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toward statistic through exploratory factor analysis
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Abstract. The aim of this paper is to show a path to measure a set latent variable through
exploratory factorial analysis and confirmatory analysis. It starts with the theoretical mathematical
procedure and then, with a database, it shows the re-specified model of study. This procedure has
been used to explain anxiety towards mathematics. Many students often come to these subjects
with negative attitude and usually with high levels of anxiety, which affects performance when they
face classes, exercises or tests. Due to the importance of this subject, this behavior is formally
analyzed in several studies, with the use of these statistical techniques previously mentioned
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1. Introduction

Preliminary notes and notation

In exploratory factor analysis (EFA), we seek to identify the measures of the model,
i.e., the number of factors and its indicators, because the theory establishes that some
variables are indicators of some factors, as we can see in any model of study. After this,
the model structure is specified in order to be validated by confirmatory analysis in a
later phase, i.e., we seek to validate the model obtained in the exploratory phase, and
subsequently confirmed by another statistic technique, which could be with the use of
structural equations.

In the social science field, frequently we require measure some scales that its utilized
in order to obtain a set data to measure some aspect about perception. For example, in
the research about attitude, anxiety, beliefs and perception toward mathematics, all of
this, on high school students and college students as well. Hence, with this type of scales
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we may build a latent variables structure which underlying in the phenomena previously
mentioned.

In this idea and in order to align on the one hand, the set of latent variables that explain
this kind of phenomena, and secondly the use of statistical techniques, then is discussed
the phenomena of attitude and anxiety towards math. The set of latent variables that have
tried to explain anxiety towards mathematics was initiated with the work of mathematics
teachers at the beginning of 1950. In 1957 Dreger and Aiken [1] introduced the term ”math
anxiety” as a variable which allows describing the difficulties and attitude of students with
mathematics. They defined as ”the presence of a syndrome of emotional reactions to the
arithmetic and math.” Although, since then it became difficult explain this concept, it
was begun explanation of this phenomenon only with the opinions of the authors, without
the use of statistical techniques to assess anxiety towards mathematics [36].

Later, in a second term the studies focused on measuring attitudes toward mathemat-
ics through surveys which included several variables, which necessarily requires the use of
multivariate statistical techniques [7]. In a third period was continued with the study of
mathematics and from this, the integrated scales associated with aspects that explain the
attitude factors, anxiety, beliefs and perception towards mathematics, were developed. In
this regard Dreger and Aiken [1] designed the first instrument, the numerical anxiety scale
in 1957. In 1972 Richardson and Suinn [33] developed a scale called the Mathematics
Anxiety Rating Scale (MARS). Subsequently was developed the Fennema-Sherman Math-
ematics Attitudes Scales [30]. Afterwards other scales were designed: the Mathematics
Anxiety Scale [28] and Math Anxiety Questionnaire [24].

Furthermore, some authors developed an abbreviated version of the scale MARS, for
example, Suinn and Winston [35] investigated the previous studies that attempted to
shorten the original MARS, e.g., [19, 18, 26, 3] and generated 30 items from Alexan-
der and Cobb (1984), Alexander and Martray, and Rounds and Hendel (1980). The 30
collected items were subjected to a principal components analysis with oblique rotation,
and two factors that emerged accounted for 70.3% of the total variability in the MARS
items. Mathematics Test Anxiety accounted for 59.2% of the variance, whereas Numerical
Anxiety accounted for 11.1% of the variance.

Extensive research has been done on the scale MARS and its psychometric properties,
e.g., [21, 33, 18, 32, 13]. However, the second and more important study about this scale is,
the shortcoming of the instrument, due to the proposed underlying construct of the scala
MARS, is unidimensional [33, 27]. Nonetheless, others studies have revealed that there
may be more than one underlying construct in mathematics anxiety, e.g., Alexander &
Cobb; Alexander & Martray; Brush; Ferguson,; mentioned by [15], also [26, 21, 18, 2]. Ling
[23] investigated the validity of mathematics anxiety as a multidimensional construct and
found six factors (i.e., Personal Effectiveness; Assertiveness; Math Anxiety; Outgoingness;
Success; and Dogmatism) that accounted for 76% of the total variance. Also, Bessant
cited by [15] revealed that 43% of the variance in the MARS scores was explained by six
factors: General Evaluation Anxiety, Everyday Numerical Anxiety, Passive Observation
Anxiety, Performance Anxiety, Mathematics Test Anxiety, and Problem-Solving Anxiety.

Kazelskis [22] investigated the factor structure of the three most widely used mathe-
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matics anxiety scales: the RMARS [3], the Mathematics Anxiety Questionnaire (MAQ)
[24] and the Mathematics Anxiety Scale (MAS) designed by [30]. When an exploratory
factor analysis, with a principal component analysis and oblique rotation, was applied,
the results revealed six dimensions of mathematics anxiety, which accounted for approxi-
mately 61% of the total variance. These six dimensions were: Mathematics Test Anxiety,
Numerical Anxiety, Mathematics Course Anxiety, Worry, Positive Affect toward Math-
ematics, and Negative Affect toward Mathematics. Kazelskis [22] also pointed out that
because Numerical Anxiety appears to be distinct from the other dimensions . . . it could
be argued that anxiety as a result of the manipulation of numbers is the sine qua non of
mathematics anxiety.

In other study, Bowd and Brady cited by [15] conducted principal components analysis
followed by Varimax rotation on the results of 357 senior undergraduates in education and
found three factors that accounted for 73% of the variability in the RMARS scores. The
three factors were named Mathematics Test Anxiety (11 items), Mathematics Course
Anxiety (8 items), and Numerical Task Anxiety (4 items).

Initial concurrent validity of the instrument was tested by comparing it with the
Fennema-Sherman Attitude Scale [30], and negative relationships were found, which meant
that students who had more favorable attitudes toward mathematics experienced less
mathematics anxiety [3]. In addition, Moore, Alexander, Redfield, and Martray [3] found
high to moderate correlations between the RMARS and the MAS [30], the State-Trait
Anxiety Inventory [9], and the Test Anxiety Inventory [31].

Moore, Alexander and Martray [3] also found that the RMARS discriminated between
students who took geometry or algebra in high school and students who did not. Students
who took an algebra course (F = 18.07, p ¡ .001) and a geometry course (F = 25.60, p
¡ .001) in high school experienced significantly less mathematics anxiety compared with
students who did not take these courses, as measured with the RMARS. Moore et al,
[3] also revealed that the RMARS scores were significantly correlated with the American
College Testing mathematics scores and mathematics course grades. Moderate-to-high-
reliability evidence was found for the total and subscales of the RMARS. Initial internal
consistency reliability coefficients of the RMARS subscales were .96 for the Mathematics
Test Anxiety, 0.86 for the Numerical Task Anxiety, and 0.84 for the Math Course Anxiety.

The arguments presented in previous paragraphs about the constructs that measure
attitudes, anxiety, and perception towards mathematics, are structures of latent variables
that have been measured through exploratory factor analysis (EFA) and in some cases
with confirmatory analysis (CA). With the use of these techniques primarily it seeks
reduce the number of factors. With the factors that present the greatest possible load
factor, can extract greater variance components present and allow explain the study object.
Afterwards it is possible confirm the resulting model with structural equations in the
confirmatory analysis. Therefore, following steps are utilized to perform this procedure.
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1.1. Statistic for EFA

Following the work of Garca-Santilln, Venegas-Martnez and Escalera-Chvez [34], firstly
we carry out the test of Sphericity with KMO, and goodness of fit index X2 with signif-
icance α=0.01, all this, in order to validate the pertinence of using this technique. Also,
we obtain the communalities and factorial weights, in order to identify the explanatory
power of the model, its mean, component matrix and communalities to obtain eigenvalue
and its percentage of total variance.

Once the first statistics to validate the relevance of using the multivariate technique
of factor analysis are obtained, we follow the method proposed by Carrasco Arroyo (s/f)
and replicated in several studies by [16, 34, 15, 14] in order to measure the set of random
variables observed; X1 X2. . . X297 which are defined in the population that share m
(m<p) common causes to find m+p new variables, that we call common factors (Z1, Z2

... Zm).
Also, we should consider the unique factors (ε 1 ε 2 ε p), in order to determine their

contribution to the original variables (X1 X2 ..Xp−1 Xp). Hence, we may define a model
from the following equations:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1 = a11Z1 + a12Z2 + ...a1mZm + b1ξ1
X2 = a21Z1 + a12Z2 + ...a2mZm + b2ξ2
X3 = a31Z1 + a32Z2 + ...a3mZm + b3ξ3
X4 = a41Z1 + a42Z2 + ...a4mZm + b4ξ4
X5 = a51Z1 + a52Z2 + ...a5mZm + b5ξ5
X6 = a61Z1 + a62Z2 + ...a6mZm + b6ξ6
X7 = a71Z1 + a72Z2 + ...a7mZm + b7ξ7
X8 = a81Z1 + a82Z2 + ...a8mZm + b8ξ8
X9 = a91Z1 + a92Z2 + ...a9mZm + b9ξ9
X10 = a101Z1 + a102Z2 + ...a10mZm + b10ξ10
.........................................................
Xp = ap1Z1 + ap2Z2 + ...apmZm + bpξp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)

Where:
Z1, Z2, Zm are common factors
ε 1 ε 2 ε p are unique factors

Therefore, ε 1 ε 2 ε p have an influence on the totality of variables Xi ( i=1 p) ε i

influence in Xi(i=1..p)
Thus, the model equations can be expressed in matrix form according to the following:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

...
Xp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11a12a13a14............a1m
a21a22a23a24............a2m
a31a32a33a34............a3m
a41a42a43a44............a4m
a51a52a53a54.............a5m
a61a62a63a64............a6m
a71a72a73a74............a7m
a81a82a83a84............a8m
a91a92a93a94............a9m
a101a102a103a104........a10m
....................................
ap1ap2ap3ap4............apm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

....
Zp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1ξ1
b2ξ2
b3ξ3
b4ξ4
b5ξ5
b6ξ6
b7ξ7
b8ξ8
b9ξ9
b10ξ10
.......
bpξp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

The resulting model may be condensed as follows:

X = AZ + bpξp (3)

Where:
We assume that m < p because they explain the variables through a small number of

new random variables and all the factors (m+ p)are correlated variables, i.e., the variabil-
ity explained by a variable factor, has no relation with the other factors.

We know that each observed variable of model is a result of lineal combination of
each common factor with different weights(aia). Those weights are called saturations, but
one of part of xiis not explained for common factors. As we know, all intuitive problems
can be inconsistent when obtaining solutions and therefore, we require the approach of
hypothesis; hence, in the factor model we used the following assumptions:

H1: The factors are typified random variables, and intercorrelated, as follow:

E [Zi] = 0E [ξi] = 0E [ZiZi] = 1

E [ξiξi] = 1E [ZiZi, ] = 0E [ξiξi, ] = 0

E [Ziξi] = 0

Also, we should consider an important point, that factors have a primary goal to study
and simplify the correlations between variables, measures, through the correlation matrix.
Then, we should understand that:

H2:The original variables could be typified by transforming these variables of type

x i=
xi−x̄

σx
(4)

Therefore, and considering the variance property, we have:

var(x i) = a2
i1 var(z 1 ) + a2

i2 var(z 2 ) + ..............a2
imvar(zm) + b2

i var(ξi) (5)
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Resulting:
1 = a2

i1+a2
i2+a2

i3+.....+ .........a2
im+b2

i ∀i= 1 ...........p (6)

After, we calculate: Saturations, communalities and uniqueness as follow:
a).- We denominate saturations of the variablexiin the factor zaat coefficient (aia)
Therefore, in order to show the relationship between the variables and the common

factors, it is necessary to determine the coefficient of A (assuming the hypotheses H1 y
H2), where V is the matrix of eigenvectors and Λ matrix eigenvalues; thus we obtained:

A =



a11a12a13a14 ............a1m

a21a22a23a24 ............a2m

a31a32a33a34 ............a3m

a41a42a43a44 ............a4m

a51a52a53a54 .............a5m

a61a62a63a64 ............a6m

a71a72a73a74 ............a7m

a81a82a83a84 ............a8m

a91a92a93a94 ............a9m

a101a102a103a104 ........a10m

....................................
ap1ap2ap3ap4 ............apm



(7)

R = VΛV ,= VΛ1/2Λ1/2V,= AA, (8)

A = V Λ1/2

The above suggests that(aia)coincides with the correlation coefficient between the vari-
ables and factors. In the other sense, for the case of non-standardized variables, A is
obtained from the covariance matrixS, hence the correlation between xi and za is the
ratio:

corr(i , a) =
aia
σa

=
aia√
λa

(9)

Thus, the variance of the factor (aia)is the result of the sum of the squares saturations
of ai from column A (formula 7):

λa =

p∑
i=1

a2ia (10)

Considering that:

A,A = (VΛ1/2),(VΛ1/2) = Λ1/2V,VΛ1/2= Λ1/2IΛ1/2= Λ (11)

b).- We denominate communalities to the next theorem:

h2i =

m∑
a=1

a2ia (12)
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The communalities show a percentage of variance of each variable (i) and are explained
by m factors.

Thus, every coefficient h2i is called variable specificity. Therefore the matrix model
X = AZ + ξ, ξ (unique factors matrix), Z (common factors matrix) will be lower while
greater is the variation explained for every m(common factor). If we work with typified
variables and considering the variance property, we have:

1 = a2i1 + a2i2 + .......+ a2ia + b22 (13)

1 = h2i + b21

Remember that the variance of any variable, is the result of adding their communalities
and the uniqueness b2

i , thus, in the number of factors obtained, there is a part of the
variability of the original variables unexplained and will correspond to a residue (unique
factor).

Subsequently, based on the correlation matrix between the variables i and i,we now
obtain:

corr(xixi,) =
cov(xixi,)

σiσi,
(14)

Also, we know

xi=
m∑

a=1

aiaza+biεi, xi,=
m∑

a=1

ai, aza+bi,εi, (15)

From the hypothesis which we started, now we have:

corr(xixi,) = cov(xixi,) = σii,= E

[(
m∑

a=1

aiaza+biεi

)(
m∑

a=1

ai,aza+bi,εi,

)]
(16)

Developing the product:

= E

[
m∑

a=1

aiaai,azaza+

m∑
a=1

aiabi,zaεi,+

m∑
a=1

biaiiεiza+

m∑
a=1

bibi,εiεi,

]
(17)

From the linearity of hope and considering that the factors are uncorrelated (hypothe-
ses of starting), now we have:

cov(xixi,) = σii,=
∑m

a=1 aiaai,a= corr(xixi,)
∀i, i, → 1................................p

(18)

The variance of variable i−esim is given for:

var(xi) = σ2i = E [xixi] = 1 = E
[∑m

a=1 (aiaza+biεi)
2
]

=

= E
[∑m

a=1 (a2iaz
2
a+b2

i ε
2
i +2aiabizaεa)

] (19)
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If we take again the starting hypothesis, we can prove the follow expression:

σ2i = 1 =
m∑

a=1

a2ia+b2
i = h2

i +b2
i (20)

In this way, we can test how the variance is divided into two parts: communality and
uniqueness, which is the residual variance not explained by the model

Therefore, we can say that the matrix form is: R = AA′ + ξwhere R∗ = R− ξ2.
R∗ is a reproduced correlation matrix, obtained from the matrix R

R∗=

∣∣∣∣∣∣∣∣∣∣
h2
1r12r13r14.....r1p

r21h
2
2r23r24.....r2p

r31r32h
2
3r34.....r3p

........................
rp1rp2rp3rp4...h

2
p

∣∣∣∣∣∣∣∣∣∣
(21)

The fundamental identity is equivalent to the following expression:R∗AA′.Therefore the
sample correlation matrix is a matrix estimator AA′. Meanwhile, aia saturation coefficients
of variables in the factors, should verify this condition, which certainly, is not enough
to determine them. When the product is estimatedAA′, we diagonalizable the reduced
correlation matrix, whereas a solution of the equation would be: R − ξ2 = R∗ = AA

′
is

the matrixA, whose columns are the standardized eigenvectors ofR∗. From this reduced
matrix, through a diagonal, as a mathematical instrument, we obtain through vectors and
eigenvalues, the factor axes.

How to demonstrate if factor analysis is pertinent?
To evaluate the appropriateness of the factor model, it is necessary to design the

sample correlation matrix R, from the data obtained. Also, beforehand we should perform
hypothesis tests in order to determine the relevance of the factor model, i.e., whether it is
appropriate to analyze the data with this model.

A contrast to be performed is the Bartlett Test of Sphericity. It seeks to determine
whether there is a relationship or not among the original variables. The correlation matrix
R show the relationship between each pair of variables (rij ) and its diagonal will be
composed for 1(ones).

Hence, if there is no relationship between the variables h, then, all correlation coeffi-
cients between each pair of variable would be zero. Therefore, the population correlation
matrix coincides with the identity matrix and determinant will be equal to 1.

Ho: |R|= 1
H1: |R| 6= 1

If the data are a random sample from a multivariate normal distribution, then, under
the null hypothesis, the determinant of the matrix is 1 and is shown as follows:

−
[
n− 1− (2p+ 5)

6

]
ln |R| (22)
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Under the null hypothesis, this statistic is asymptotically distributed through aX2distribution
with p (p− 1) /2 degrees freedom. So, in case of accepting the null hypothesis it would
not be advisable to perform factor analysis.

Another index is the contrast of Kaiser-Meyer-Olkin (KMO), whose purpose is to
compare the correlation coefficients and partial correlation coefficients. This measure is
called sampling adequacy (KMO) and can be calculated for the whole or for each variable
(MSA)

KMO =

∑
j6=i

∑
i 6=j r2ij∑

j 6=i

∑
i 6=j r2ij+

∑
j6=i

∑
i 6=j r2ij(p)

MSA =

∑
ij r2ij∑

ij r2ij+
∑

ij r2ij(p)
; i = 1, .....,p (23)

Where:
rij(p) Is the partial coefficient of correlation among variables Xi y Xj in all cases.
In the same idea, to measure data obtained as a result of applied questionnaires, we

follow the procedure utilized by Garćıa-Santillán, Venegas-Mart́ınez and Escalera-Chávez
(2013); hence, we have the next data matrix:

Table 1: Data matrix.

Students Variables
X1 X2 . . . . . Xp

1 X11 X12 . . . . x1p

2 X21 X22 . . . . x2p

3 X31 X32 . . . . X3p

4 X41 X42 . . . . X4p

5 X51 X52 . . . . X5p

6 X61 X62 . . . . X6p

7 X71 X72 . . . . X7p

8 X81 X82 . . . . X8p

9 X91 X92 . . . . X9p

10 X101 X102 . . . . X10p

... ....................................

n Xn1 Xn2 . . . . xnp

1.2. Acceptation or Rejection of null hypothesis in EFA

Preliminary notes and notation

In order to measure data obtained and carry out the hypothesis test (Hi) about vari-
ables set that integrate the construct of the phenomena under study, we started from the
hypothesis: Ho ρ = 0 have no correlation Ha: ρ 6= 0 have correlation [14].

The statistic test: χ2, and the Bartlett test of Sphericity KMO (Kaiser-Meyer-Olkin),
MSA (Measure sample adequacy), with significance level: α = 0.05; p <0.05; load factor
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0.70; calculated critical value χ2 > χ2 theoretical, then the decision rule is: Reject Ho if
calculated χ2> χ2 theoretical.

This is given from the following equation:

X1= a11F1+a12F2+......................+ a1kFk+u1

X2= a21F1+a22F2+.....................+ a2kFk+u2

X3= a31F1+a32F2+......................+ a3kFk+u3

X4= a41F1+a42F2+.....................+ a4kFk+u4

X5= a51F1+a52F2+......................+ a5kFk+u5

X6= a61F1+a62F2+......................+ a6kFk+u6

X7= a71F1+a72F2+.......................+ a7kFk+u7

X8= a81F1+a82F2+......................+ a8kFk+u8

X9= a91F1+a92F2+......................+ a9kFk+u9

X10= a101F1+a102F2+.............+ a10kFk+u10

...............................................................................
Xp= ap1F1+ap2F2+....................+ apkFk+up

(24)

Where F1. . . Fk (K << p)are common factors; u1, . . . up are specific factors and the
coefficients {aij ; i = 1, . . . . , p; j = 1, ...., k } are the factorial load. It is assumed that the
common factors have been standardized or normalizedE (Fi) = 0, V ar (fi) = 1, the
specific factors have a mean equal to zero and both factors have a correlation Cov (Fi, uj) =
0, ∀i = 1, . . . ., k; j = 1...p. with the following consideration: if the factors are correlated
(Cov (Fi, F j) = 0, if i 6= j; j, i = 1, . . . .., k) , we are facing a model with orthogonal
factors, but if they are not correlated, it is a model with oblique factors.

Therefore, the equation can be expressed as follows:

x = Af + uUX = FA′ + U (25)

Where:

Data matrix

x =


x1

x2

...
xp

 , f =


F1

F2

...
Fk

 , u =


u1

u2

...
up


Factorial load matrix Factorial matrix

A =


a11a12.....aik
a21a22.....a2k
...................
ap1ap2.....apk

 F =


f11f12.....f ik
f21f22.....f2k
...................
fp1fp2.....fpk


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With a variance equal to:

Var(Xi) =
k∑

j=1

a2ij+Ψi= h2
i +Ψi; i = 1, .....,p (26)

Where:

h2
i = Var

 k∑
j=1

aijFj

 .....y........ψi= Var (ui) (27)

This equation corresponds to the communalities and the specificity of the variable Xi.
Thus the variance of each variable can be divided into two parts: a) in their communalities
hi

2representing the variance explained by common factors and b) the specificity Ψ I that
represents the specific variance of each variable. Therefore, we get:

Cov (Xi ,Xl) = Cov

 k∑
j=1

aijFj,

k∑
j=1

aljFj

=

k∑
j=1

aijalj∀i 6= ` (28)

With the transformation of the correlation matrix’s determinants, we obtain Bartlett’s
test of Sphericity, and it is given by the following equation:

dR= −
[
n− 1−1

6
(2p + 5) ln |R|

]
= −

[
n−2p + 11

6

] p∑
j=1

log(λj) (29)

[
n−2p + 11

6

]
log

[
1

p−m (trazR∗− (
∑m

a=1 λa))
]

|R∗|/∏m
a=1 λa

p−m

(30)

After this exploratory factor analysis, where we seek to reduce the number of factors
in order to set the final adjusted model, we shall now proceed to explain the path of the
confirmatory model, according to the following theoretical foundations.

2. Confirmatory Analysis

With confirmatory analysis, we seek to validate the theoretical model resulting of the
first phase with EFA. To do this, we utilized some measure for its evaluation.

1. Likelihood ratio Chi Square (X 2)

2. NFI Normed Fit Index (Benlert & Bonnet, 1980)

3. NNFI Non Normed Fit Index or Tucker Lewis Index (TLI)

4. CFI Compare Fit Index (Benlert, 1989), (Hair, et al. 1999).

5. GFI Goodness of Fit Index,
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6. AGFI Adjusted Goodness of Fit Index

7. RMSEA Root Mean Square Error of Approximation

The above has the purpose of assessing the level at which the data support the proposed
theoretical model. Therefore, first we design the construction of the resulting structural
model of the previous phase exploratory. We started with the estimating step, where
theoretically it is explained if the variables are related or not.

With the foregoing, statements on the set of parameters are formulated: If these are
free (unknown and not restricted), not restricted (two or more parameters must take the
same value, although they are restricted) or fixed (known parameters, to which a fixed
value is assigned) and finally, we should define if the maximum number of relationships
and statistics associated with them, are established. These should be able to structure
the data according to the theory, in order to define the statistic model

The structural model shows causal relationships between latent variables, same as
that will have many structural equations as latent constructs, which are explained by
other exogenous variables, if they are latent or observed. The structure can be expressed
as follows:

n = βn+ Γξ + ζ (31)

Where:
n = is a vector “p x 1” of endogenous latent variables.
ε = is a vector “q x 1” of exogenous latent variables.
Γ= is a matrix “p x q” of coefficients γ ι j that relate to exogenous latent variables

with endogenous latent variables.
β= is a matrix “q x p” of coefficients that relate exogenous latent variables between

them
ζ= is a vector “q x1” of error or disturbance terms. Indicate that the endogenous

variables are not predicted by the structural equations.
On the other hand, the latent variables are related with observable variables through

the measurement model, which is defined by endogenous and exogenous variables through
the following expression:

y = Λyn+ εyx = Λxξ + δ (32)

Where:
η= it is a vector “p x 1” of endogenous latent variables.
ε= it is a vector “q x 1” of exogenous latent variables.
Λ x = it is a matrix ”q x k” coefficients of exogenous variables.
Λ y = it is a matrix ”p x m” coefficient of endogenous variables.
δ = it is a vector ”q x 1” measurement errors for exogenous indicators.
ε = it is a vector ”p x 1” measurement errors for endogenous indicator.
x = it is a set of observable variables of measurement model.
y = it is a set of observables variables of the model structure.



Arturo, GARCÍA-SANTILLÁN / Eur. J. Pure Appl. Math, 10 (2) (2017), 167-198 179

Furthermore, the estimation of model parameters is performed in order to determine
which one best fit has maximum likelihood; weighted least squares and generalized least
squares.

2.1. Estimation models

Estimation Maximum Likelihood (ML)
This estimating model requires them to have a normal distribution, although the multi-

variate normal condition does not affect the ability of the method to estimate an unbiased
manner, the model parameters. Therefore the log-likelihood function is given by:

logL = −1

2
(N − 1)

{
log
∣∣∣∑(θ)

∣∣∣+ tr
∣∣∣S∑(θ)−1

∣∣∣}+ c (33)

In order to maximize (33), is equivalent to minimize the following function:

FML = log
∣∣∣∑(θ)

∣∣∣− log |S|+ tr
[
S
∑

(θ)−1
]
− p (34)

Where:
L = likelihood function,
N = sample size,
S = covariance matrix,
Σ (Θ) = covariance matrix of the model and Θ is the vector of parameters

2.2. Weighted Least Squares (WLS)

If needed and considering that some ordinals, dichotomous and continuous variables,
do not adjust to the criteria of normality, this method may be used. With this statistic
procedure, the adjustment function may be minimized:

FWLS = [S − σ(θ)]W−1 [S − σ(θ)] (35)

Where:
S = is the vector of non-redundant elements in the empirical covariance matrix,
σ (Θ) = is the vector of non-redundant elements in covariance matrix of the model,
Θ = is a parameters vector (t x 1 ),
W−1 = is a matrix (k x k) defined positive with k =(p+1)/2 where p is the number of

observed variables, where W−1 = H the function of the fourth order moments of observable
variables.

2.3. Estimating by generalized least squares (GLS)

In this method, the data must be in a condition of multivariate normality and it is
asymptotically equivalent to FML; both of them have the same criteria and may be used in
the same conditions. The adjustment function is calculated from the following expression:
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FGLS =
1

2
tr
{[
S −

∑
(θ)
]
S−1

}2
(36)

Where:
S = covariance matrix, Σ (Θ) = covariance matrix of the model and Θ =is the vector

of parameters (t x 1 )

2.4. Identification phases

To develop the structural model, it will be necessary to estimate the unknown parame-
ters of the specified model. After this, it is possible to contrast statistically. Thus, for the
identifying model, the parameters may be identified from the elements of the covariance
matrix of the observed variables. With this, the problem of identifiability of the model
may be studied under conditions that ensure the unicity in the determination of the model
parameters. Then, and starting from the difference between the number of variances and
covariances, and the parameters to be estimated, the degree of freedom is defined, so, g
should not be negative to develop the study.

The total of variables we denote with s = p+ q, where q are exogenous variables and
p are endogenous variables, and non-redundant elements a = s(s+1)

2 and total parameters

to estimate in the model as t, is defined as g = s(s+1)
2 − t. Of this way and depending on

the value ofg, so, the model is classified as:

1. Never identified (g<0) models with infinite values in its parameters

2. Possibly identified (g=0) there may be a single solution for the parameters that
equals the observed covariance matrix, and finally,

3. Possibly identified (g> 0), that is, the model includes fewer parameters than vari-
ances and covariances.

2.5. Modeling with Structural Equation

Afterwards, we reach the most important phase of modeling with structural equations.
This phase relates to the diagnosis of the goodness of fit. With this test it is determined
if the model is correct and aligned to the purpose of the study.

Statistic X2 is the only measure of goodness of fit associated with a test of significance
and comes from adjustment functionF , which follows a distribution X2 with similar de-
grees of freedom, allowing testing the hypothesis regarding, if the model fits the observed
data correctly. Furthermore, it should also have probability p of having a high value of
X2 as the model.

The X2 Statistic it is influenced by three factors, such as: the sample must be greater
than 200 in order to statistic X2 be meaningful; otherwise if we accept models with small
samples, we have a risk that it does not adjust the data. The greater the complexity of
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the model, the greater the likelihood that the test accepts the model. Therefore, with
saturated models further adjustment will be obtained.

It is important to indicate that the statistic X2 is highly sensitive to the violation of
the assumption of multivariate normality in the observed variables. We shall remember
that the methods for the estimation previously explained, some of them have certain
requirements of normality. A summary of these is presented below in table 2:

Table 2: Requirements of normality in the estimations methods

Maximum Likelihood (ML) It does not require multivariate
normality, just normality unvaried

The Weighted Least Squares (WLS) Don’t need normality

Generalized Least Squares (GLS) Multivariate normality is necessary

Source: own

Hence, the adjusted goodness of fit index is:

X2(df) = (N − 1)F
[
S,Σ(

_
θ )
]

(37)

Where:
df = s –t degree freedom,
s =is the number of non-redundant elements in S
t =is the number of total parameters to estimate,
N = is the simple size,
S = is the empirical matrix,
Σ (Θ)= is the matrix of estimated covariances.
Depending on the estimation method is the statistic X2 and shall be calculated as

follows:

X2
ML(df) = (N − 1)

[
Tr(SΣ(

_
θ )−1)− (p+ q) ln

∣∣∣Σ(
_
θ )
∣∣∣− ln` |S|

]
(38)

X2
GLS(df) = (N − 1)

[
0, 5Tr(S − Σ(

_
θ ))S−1)2

]
(39)

X2
WLS(df) = (N − 1)

[
0, 5Tr(S − Σ(

_
θ ))2

]
(40)

After performing the tests of goodness of fit, adjustment measures or incremental
measures are calculated; these are performed by comparative statistic χ 2 with a more
restrictive model called ”base model”.

The measures are: normed fit index (NFI), non-normed fit index (NNFI) and index
fit compared (IFC). All these indices of goodness of fit usually have values between 0 and
1, which is compared with the statistic χ 2. It is expected the result will be as near as
possible to 1, which will represent a perfect fit.

Normed fit index (NFI) of [8] is the easiest way to adjust indices. Furthermore, it
evaluates the statistic decrease of χ 2, of the research model versus the null model.
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Although it is true, some authors suggest re-specifying the model when values below
0.90 are obtained. It is also true that a cut point is supported.

Its representation is:

NFI = X2
b −X2/

X2
b

(41)

Where:
X b

2 = it is statistic of base model
Now we have the so-called Tucker Lewis Index (TLI) or normed fit index. This index

is corrected and the aim is to take into account the model complexity, hence the statistic χ
2 is not introduced directly. Previously it is compared to the expectation and the degrees
of freedom of the null model with the model in question.

If we add parameters to the model, then the NNFI or TLI may only increase if χ 2

decreases a greater extent than the degrees of freedom. NNFI values are usually between 0
and 1 but are not restricted to this range. That is, if the values exceed unity, this indicates
an over parameterization of the model. Therefore, in order for the index to indicate a good
fit of the model, the values should be as close to 1, and the expression is:

NFI =

(
X 2

b
glb −

X 2

g

)
(
X 2

b
glb −1

) (42)

Subsequently, the Comparative Fit Index (CFI); [8] is calculated. With this index
we will compare the discrepancy between the covariance matrix predicted by the model
and the observed covariance matrix with the observed discrepancy between the covariance
matrix of the null model and the observed covariance matrix. With this, may be evaluated
the degree of loss which occurs in the adjustment to change the model of the ongoing
investigation to the null model.

The index value varies between 0 and 1. Some authors such as [8, 6, 20] suggest that,
for convenience the CFI value should be higher than 0.90 which it indicates that at least
90% of the covariance data may be reproduced by the model. This model is corrected
with respect to the complexity of the model and its expression is:

CFI = 1−
Max

[(
X 2−gl

)
, 0
]

Max
[
(X 2−gl) , (X 2

b−glb), 0
] (43)

2.6. Measures for model choice

For the test of the goodness of global adjustment, there are other indices that do
not belong to the family of indices incremental adjustments. These indices, if not being
delimited are hard to interpret for an isolated model, although they can be useful to
compare models that are based on the same variables and data, but with different numbers
of parameters.
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These indices are the AIC and CAIC. The usefulness of these indices consists of com-
paring models with different numbers of latent variables, being the best model that which
provides the smallest value. One of these indices is the AIC (Akaike Information Cri-
terion; Akaike, 1987) this index adjusts the statistic χ2 of the model, penalizing over
parameterization.

AIC = X 2 − 2gl (44)

The other index is CAIC (Consistent Akaike Information Criterion; Bozdgan, 1987)
which is a consistent transformation of the previous index.

CAIC = X 2−2gl(ln(N ) + 1 ) (45)

Finally other indices are developed as from the covariance of the model:
The RMSEA (Root Mean Square Error of Approximation index penalizes the ad-

justment for the loss of parsimony with increasing complexity [15]. This index may be
interpreted as the average approximation error by degrees of freedom. The values below
0.05 indicate good model adjustment, and below 0.08 indicate adequate model fit. The
sampling distribution of the RMSEA has been deducted, allowing construct confidence
intervals [5, 4]. Where it is considered that the ends of the confidences intervals should
be less than 0.05 (or 0.08) for the model fit is acceptable. This statistic can be calculated
from the following formula:

RMSEA =

√
NCP

Nxgl
(46)

Where:
NCP: It is called non-centrality parameter that may be calculated as CP=Max[χ 2

−2df , 0].
RMSEA index depends on the units of measurement; hence, frequently another statistic

is taken, such as the SRMR (Standardized Root Mean Square Residual). This statistic is
the result of standardizing the previous RMSEA, so we get SRMR dividing the value of
RMSEA, by the standard deviation. A value indicative of a good fit will be, if it is below
the value 0.05.

As a consideration to take into account we can say that we must be extremely careful
in the use of these indices, because according to the indications of Hu and Bentler [5]
some indices such as: SRMR, RMSEA, NNFI and IFC frequently give results, which
indicates that we must reject suitable models when the sample is very small. Therefore,
the suggestion on these types of studies is that we should use the largest number of indices
0, that will allow us to accept or reject the model with the best possible arguments.

Finally, it should be noted that the intention of this essay is to explain the steps to
follow for the analysis of data (which are obtained in field research) for the corresponding
empirical study. The multivariate technique used was exploratory factor analysis and
confirmatory analysis. With this clarification, now are performed calculations using SPSS
v.21 software, on the hypothetical data base, which seeks to measure the attitude toward
statistics in undergraduate students.
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2.7. Hypothetical assumption

In order to explain this statistical procedure, we utilized the result obtained in an
empirical study published by [34] entitled “An exploratory factorial analysis to measure
attitude toward statistics: Empirical study in undergraduate students”. Where they find
the answer to the research question, objective and hypothesis as follow:

2.7.1. Research question

RQ1. What is the attitude toward statistics in undergraduate students?

2.7.2. Objectives:

O1. Identify the factors that explain the attitude towards statistics

2.7.3. Hypotheses:

H1: Liking is the factor that most explained the student’s attitude towards statistics
H2: Anxiety is the factor that most explained the student’s attitude towards statistics
H3: Confidence is the factor that most explained the student’s attitude towards statistics
H4: Motivation is the factor that most explained the student’s attitude towards statistics
H5: Usefulness is the factor that most explained the student’s attitude towards statistics

In their study, they used the statistic technique of exploratory factor analysis with
principal components extraction. The purpose is to determine the number of indicators
that compose each of the factors for selecting those with a load factor higher to 0.70

Furthermore, in order to obtain data for their empirical study, they used the ATS scale
of [12]. This scale was applied to 298 students. This instrument indicates the existence of
five factors: usefulness, anxiety, confidence, liking and motivation. Table 3 described the
indicators, definitions and codes/items.

Table 3: Scale factors attitude toward statistics.

Indicators Definition Code/items

Liking Refers to the liking of working with statistics. LIK,4,9,14,19 and 24
Anxiety Can be understood as the fear the students man-

ifest towards statistics
ANX,2,7,12,17 and 22

Confidence Can be interpreted as the feeling of confidence
of the skill in statistics.

CNF,3,8,13,18 and 23

Motivation What the student feels towards the studying and
usefulness of statistics.

MTV,5,10,15,20,and 25

Usefulness It is related to the,value that a student gives to
statistics for his/her professional future.

USF,1,6,11,16,and 21

Source: taken from [34]
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With this information and the same data base, we carry out the calculations in order
to validate the pertinence to use the exploratory factorial analysis technique (EFA) as
mentioned in point 1.1 and 1.2 in this work.

Firstly, we obtained the descriptive statistics and afterwards, we carry out the test of
Sphericity with KMO, and goodness of fit index X2 df with significance α =0.01, Also, we
obtain the correlation matrix with its determinant, Anti-image Matrices, Component ma-
trix and communalities, Component Matrixa rotated and communalities, Total Variance
Explained and finally sedimentation plot.

Table 4: Descriptive Statistics

Mean Std. Deviation N Variation coefficient
VC=Sd/mean

Liking 13.4613 4.69826 297 0.34902
Anxiety 11.4411 4.04586 297 0.35363
Confidence 17.7138 3.46443 297 0.19558
Motivation 14.2155 3.13341 297 0.22042
Usefulness 17.2458 3.05969 297 0.17742

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Table 5: KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .630
Bartlett’s Test of Sphericity Approx. Chi-Square 361.034

df 10
Sig. 0.000

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
Venegas-Mart́ınez, 2014)
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Table 6: Correlation Matrixa

Liking Anxiety Confidence Motivation Usefulness
Correlation Liking 1.000

Anxiety −.248 1.000
Confidence .383 −.561 1.000
Motivation −.126 .501 −.195 1.000
Usefulness .480 −.222 .455 −.090 1.000

Sig. (Unilateral) Liking .000
Anxiety .000 .000
Confidence .000 .000 .000
Motivation .015 .000 .000 .000
Usefulness .000 .000 .000 .061 .000

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Table 7: Anti-image Matrices

Liking Anxiety Confidence Motivation Usefulness
Correlation Liking .732

Anxiety .025 .523
Confidence −.096 .272 .549
Motivation .025 −.299 −.080 .736
Usefulness −.263 −.038 −.195 .009 .681

Sig. (Unilateral) Liking .734(a)
Anxiety .040 .578(a)
Confidence −.151 .507 .640(a)
Motivation .034 −.482 −.125 .557(a)
Usefulness −.373 −.064 −.319 .013 .668)(a)

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

At the end, all this procedure allows us to identify the explanation power of the model,
i.e., with the component matrix and its communalities, we obtain the eigenvalue and its
percentage of total variance.

Now we carry out a measurement of the attitude toward statistics through structural
equations, all this, in order to identify if the components of model proposed by Auzmendi
[12] will be able to show an alternative model.

2.8. Measurement attitude toward statistics through structural equation
(AMOS)

For this purpose it set the following Question, objective and hypothesis:
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Table 8: Component Matrixaand communalities

Variable Component Communalities
1 2 Inicial Extraction

Liking .654 .450 1.000 .631
Anxiety -.756 .464 1.000 .786
Confidence .802 .076 1.000 .650
Motivation -.505 .690 1.000 .731
Usefulness .665 .516 1.000 .709

Eigenvalues 2.340 1.166
% variance 46.83 23.32
Total variance 70.15%

Extraction Method: Principal Component Analysis. a. 2 components extracted.

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Table 8.1: Component Matrixarotated and communalities

Variable Component Communalities
1 2 Inicial Extraction

Liking .792 -.067 1.000 .631
Anxiety -.290 .838 1.000 .786
Confidence .669 -.450 1.000 .650
Motivation .047 .854 1.000 .731
Usefulness .842 -.023 1.000 .709

Eigenvalues 1.870 1.639
% variance 37.371 32.776
Total variance 70.145%

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization. a
a. Rotation converged in 6 iterations.

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

2.8.1. Research question

RQ1. What factors can help explain the attitude toward statistics in college students?
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Table 9: Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings
Total % of

Variance
Cumulative
%

Total % of
Variance

Cumulative
%

1 2.341 46.825 46.825 2.341 46.825 46.825
2 1.166 23.320 70.145 1.166 23.320 70.145
3 .666 13.325 83.470
4 .514 10.273 93.743
5 .313 6.257 100.000
Extraction Method: Principal Component Analysis.
Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Continue table 9

Initial Eigenvalues
Total % of

Variance
Cumulative
%

1 1.868 37.370 37.370
2 1.639 32.776 70.145
Extraction Method: Principal Component Analysis.
Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

2.8.2. Objectives:

So1. Develop a theoretical model that integrates the factors that explain attitude toward
statistics.

So2. Evaluate the model using the elements of each factor.
So3. Evaluate the adjusted model.

2.8.3. Hypotheses:

H1: There are factors that can help explain the attitude toward statistic in undergraduate
Students

We recall that, the structural equation modeling (SEM) is a statistical technique which
allows us to test the hypothesis of relationships between variables through the estimation of
a number of independent variables. Furthermore, it allows performing multiple regressions
in a simultaneous way. Hence, its capacity to evaluate multiple regressions of dependence
favors the development in this work [11]. Therefore, again we take the data base of [34]
indicated in point 2.7, and for the development of the model SEM we take as a reference
the work of Escalera-Chávez, Garćıa-Santillán and Venegas-Mart́ınez [17] for the use of
all tables and figures.
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For that, we start from the model developed by Auzmendi [30] which includes latent
variables that represent non-observable concepts and their possible measurement through
the use of SEM, due to its capacity to include latent variables. Furthermore, this model
SEM represents the measurement error in the estimation process [20].

To get objectives SO2 and SO3, we should use the approach of two steps for SEM;
measurement of model and structural model. The measurement model followed by an
estimate of the structural model is estimated. The measurement model consists of a
confirmatory factor analysis (CFA) that assesses the contribution of each variable and its
indicators to measure the adequacy of the measurement model.

Several tests of Goodness of Fit (GOF) measures are used in this study; these include
the likelihood ratio chi-square (X 2), the ratio of X 2 to degrees of freedom (X 2 /df ),
the Goodness of Fit Index (GFI), the Adjusted Goodness of Fit Index (AGFI), the Root
Mean Square Error of Approximation (RMSEA) and Tucker-Lewis (TLI) index [20]. The
guidelines for acceptable values for these measures are discussed below.

A non-significant X 2 (p>0.05) is considered a good fit for the X 2 the GOF measure;
however, this does not necessarily mean a model with significant X 2, to be a poor fit. As
a result, a consideration of the ratio of X 2 to degrees of freedom (X 2 /df) is proposed
to measure as an additional measure of GOF. A value smaller than 3 is recommended for
the ratio (X 2 /df) for accepting the model to be a good fit [10].

The GFI has been developed to overcome the limitations of the sample size dependent
X 2 measures as GOF (Joreskog, et al. 1993). A GFI value higher than 0.9, is recom-
mended as a guideline for a good fit. An extension of the GFI is the AGFI, adjusted by
the ratio of degrees of freedom for the proposed model to the degrees of freedom for the
null model. An AGFI value greater than 0.9 is an indicator of good fit [29].

RMSEA measures the mean discrepancy between the population estimates from the
model and the observed sample values. RMSEA < 0.1 indicates good model fit [20]. TLI,
an incremental fit measure, with a value of 0.9 or more indicates a good fit (Hair, et al.
1998). Except for TLI, all the other measures are absolute GOF measures. The TLI
measure compares the proposed model to the null model.

Based on the guidelines for these values, problematic items that caused unacceptable
model fit were excluded to develop a more parsimonious model with a limited number of
items. The steps to follow are the following:

1. The first step in CFA is the model specification.

2. The second step is an iterative model which consists of the modification of the
process to develop a more parsimonious set of items to represent a construct through
refinement and retesting.

3. The third step is to estimate the parameters of the specified model.

4. The overall model is evaluated by several measures of goodness of test to assess the
extent to which the data support the conceptual model.
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Figure 1: Sequence Diagram (source: taken from [17])

Table 10: Weighting of constructs

Usefulness Anxiety Confidence Likeness Motivation

Variable
Weighting
Significance

Ítem 1 0.793 Ítem 2 0.702 Ítem 8 0.702 Ítem 4 0.711 Ítem 5 0.665

Variable
Weighting
Significance

Ítem 6 0.704
11.610

Ítem 17
0.732 10.403

Ítem 13 0.69
9.130

Ítem 9 0.599
9.433

Ítem 10
0.534 6.387

Variable
Weighting
Significance

Ítem 11
0.624 10.241

Ítem 22
0.743 10..497

Ítem 14
0.794 12.224

Variable
Weighting
Significance

Ítem 21
0.627 10.301

Ítem 19 0.69
10.793

Variable
Weighting
Significance

Ítem 24
0.688 10.764

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

2.9. Conclusion

At the end of this essay, we could say that the main purpose of this work was achieved.
Firstly, the theoretical path was showed. Afterwards the measurements of a set of latent
variables associated with the phenomenon under study –the specific case the attitude of
students towards statistics– were performed.

The theoretical path indicated in sections 1.1 and 2, promotes the understanding to-
wards the procedure for calculations of exploratory factor analysis with extraction of
rotated components, and the use of structural equation modeling (SEM) to carry out
confirmatory analysis, with the purpose of validating the theoretical model proposed by
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Table 11: Correlation between constructs

Usefulness Anxiety Likeness Motivation Confidence

Usefulness 1 0.380 0.770 -0.509 0.546
Anxiety 1 0.360 -0.699 0.676
Likeness 1 -0.238 0.658
Motivation 1 -0.222
Confidence 1

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Table 12: Measures Goodness of Fit: Revised model and null

Chi-square ( X2) 236.851 Comparative Fit Index
(CFI)

0.907

Degree of freedom (df) 94 Adjusted Goodness of
Fit Index (AGFI)

0.874

Significance level (sig.) 0.000 Root Mean Square Er-
ror of Approximation
(RMSEA)

0.072

Normed Chi-square (
X2/gl )

2.374 Tucker Lewis Index
(TLI)

0.893

Goodness of Fit Index
(GFI)

0.913 Normed Fit Index
(NFI)

0.869

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Auzmendi [12].
Afterwards, the development of section 2.7 called hypothetical assumptions, used the

databases of the work of Garćıa-Santillán et al [34] and Escalera-Chavez et al [17]. For
performing the EFA software SPSS v.23 was used, and for structural equation modeling
(SEM) software AMOS v.23 was used.

In the case of EFA we could observe first, the value of the Bartlett Test of Sphericity
with KMO (0.648), Chi square X2 379 674 with df 10, sig. 0.00 < p 0.01, the value of
each variable MSA (LIK 0.628; ANX 0.602; CNF 0.731; MTV 0.610 and USF 0.649, are
within acceptable values > 0.50 as well as values of the correlation matrix, gave support
to validate the use of this technique, besides giving enough evidence to reject the null
hypothesis in the study of Garćıa-Santillán [34].

Following this criterion, the calculation of the factor weights of each of the factors and
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Table 13: Reliability and variance of constructs

Indicators Reliability Extracted means variance

Usefulness 0.783 0.476
Anxiety 0.769 0.526
Likeness 0.657 0.489
Motivation 0.825 0.488
Confidence 0.530 0.363

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

Table 14: Discriminant validity

Usefulness Anxiety Confidence Likeness Motivation

Usefulness (U) 0.690 0.144 0.592 0.259 0.298
Anxiety (A) 0.726 0.129 0.488 0.456
Confidence (C) 0.602 0.056 0.432
Likeness (L) 0.700 0.049
Motivation (M) 0.700

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)

extracting the proportion of variance represented by their communalities, was performed.
Hence, the value of each of the eigenvalues and the percentage of the total variance ex-
plained was obtained.

As a result of this calculation two factors were obtained: one composed of three ele-
ments (usefulness, confidence and liking) and the other composed of two elements (anxiety
and motivation). Eigenvalues 2.340 and 1.166 (with 46.83% of the variance and 23.32% re-
spectively) give an explanation of the total variance of 70.15%. Also in the rotated matrix
were obtained two factors: one composed of three elements (usefulness, liking and con-
fidence) and the other composed of two elements (anxiety and motivation). Eigenvalues
1.870 and 1.639 (with 37.37% of the variance and 32.77% respectively) give an explanation
of the total variance of 70.14%.

With the resulting model, now we proceed to develop confirmation of the model
through structural equation modeling (SEM). In the empirical study of Escalera-Chávez et
al [17], they evaluated the results to see if there are no estimates infringing. As we can see,
Table 10 shows the weights of each indicators that included each construct. Furthermore,
in the correlations between constructs, none have values greater than 1.0 (Table 11).
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Table 15: Measures of Goodness Fit (Model 2)

Chi-square ( X2) 151.580 Comparative Fit Index
(CFI)

0.885

Degree of freedom (df) 88 Adjusted Goodness of
Fit Index (AGFI)

0.970

Significance level (sig.) 0.000 Root Mean Square Er-
ror of Approximation
(RMSEA)

0.049

Normed Chi-square (
X2/gl )

1.722 Tucker Lewis Index
(TLI)

0.949

Goodness of Fit Index
(GFI)

0.940 Normed Fit Index
(NFI)

0.916

Source: own (created with data base of Garćıa-Santillán, Escalera-Chávez
and Venegas-Mart́ınez, 2014)
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Figure 2: Sequence Diagram (source: taken from [17])

Regarding goodness of fit of the revised model and null, Table 12 provides the quality
measures of absolute fit, as well as, the value of Chi square and the indices GFI, AGFI
and RMSR. The values obtained were: X2 (236.851 with df 94) is not significant 0.000
but, GFI 0.913 and AGFI 0.874 showed a satisfactory fit, therefore, they are satisfactory
because their values tend to 1 and are > 0.5. Also, RMSEA 0.072 is according to the
acceptance parameters.

The results shown in Table 13 indicate the reliability values related to the constructs,
which is a range from 0.530 onwards (>), which means that not all indicators are consistent
with its measure. Regarding the extracted variance, –which must be higher 0.50– we may
see that the values are below 0.5 except anxiety (>0.5) which means that more than half
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Figure 3: Model 2 Factorial structure of Auzmendi (source: taken from [17])

of the variance is not considered for the construct. But, usefulness .476), liking 0.489 and
motivation 0.488 are very close to 0.5 which is the recommended value for the average
variance extracted (Fornell and Larcker, 1981, cited by [25])

Regarding discriminant validity, the values shown in Table 14 reveal that all are less
than 1; hence, none of the items were part of the different factors, shown in the other
constructs. Thompson (2004) refers that confirmatory factor analysis type should confirm
the theoretical model fit, because it is recommendable to compare the fit indices of several
alternative models to select the best. Therefore, Escalera-Chávez et al [17] verified the
model obtained from exploratory factor analysis, which included paths between latent
variables, also, they carried out the model estimation (Figure 2).

In the work of Escalera-Chávez et al [17] and after a review of the theoretical criteria in
terms of their optimal values, we observed that there are values indicating a model with a
poor fit. Hence, it was necessary to make some changes in specifications in order to identify
a model that best represents the data. Thus, for the re-specification of the hypothesized
model, it was necessary to add estimated parameters for the model, resulting in a model
2 (figure 3).

Finally, comparing the results of model 1 and model 2, we may observe the value of
Chi-square (X2) decreased from 236.851 to 151.58 and the value of RMSEA also decreased
from 0.072 to 0.049, while the goodness of fit indices GFI and AGFI improved from 0.913 to
0.940 and from 0.874 to 0.970 respectively. In the same way, the incremental fit measures
(TLI and NFI) have enriched and exceeded the recommended level of 0.90. Regarding the
error covariances, these suggest a redundancy between items 1 and 11, 2 and 12, and 10
and 11 due to overlap.

In summary, the main purpose of this essay is reached. Firstly, it described the theo-
retical path that follows the statistical procedure EFA and SEM that allows us to measure
a set of latent variables and subsequent confirmation of the model. Following this, in
order to perform calculations of each formula, SPSS statistic software v.21 and AMOS
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v.23 software were used.
Moreover, to perform calculations that allowed us to see the function for each the

formulas described in sections: 1, 1.1, 2 and 2.1,the authorization was obtained to utilize
the database of the works of of [17, 34], hence, it was possible to develop section 2.7 and
2.8 in this work.

As additional data, just to confirm what Garca Santilln et al [34] and Escalera-Chavez
et al [17] demonstrated: the five-factor model (usefulness, motivation, likeness, confidence
and anxiety) proposed by Auzmendi [12] has an impact on the student’s attitude towards
statistics. Moreover, Escalera-Chavez et al [17] identified that there is an alternative model
which best fits the proposed model by Auzmendi (CFI = 0.907) and (CFI = 0.885).
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