.
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Definition 2. A subset U 6= ∅ of a Γ-S-act ΓA is said to be a generating set of ΓA if
every element a ∈ A can be presented as a = sγu for some s ∈ S, u ∈ U and γ ∈ Γ. In
this case, we write ΓA = 〈U〉 (or SΓU), where SΓU = {sγu : s ∈ S, γ ∈ Γ, u ∈ U}. For
simplicity, we use the notations SγU and SΓu for S{γ}U and SΓ{u}, respectively. Also
A is finitely generated if it has a finite generating set of elements. We call ΓA a cyclic
Γ-S-act if ΓA = 〈a〉 (= SΓa) for some a ∈ ΓA. Not that ΓA = 〈A〉, i.e. ΓA is always a
generating set of itself.

Lemma 3. Let U be a non-empty subset of a Γ-act ΓA and a ∈ ΓA. Then the following
assertions hold:

(i) SΓa = Sγa for every γ ∈ Γ.
(ii) Sγa = Sβa for every γ, β ∈ Γ.
(iii) SΓU = SγU for every γ ∈ Γ.

Proof. (i) Let γ ∈ Γ and a ∈ ΓA. Clearly, Sγa ⊆ SΓa. For the reverse inclusion,
take any β ∈ Γ and s ∈ S. Then sβa = sβ(eγa) = (sβe)γa ∈ Sγa which implies that
SΓa = Sγa.

(ii) Let γ, β ∈ Γ. Using (i), we get Sγa = SΓa and Sβa = SΓa. Then Sγa = Sβa.
(iii) Let γ ∈ Γ. It follows from (i) that SγU =

⋃
u∈U Sγu =

⋃
u∈U SΓu = SΓU .

The above lemma presents a simple characterization for generating subsets of a Γ-act.
In particular, one can consider a cyclic Γ-act ΓA = 〈a〉 as Sγa for any γ ∈ Γ.

In the following, we characterize cyclic Γ-acts in terms of the factor Γ-acts of ΓS.

Theorem 4. If a Γ-act ΓA is cyclic, then there exists a Γ-congruence ρ on ΓS such that

ΓA ∼= ΓS
ρ . The converse also holds provided S is a Γ-monoid.

Proof. Let ΓA = Sγa for some a ∈ ΓA and γ ∈ Γ. Then the Γ-homomorphism
λa,γ : ΓS → ΓA is obviously a Γ-epimorphism. Using Corollary 1, we get ΓA ∼= ΓS

kerλa,γ
.

Then setting ρ = kerλa,γ we get the result. Conversely, if ρ is a Γ-congruence on a Γ-
monoid ΓS with identity 1, then for every [s]ρ ∈ ΓS

ρ and γ ∈ Γ, [s]ρ = [sγ1]ρ = sγ[1]ρ

which shows that ΓS
ρ = 〈[1]ρ〉.

A Γ-act is called simple if it contains no proper Γ-subacts. It is clear that a simple act
must be cyclic. Now we give conditions under which cyclic Γ-acts, principal left Γ-ideals
and Rees factor Γ-acts of a Γ-monoid by left Γ-ideals are simple.

Proposition 3. Let ρ be a left Γ-congruence on a Γ-monoid ΓS. The cyclic Γ-act ΓS
ρ is

simple if and only if [1]ρ ∩ Sγt 6= ∅ for any t ∈ S and γ ∈ Γ.

Proof. For a left Γ-congruence ρ on ΓS, consider the canonical Γ-epimorphism π :

ΓS → ΓS
ρ . Let ΓS

ρ be simple and t ∈ S, γ ∈ Γ. Since π(Sγt) is a Γ-subact of ΓS
ρ and

ΓS
ρ is simple, π(Sγt) = ΓS

ρ . Hence, there exists u ∈ Sγt such that π(u) = [1]ρ. Thus

u ∈ [1]ρ and then [1]ρ ∩ Sγt 6= ∅. Conversely, let ΓA be a Γ-subact of ΓS
ρ . Take any

t ∈ π−1(A) and γ ∈ Γ. Using the assumption, there exists s ∈ S such that sγt ∈ [1]ρ.
Now [1]ρ = π(sγt) = sγπ(t) ∈ ΓA. This implies that ΓA = ΓS

ρ and hence ΓS
ρ is simple.
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The following two statements are corollaries of the previous proposition. They can
also be obtained straightforward from the definition of a simple Γ-act.

Corollary 2. A principal left Γ-ideal Sγz, z ∈ S, γ ∈ Γ is a simple Γ-act if and only if
z ∈ Sβtγz for all t ∈ S, β ∈ Γ.

Corollary 3. Let I be a left Γ-ideal of S. The Rees factor Γ-act ΓS
I is simple if and only

if I = S.

Definition 3. A Γ-act ΓA is called decomposable if there exist two Γ-subacts ΓB and ΓC
of ΓA such that ΓA = ΓB∪ ΓC and ΓB∩ ΓC = ∅. In this case, the disjoint union ΓB ∪̇ ΓC
is called a decomposition of ΓA. Otherwise, ΓA is called indecomposable. If we consider
Γ-S-acts with unique zero θ, then we have to replace ∅ by {θ} to define decomposable and
indecomposable Γ-acts with unique zero.

Recall that every S-act has a unique decomposition into indecomposable subacts (see
[9, I.5.10]). In the following, an analogous result is obtained for the decomposition of
Γ-acts. To this end, first note the following:

Proposition 4. Every cyclic Γ-act is indecomposable.

Proof. Suppose ΓA = Sγa, γ ∈ Γ, a ∈ A, is cyclic and A = ΓB ∪̇ ΓC for some Γ-
subacts ΓB and ΓC of ΓA. Then a = eγa ∈ ΓB, say, and then ΓA = Sγa ⊆ ΓB which is a
contradiction.

Lemma 5. Let Ai ⊆ ΓA, i ∈ I, be indecomposable Γ-subacts of an Γ-act ΓA such that
∩i∈IAi 6= ∅. Then ∪i∈IAi is an indecomposable Γ-subact of ΓA.

Proof. First note that ∪i∈IAi is a Γ-subact of ΓA. Indeed, SΓAi ⊆ Ai for every
i ∈ I whence SΓ(∪i∈IAi) = ∪i∈I(SΓAi) ⊆ ∪i∈IAi. Suppose there exists a decomposition
∪i∈IAi = ΓB ∪̇ ΓC. Take x ∈ ∩i∈IAi with x ∈ ΓB, say. Then x ∈ Ai ∩ ΓB for all
i ∈ I. Since Ai = Ai ∩ (ΓB ∪̇ ΓC) = (Ai ∩ ΓB) ∪̇ (Ai ∩ ΓC) and Ai is indecomposable,
Ai ∩ ΓC = ∅ for every i ∈ I. Thus ∪i∈IAi = ΓB which is a contradiction.

Theorem 6. Every Γ-S-act ΓA has a unique decomposition into indecomposable Γ-subacts.

Proof. Take x ∈ ΓA. Then Sγx, γ ∈ Γ, is indecomposable by Proposition 4. Using
Lemma 5, we get Ux =

⋃
{ΓU ⊆ ΓA : ΓU is indecomposable and x ∈ ΓU} is an indecom-

posable Γ-subact of ΓA. For x, y ∈ ΓA, Ux = Uy or Ux ∩ Uy = ∅. Indeed, z ∈ Ux ∩ Uy
implies Ux, Uy ⊆ Uz. Thus x ∈ Ux ⊆ Uz, y ∈ Uy ⊆ Uz, i.e. Uz ⊆ Ux ∩ Uy. Therefore,
Ux = Uy = Uz. Denote by A′ a representative subset of elements x ∈ ΓA with respect to
the equivalence relation ∼ defined by x ∼ y if and only if Ux = Uy. Then ΓA =

⋃
x∈A′ Ux

is the unique decomposition of ΓA into indecomposable subacts.

Definition 4. A set U of generating elements of a Γ-S-act ΓA is said to be a basis of

ΓA if every element a ∈ ΓA can be uniquely presented in the from a = sγu for some
s ∈ S, u ∈ U and γ ∈ Γ, i.e. if a = sγu = s′γ′u′ for s, s′ ∈ S, u, u′ ∈ U and γ, γ′ ∈ Γ, then
s = s′, u = u′ and γ = γ′. If a Γ-act ΓA has a basis U , then it is called a free Γ-act.
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Proposition 5. Let f : ΓA→ ΓB be a Γ-homomorphism.
(i) If ΓA if finitely generated then so is f(ΓA).
(ii) If ΓA = 〈U〉 and g : ΓA → ΓB is a Γ-homomorphism, then f(u) = g(u) for every

u ∈ U implies f = g.
(iii) If f is a Γ-epimorphism and ΓA = 〈U〉, then ΓB = 〈f(U)〉.
(iv) If is a Γ-isomorphism and ΓA is a free Γ-act, then so is ΓB.

Proof. It is straightforward.

The following result shows that there is no free Γ-act whenever |Γ| > 1.

Theorem 7. If ΓA is a free Γ-act, then |Γ| = 1.

Proof. Suppose ΓA is a free Γ-act with a basis U . Consider γ, γ′ ∈ Γ, s ∈ S and
u ∈ U . Using Lemma 3(ii), sγu ∈ Sγu = Sγ′u and then sγu = s′γ′u′ for some s, s′ ∈ S
and u, u′ ∈ U . Since U is a basis, γ = γ′.

Remark 3. Let |Γ| = 1. Using Remark 1(i), the category Γ-S-Act is equivalent to the
category of all acts over the induced semigroup S (containing a left identity). Therefore,
any categorical property of such Γ-acts coincides with the analogous property of their
corresponding acts. For a Γ = {γ} and a Γ-semigroup S with a left identity, in view of
the constructing free acts over monoids as in [9, Construction I.5.14], a free Γ-S-act with
a basis X 6= ∅ is isomorphic to S × Γ ×X with the action sγ(t, γ, x) := (sγt, γ, x) for all
s, t ∈ S and x ∈ X. Furthermore, any free Γ-act is invariant under the cardinality of its
bases and the universal property of freeness holds for free Γ-acts. Hence, every Γ-act is a
factor Γ-act of a free Γ-act (see [9, Theorem I.5.15, Proposition I.5.16]).

Acknowledgements

The authors thank the referee for carefully reading the paper.

References

[1] R Ameri and R Sadeghi. Gamma modules. Ratio Mathematica, 20:127–147, 2010.

[2] W E Barnes. On the Γ-rings of Nobusawa. Pacific J. Math., 18(3):411–422, 1966.

[3] S Chattopadhyay. Right orthodox Γ-semigroup. Southeast Asian Bull. Math., 29:23–
30, 2005.

[4] R Chinram and P Siammai. On Green’s relations for Γ-semigroups and redutive
Γ-semigroups. Int. J. Algebra, 2:187–195, 2008.

[5] R Chinram and K Tinpun. Isomorphism theorems for Γ-semigroup and ordered Γ-
semigroup. Thai J. Math., 7(2):231–241, 2009.

[6] H J Hoehnke. Structure theorie der Halgrouppen. Math. Nachr., 26:1–13, 1963.



REFERENCES 748

[7] H J Hoehnke. Structure of semigroups. Canada. J. Math., 18:449–491, 1966.

[8] J M Howie. Automata and Languages. Oxford University Press, Oxford, 1991.

[9] U Knauer M Kilp and A V Mikhalev. Monoids, Acts and Categories. de Gruyer,
Berlin, 2000.

[10] N Nobusawa. On a generalization of the ring theory. Osaka J. Math., 1:81–89, 1964.

[11] N K Saha. The maximum idempotent separating congruence on an inverse Γ-
semigroup. Kyungpook Math. J., 34(1):59–66, 1994.

[12] M K Sen. On Γ-semigroups. In Algebra and its applications (New Delhi, 1981),
301-308., Lecture Notes in Pure and Appl. Math., volume 91. Dekker, New York,
1984.

[13] M K Sen and N K Saha. On Γ-semigroup I. Bull. Calcutta Math. Soc., 78:180–186,
1986.

[14] M K Sen and A Seth. Radical of Γ-semigroup. Bull. Calcutta Math. Soc., 80(3):189–
196, 1988.


