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1. Introduction

Sir Clive Granger has been active in many areas of time series econometrics and made a
large number of important contributions. As [49] puts it: ’It can be argued that Granger’s
is one of the most successful research programmes in the history of econometrics, and
will be a lasting contribution to our discipline.’ The introduction to the two volumes of
Granger’s collected papers, see [17], gives an idea of the scope and width of this programme,
and the two volumes themselves contain a sizable amount of his published articles. The
papers in this issue complement the picture.

In this paper the focus will be on Granger’s work on nonlinear models and modelling.
For space reasons, the exposition is restricted to conditional mean models, and Granger’s
contributions to modelling the conditional variance are not considered here. This review
is necessarily rather brief, and more information can be found in the two books Granger
has co-authored, [45] and [73]. The survey article [72] may also be helpful.

The paper is organised as follows. Granger’s views on nonlinearity and building non-
linear models are presented in Section 2. Section 3 reviews his contributions to testing
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linearity, and Section 4 considers nonlinear models Granger has developed and worked on.
Section 5 presents Granger’s ideas concerning nonstationary models and cointegration.
In Section 6 the focus is on two cases in which nonlinear models may be confused with
autoregressive models with long memory. Granger’s work on forecasting with nonlinear
models is presented in Section 7, and Section 8 contains short discussions on his contribu-
tions to a number of other ’nonlinear topics’, including chaos. Final remarks can be found
in Section 9.

2. Views

Before discussing Clive Granger’s contributions to nonlinear econometrics, it may be
instructive to consider his views on nonlinearity, in macroeconomic time series in partic-
ular. In this review I shall highlight three articles that contain such views. First, there is
[26], based on an invited lecture at the Australasian meeting of the Econometric Society
in 1992. The second is [29], a leading article in a conference issue of Macroeconomic Dy-
namics. Finally, [30] is based on a keynote address in a conference on nonlinear models
and modelling. As already mentioned, Granger’s views on chaos are presented in Section
8.

[26] is mostly concerned with building nonlinear models. He notes that the number
of nonlinear models is large and that it may be difficult to choose among them. He lists
a few families of such models, including the Fourier flexible form, the single hidden layer
neural network model, projection pursuit, and the smooth transition regression model. He
considers ways of selecting a parsimonious model within a given family, for example that
of neural network models, using model selection criteria such as

C(m) = lnσ2(m) +md lnT

T
(1)

where σ2(m) is the error variance of a model with m parameters and T is the number of
observations. When d = 1, (1) is the criterion (BIC) suggested by [66] and [67]. To keep
the number of parameters low, Granger recommends using a ’super-parsimonious’ version
in which d > 1.

In probably the most important part of the paper Granger outlines a strategy for
building nonlinear models for economic time series. His advice is to start with a small
set of most relevant explanatory variables, perhaps one or two. Assuming the nonlinear
family of models considered nests a linear model, the first step is to test linearity using
a couple of different tests. Granger’s contributions in this area are reviewed in Section 3.
As already discussed, models to be fitted if linearity is rejected should be parsimonious.

The fitted model has to be evaluated using out-of-sample data. Granger’s recommen-
dation, not always followed by econometricians, is to save at least 20% of the sample for
out-of-sample forecasting. He would like to compare one-step-ahead forecasts from the
nonlinear model with ones from a (parsimonious) linear one. (Out-of-sample plays an
important role in Granger’s work: recall his opinion that the Granger noncausality hy-
pothesis should be tested using the out-of-sample period; see [2].) In general, he would
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accept the nonlinear model only if evidence favouring it is what he calls clear-cut. Finally,
Granger stresses the fact that this strategy is applicable when the series are stationary.
More discussion can be found in Granger and [73], Chapter 9, and [73], Chapter 16, where
the strategy is applied to particular families of nonlinear models.

[29] opens with the statement that nonlinearity in macroeconomic time series is weak.
Aggregation is claimed to be one of the reasons for this. There is more about the effect of
aggregation on nonlinearity in Section 8.2. Interestingly, Granger also mentions seasonal
adjustments as a potential cause for this weakness. He thinks, however, that nonlinearity
may be stronger in multivariate contexts. As an example he takes the study by [68].
The authors analysed 214 US macroeconomic time series and found that nonlinear models
fitted to them, albeit without first testing linearity, generated less accurate forecasts than
a simple linear autoregressive model of order four. However, when the forecasts from
nonlinear models were combined using equal weights, the performance of the nonlinear
models improved, and the combined forecast was among the best ones in a majority of
series.

Granger highlights nonlinear state space models as a promising tool and notes that
they have not been much applied in practice. More about them can be found in [73],
Chapter 9. He regards nonlinear error correction models as a success. They are discussed
in Section 5. Finally, he points out that nonlinear models are inclined to overfit the
data. One way of reducing the risk of this happening is testing linearity before fitting any
nonlinear model. This was already emphasized in [26].

[30] discusses the possibility of moving from nonlinear models to models with time-
varying parameters. As an argument he uses the result he calls White’s Theorem because
Hal White proved it for him. The theorem states that any nonlinear model can be viewed
as a time-varying parameter (TVP) model. Let the yt be an arbitrary time series such
that Eyt < ∞ and Pr{yt = 0} = 0. Then there exist sequences {pt} and {et} such that
pt is Ft−1-measurable where Ft−1 is the σ-field σ(...yt−2, yt−1), (et,Ft) is a martingale
difference sequence, and

yt = ptyt−1 + et.

Define
et = yt − E{yt|Ft−1}

so the model for yt is

yt = E{yt|Ft−1}+ et = [E{yt|Ft−1}/yt−1]yt−1 + et

= ptyt−1 + et

where pt = E{yt|Ft−1}/yt−1 is the TVP. Since E{yt|Ft−1} is not specified, Granger argues
that the TVP can be ’a deterministic function of time, a specific function of a stochastic
process such as a lagged observed time series or an unobserved series such as the common
factor in the Kalman Filter’. In fact, this definition incorporates many models that are
normally thought of as nonlinear time series models such as smooth transition, threshold
autoregressive or Markov-switching autoregressive models. It also contains random coeffi-
cient models that are favoured by macroeconomists, at least if the coefficients are random
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walks and the models thus nonstationary. All these models are discussed in [73], Chapter
3.

3. Testing linearity

Linear models have for a long time dominated the modelling of economic time series.
Many nonlinear models that are applied in economic and econometric research nest a
linear model. Besides, several of these models are only identified under the alternative,
that is, when the nonlinear model is true. As Granger argues, see for example [26], it is
therefore advisable to test linearity before fitting such a nonlinear model to the data.

Clive Granger and co-authors have made two contributions to this area of research. In
[53] the aim is to compare a new test based on neural networks and originally developed
by [77] with a large number of other well-known linearity tests. The model to be tested is

yt = x′tθ +

q∑
j=1

βjψ(x′tγj) + εt (2)

where {εt} is a white noise process with zero mean and ψ(·) is a logistic function, often
called a ’hidden unit’. The weighted sum of the q hidden units is taken to be an ap-
proximation to the unknown form of nonlinearity present under the alternative. The null
hypothesis, as formulated in the paper, is Pr{E(yt|xt) = x′tθ} = 1 or, β1 = ... = βq = 0,
whereas the alternative is Pr{E(yt|xt) = x′tθ} < 1. It is seen that the model is not identified
under H0 as γj , j = 1, ..., q, are unidentified nuisance parameter vectors.

This identification problem was first studied by [11]. For more discussion, see [73],
Chapter 5. The novelty in [53] is that the problem is solved by giving parameter vectors
γj in (2) values drawn randomly from a given distribution, so ψ(x′tγj), j = 1, ..., q, become
observable random variables. A fairly large q is required for this Lee, White and Granger
or LWG test to have reasonable power, but then this may lead to problems with nearly
collinear regressors. As a remedy, the authors suggest principal components and selecting
the most informative ones to replace the original hidden units. If the model is dynamic
(xt contains lags of yt), the resulting test has an asymptotic χ2-distribution when the null
hypothesis holds.

The power of this and a number of other tests is studied by simulation. The set of
models contains both univariate and multivariate nonlinear models, including the bilinear
model in Section 4.1 and the sign-autoregressive test in Section 3. The empirical size of
the tests is investigated by having a first-order autoregressive model as the null model.
No test turns out to dominate the others. However, the authors conclude that ’the new
neural network test [...] appears to perform as well as or better than standard tests in
certain contexts.’ It may be mentioned that later on, [70] was able to explain many of the
simulation results in [53] using analytic tools.

The starting-point of [71] is the same (but univariate) model. The identification
problem is solved differently by approximating ψ(x′tγj) by a third-order polynomial of
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xt = (1, yt−1, ..., yt−p)
′. This leads to the following approximation:

yt = x′tθ
∗ +

p∑
i=1

∑
j≤i

δijyt−iyt−j +

p∑
i=1

∑
j≤i

∑
k≤j

δijkyt−iyt−jyt−k + ε∗t (3)

and the null hypothesis of this auxiliary model becomes H0: δij = 0, i = 1, ..., p, j = 1, ..., i,
and δijk = 0, i = 1, ..., p, j = 1, ..., i, k = 1, ..., j. Under appropriate assumptions, this
Teräsvirta, Lee and Granger or TLG statistic also has an asymptotic χ2-distribution when
the null hypothesis is valid. Ignoring the third-order terms in (3) yields the well-known
linearity test by [76].

Simulations suggest that the TLG test often has a better power than the LWG one.
This, however, depends for instance on how many principal components is chosen for
the LWG test. (Principal components can be used in connection with the TLG test as
well.) In simulations the number was the same (two) as the one in the simulations of
[53]. The authors point out that the asymptotic theory is not a reliable guide in small
samples when the number of observations is small in relation to the dimension of the null
hypothesis. They suggest using the F-distribution instead. [5] extended the test to work
in the presence of conditional heteroskedasticity in errors.

At this point it may be interesting to consider [37] who write that model selection
or information criteria should be preferred to statistical tests in economic modelling. If,
however, the selection process involves nested models and the aforementioned identification
problem is present, this suggestion becomes difficult to follow. As an example, consider
the following smooth transition autoregressive (STAR) model ([73], Chapter 3):

yt = φ0 + φ1yt−1 + (ψ0 + ψ1yt−1)(1 + exp{−γ(yt−1 − c)})−1 + εt (4)

where εt is zero mean white noise, and γ > 0. Equation (4) nests a linear model and
becomes linear when γ = 0. The difference in the number of parameters between the
STAR model and the linear autoregressive model to be used in the model selection criterion
would thus equal one. However, (4) becomes linear also when ψ0 = ψ1 = 0, which suggests
that this difference equals two. Sometimes it is taken to equal four because the nonlinear
component contains four parameters. Because of the identification problem, the ’correct’
number and thus the ’true’ penalty remain unknown.

In this example, the use of model selection criteria leads to another problem. Suppose
the nested linear model is true, and an information criterion such as AIC or BIC is used
to select the model. This means estimating unidentified nonlinear models, which causes
numerical problems as the estimation algorithm may not converge.

There exists, however, a way round this difficulty. The idea of [78] is to transform
the nonlinear specification and estimation problem into a linear model selection problem.
White applies it to building artificial neural network models that can nest a linear model,
but it can also be used for constructing STAR models. For details, see [78], and for
additional applications, [50] and [51].
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4. Nonlinear models

4.1. Bilinear model

The first nonlinear model that has attracted Clive Granger’s interest is the bilinear
model examined at length in [31]. In this monograph the authors also discuss nonlinearity
in general and mention another nonlinear model, the random coefficient autoregressive
model

yt + α1tyt−1 + ...+ αptyt−p = εt (5)

where αjt, j = 1, ..., p, and εt are ’time-varying functions whose values are known at time
t.’ They, however, see equation (5) mainly as a difference equation whose solutions, after
setting εt = 0, are the main object of interest.

Granger and Andersen distinguish between two main types of bilinear models: the
Bilinear Autoregressive Moving Average (BARMA) model defined as

yt =

p∑
j=1

φjyt−j +

q∑
j=1

θjεt−j +

Q∑
k=0

P∑
`=1

βk`εt−kyt−` + εt (6)

where εt is zero mean white noise, and the complete bilinear model is obtained by setting
p = q = 0 in (6). The BARMA(p, q, P,Q) model nests the linear AR model, and testing
H0: βk` = 0, k = 1, ..., Q; ` = 1, ..., P, amounts to testing linearity. Several special cases
of the complete bilinear model are considered in the monograph.

The authors provide some examples of bilinear models in economics. One of them
has to do with modelling stock returns with an MA(1) model. Defining returns as rT =
(yt − yt−1)/yt−1, where yt is the price, one obtains

yt = yt−1 + εtyt−1 + θ1εt−1yt−1.

At this point Clive Granger may not yet have known that in the near future he would
have much to do with nonstationary models, albeit not with bilinear ones.

Much of the discussion in [31] focusses on finding stationary solutions for bilinear mod-
els, deriving moments of bilinear variables and conditions for invertibility. In particular,
the authors show that {ε2t } is an autocorrelated process. This has prompted comparisons
with ARCH models for the conditional variance; see for example [6]. Consequently, in sim-
ulations [53] report, the test of no ARCH by [62] performs well when the data-generating
process is a bilinear model.

Invertibility conditions receive plenty of attention in the monograph as invertibility of
bilinear models is crucial from the point of view of estimation and forecasting. The authors
show how some simple nonlinear moving average models are non-invertible. They also
derive invertibility conditions for diagonal bilinear models in which the bilinear component
is of the form βkkεt−kyt−k. The considerations are extended to nondiagonal models in which
the bilinear term equals βk,k+Kεt−kyt−k−K , K > 0.

[32] is devoted to the diagonal case with k = 1. For this model they derive the sufficient
invertibility condition E ln(θ21y

2
t ) = ln θ21 + E ln y2t < 0. This and other conditions the
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authors derived have generated plenty of interest. [64] showed that the sufficient condition
for a more general model

yt = εt + θklεt−kyt−`, k, ` > 0

is ln |θ1|+ E ln |yt| < 0, whereas the necessary condition equals ln |θ1|+ E ln |yt| ≤ 0.
Bilinear models also play a role in [21], where the topic is forecasting white noise.

Contrary to common beliefs, Granger demonstrates that white noise can indeed be fore-
castable. The paper contains several examples, the simplest one being the bilinear model

yt = θ12εt−1yt−2 + εt (7)

where εt is what Granger calls pure white noise: εt and εt−k are independent for all t
and k. Gaussian white noise is an example of pure white noise. If εt is pure white noise
in (7), then yt is white noise as Eyt = 0 and Eytyt−k = 0 for k 6= 0. The model (7) is
invertible if θ12σε < 1/

√
2, and the coefficient of determination equals R2 = θ212σ

2
ε , where

σ2ε = Eε2t < ∞. Thus, when θ12σε → 1/
√

2, R2 → 1/2, so there is plenty of (nonlinear)
forecastability in the model. Granger issues a warning: when one estimates a model such
that the errors (judging from the residuals) appear to be white noise, they may still be
forecastable.

Research on bilinear models has generated a host of theoretical results concerning
probabilistic properties of the model and properties of estimators; see, for example, [69].
Nevertheless, the model has not turned out to be very useful in economic research. The
reason seems to be that it mostly describes atypical behaviour that manifests itself in the
form of outliers. See [59] for an illuminating discussion. Some other nonlinear models such
as the threshold autoregressive, the smooth transition autoregressive or the hidden Markov
autoregressive model have been more successful in this respect. They are discussed in [73],
Chapters 3 and 16.

Granger and Andersen also consider building bilinear models. They mention the three-
stage model building strategy of [7], in which the linear autoregressive-moving average
model is first specified (’identification’), the specified model estimated, and the estimated
model evaluated (’diagnostic checking’). They write that the same strategy, suitably
modified, should be used in constructing bilinear models. Granger’s contributions to an
important part of specification of nonlinear models, namely testing linearity, was already
considered in the previous section.

4.2. The m-m model

As discussed in Section 2, Granger’s view has been that in practice, nonlinearity in
macroeconomic series is often weak. In introducing the m-m process in [35] the authors
point out that while this is the case in univariate models, the evidence of nonlinearity
becomes stronger when a bivariate system is considered. They define a bivariate nonlinear
model called the m-m model as follows:

xt+1 = max(αxt + a, βyt + b) + εx,t+1 (8)

yt+1 = min(γxt + c, δyt + d) + εy,t+1 (9)
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where εx,t+1 and εy,t+1 are independent and identically distributed with mean zero and
mutually independent variances σ2x and σ2y , respectively. The ’m-m’ in the title of the
paper indicates that the process may also be defined as max-max or min-min. As the
equations (8) and (9) suggest, this is a highly nonlinear system that does not nest a linear
model. When α = β = γ = δ = 1, the resulting system is an integrated m-m process.
Setting a = b = c = d = 0 one obtains what is called a stationary m-m process. The model
is similar to the linear vector autoregressive model in the sense that neither variable is
exogenous. It is seen from the equations (8) and (9) that testing the Granger noncausality
hypothesis, see Hendry, this issue, is possible in this framework.

[35] consider equilibrium values x and y of the system. These are values obtained from
the model when t → ∞, assuming σ2x = σ2y = 0 for all t > T0 > 0. Whether or not they
exist depends on the parameters of the system, and the appropriate conditions are derived
in the article. Special attention is given to the equilibrium values of zt = xt − yt. The
paper contains a proposition that generally {xt+1} and {yt+1} are nonlinearly integrated
processes, that is, their variance becomes infinite with the number of observations. There
do exist parameter restrictions that make zt = xt−yt stationary and ergodic, which means
that the nonlinear variables xt and yt are linearly cointegrated. It turns out that the
equilibrium conditions for zt are necessary for this variable to be stationary and ergodic.
There is also some discussion of more general forms of linear cointegration than (1,−1).
Further, Granger and Hyung argue that because the cointegration relationship is linear,
tests of cointegration derived for standard unit root processes work for m-m variables,
although xt and yt are highly nonlinear.

Estimation of m-m processes with maximum likelihood is not possible because of dis-
continuities in the equations (8) and (9). [35] suggest the following approximation:

xt =
1

s
log(es(αxt+a) + es(βyt+b)) + ε∗x,t+1 (10)

yt = −1

s
log(es(γxt+c) + es(δyt+d)) + ε∗y,t+1. (11)

The argument in favour of using the equations (10) and (11) is that when the scale pa-
rameter s → ∞, this system converges to the m-m process defined by the equations (8)
and (9). The likelihood is well behaved for finite values of s and choosing a large value
for it, maximum likelihood estimation of the parameters of an approximate m-m system
is possible. One could also apply derivative-free methods such as simulated annealing or
genetic algorithms; see for example [73], Chapter 12, but the authors do not consider that
possibility.

[35] conduct a simulation study to find out how well standard linearity tests respond
to nonlinearity of m-m type. The design of the experiment closely resembles that in [53].
The same tests are used in both papers. Four m-m models are simulated, and the power of
the tests varies greatly with the model. An interesting detail is that there is a stationary
model in which even the [62] test has power, albeit less than the other tests. Since, as
already mentioned, this is a test of no ARCH, it appears that some m-m models can
generate series that contain conspicuous outliers or rather volatile periods.
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Finally, the workings of the m-m model are illustrated using the interest rate of a six-
month commercial paper and a three-month Treasury bill. The estimation period extends
from January 1947 until December 1986 (480 observations) and the forecasting period from
January 1987 to September 1997 (129 observations). In the estimated model, the monthly
interest rates are differenced, and the T-bill rate equation is linear. The same battery of
tests as before is conducted, and most of them reject linearity, including the test of [62].
Since monthly interest rate series may well contain conditional heteroskedasticity, this
should not be surprising. The forecasts from the m-m model turn out to be more accurate
than the ones from a linear vector autoregressive model and a threshold cointegration
model by [3]. Despite this success, there are few applications of the m-m model. The
reason may be that while very original, the structure of the model may not sufficiently
resemble that of any economic theory model.

4.3. Momentum threshold autoregressive model

Unlike the m-m model, models with switches or thresholds have been quite popular
in economic applications. In the econometric literature [18], Chapter 9, introduced a
switching regression model with two regimes in which the observations are independent and
switching is controlled by a strongly exogenous variable. [74] presented an autoregressive
model he called the self-exciting threshold autoregressive (SETAR) model. [75] contains a
comprehensive account of this model and its dynamic properties, hypothesis testing and
parameter estimation are also discussed.

[15] look at the simple Dickey-Fuller autoregression

∆yt = ρyt−1 + εt

where εt is (nonforecastable) white noise. They note that the adjustment, which exists
for −2 < ρ < 1, is symmetric around zero and argue that it could in fact be asymmetric.
This leads them to consider the following TAR model:

∆yt = ρ1I(yt−1 ≥ c)yt−1 + ρ2{1− I(yt−1 ≥ c)}yt−1 + εt

= ρ2yt−1 + (ρ1 − ρ2)I(yt−1 ≥ c)}yt−1 + εt (12)

where I(yt−1 ≥ c) is an indicator function: I(A) = 1 when A is true, zero otherwise.
Since the interest lies in asymmetry around zero, [15] assume c = 0 in (12). This means
that their model is in fact linear. The novelty, the momentum TAR (M-TAR) model,
is obtained by replacing yt−1 in the indicator function by ∆yt−1. The resulting model is
linear as well. Another version of the M-TAR one is obtained by demeaning, in which case
(12) becomes

∆yt = ρ1I(yt−1 ≥ µ̂y)(yt−1 − µ̂y) + ρ2{1− I(yt−1 ≥ µ̂y)}(yt−1 − µ̂y) + εt

= ρ2yt−1 + (ρ1 − ρ2)I(yt−1 ≥ µ̂y}yt−1 + εt (13)

where µ̂y is the sample mean. This model is still linear because µ̂y is estimated prior to
estimating the other parameters of the model.
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The authors consider testing the unit root hypothesis ρ1 = ρ2 = 0. To this end, they
simulate the null distribution of tests of this null hypothesis assuming both c = 0 and
c = µ̂y in (12) and (13).

In this set-up, nonlinearity enters (12) through the back door. Granger and Enders
remark that zero or the sample mean may be biased estimates of the threshold parameter
c. If the null hypothesis is rejected, they suggest estimating this parameter by giving it
sample values of yt−1 or ∆yt−1 within a certain range that excludes the smallest and
largest values and choosing the value that minimises the sum of squared errors. This is
how c is generally estimated in TAR models. The model does not need not be of order
one, that is, the regimes may have longer lags than one.

An advantage of this procedure is that the identification problem already mentioned
in Section 3 arising when c is unknown is avoided. A disadvantage is that the test may
not always reject the null model when the alternative holds but c deviates from either zero
or µ̂y, depending on whether one applies (12) or (13). One solution to this inconvenience
can be found in [14], Chapter 1. His model has the following form

∆yt = φ0 + φ1∆yt−1 + ψyt−1 + (ϕ0 + ϕ1∆yt−1)G(yt−1; γ, c) + εt (14)

where
G(yt−1; γ, c) = (1 + exp{−γ(yt−1 − c)})−1 − 1/2, γ > 0 (15)

is the logistic transition function; see for example [73], Chapter 3. This model is different
from (12) in that it contains two free intercepts, φ0 and ϕ0, and a continuum of regimes.
If, however, φi = ϕi = 0, i = 0, 1, and γ →∞ in (15), (14) collapses into (12). A combined
unit root and linearity test against (14) can be formulated as the joint test of ψ = 1 and
γ = 0, in which case ϕ0, ϕ1, and c are unidentified when the null hypothesis holds.

An operational test statistic is derived following [58]. This implies approximating (14)
by its first-order Taylor approximation around zero. Doing so yields the auxiliary model

yt = φ∗0 + φ∗1∆yt−1 + λyt−1∆yt−1 + ρyt−1 + ε∗t (16)

where ε∗t = εt when the new null hypothesis λ = 0, ρ = 1 is valid. Eklund derives the
asymptotic null distribution of his F-statistic and simulates the relevant critical values.
When λ = 0, (16) becomes the ADF test equation with an intercept and one lag. The
alternative model is larger than in [15] because it covers all positive and finite values of γ.
Strictly speaking, the asymptotic theory is not valid for γ =∞, but the test has reasonable
power against this alternative as well. Comparing this approach with the one in [15] could
be interesting.

5. Nonstationarity and nonlinearity

5.1. Nonlinear transformations of nonstationary processes

What happens to nonstationary variables, for instance ones with a unit root, when
they are transformed using nonlinear transformations? How would the probabilistic linear
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properties such as the mean, variance, and the autocovariance structure in particular, of
the transformed variables look like? [16] study these questions and provide answers. They
consider polynomial, exponential and periodic transformations as well as the probability
integral transform of

xt = µ+mt+
t∑

j=1

εj , j = 1, ..., t

where µ is the starting-value of the process at t = 0, and εt ∼ iidN (0, σ2ε). It is seen that
xt is I(1) with drift. Under these assumptions, Ext = µ+mt and cov(xt, xt−k) = (t−k)σ2ε
for |k| ≤ t−1. Since εt is normal, xt ∼ N (µ+mt,var(xt)), where var(xt) = tσ2ε . Define the
standard normal variable zt = (xt − µ−mt)/

√
var(xt). The transformation yt = T(xt) is

approximated by Hermite polynomials that are defined by standard normal variables:

yt = T(µ+mt+
√

var(xt)zt) =

M∑
i=0

α
(t)
j Hj(zt)

where

α
(t)
j =

1

j!
E(

djT(µ+mt+
√

var(xt)zt)

dzjt
). (17)

It is not possible to review all results of [16] here. The focus will be on selected
outcomes on the exponential and the probability integral transformation. Consider first
the exponential transformation

yt = exp(µ+mt+
√

var(xt)zt) =
M∑
i=0

α
(t)
j Hj(zt)

where, from (17),

α
(t)
j = exp(µ+mt+

1

2
var(xt)zt)

var(xt)
j/2

j!
.

It turns out that Eyt = exp{µ + θt} where θ = m + σ2ε/2. Setting θ = 0 makes the
expectation constant. Autocorrelations of yt, if they are nevertheless well defined using
the standard definition, become

corr(yt, yt−k) = exp{−kσ2ε/2}

and so decay exponentially as in the stationary AR(1) model. Differencing yields E∆yt =
(1 − exp{−θ}) exp{µ + θt} which is not constant either unless θ = 0. Consequently, the
transformed variable yt cannot be made stationary by differencing.

The probability integral transform of xt that [16] called the neural network transfor-
mation, is considered in the case µ = m = 0. Then, assuming normality,

yt =
1√
2π

∫ xt

−∞
exp{−s

2

2
}ds. (18)
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Due to the nature of the transformation, the authors find that yt still has the long memory
property. In order to consider the case m 6= 0, a neural network transformation should
involve a linear combination of normal distributions with different means and variances,
for example

yt = β0 +

q∑
j=1

βj

σj
√

2π

∫ xt

−∞
exp{−(s− µj)

2σ2j
}ds.

Since Granger and Ermini want to keep the transformations as simple as possible, they
do not discuss this extension.

[28] continues this discussion by using the concept of balance. To illustrate this, con-
sider two random variables yt and xt and an equation

yt = g(xt) + εt (19)

where εt is white noise. The equation (19) is balanced if the left-hand and right-hand
side possess the same properties. For example, assume that yt and xt are random walks.
Then g(xt) also has to be a random walk, otherwise (19) is not a balanced equation. This
requirement excludes a large number of nonlinear transformations. One message of this
is that when economic theorists write up models linking economic variables, they have to
be aware of their properties and those of the transformations so that they do not end up
with unbalanced equations. More generally, [28] contains a lot of interesting material that
for space reasons cannot be discussed here.

It may be added that [13] examine transformations of fractionally integrated processes.
A process {xt} is called fractionally integrated with the memory index d, I(d) for short, if

xt =
∞∑
j=0

cjεt−j

where cj = Γ(j + d)/{Γ(j + 1)Γ(d)}. Only the case where xt is nonstationary and, more
specifically, 1/2 < d < 1, is considered here. The authors show that in this case, power
transformations of xt are also nonstationary, and the memory index remains unchanged.
For the square transformation, yt = x2t , they derive the result analytically. For higher
order transformations it is obtained by simulation.

Dittmann and Granger also study the logistic transformation which is very similar to
(18), as

yt = (1 + exp{−xt})−1.

When xt ∼ I(d), 1/2 < d < 1, they find that yt ∼ I(d1), where d1 < d, but nevertheless
1/2 < d1 < 1, so yt is still nonstationary. As the authors point out, yt is bounded. The
logistic transformation thus shows that a nonstationary fractionally integrated process can
be bounded.

Granger’s work on nonlinear transformations of fractionally integrated processes may
prompt one to ask: has there been cross-fertilisation? Has his work on nonlinear models
somehow aroused his interest in fractional integration or vice versa? The latter is hardly
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true as Granger had already studied bilinear models before considering fractional integra-
tion. In [19], he shows how long memory may arise from aggregating linear autoregressive
(but not moving average) models. He does not mention nonlinearity in that context. The
two areas touch each other later, see Section 6.

5.2. Stochastic unit root processes

Processes in which nonstationarity is due to a unit root have been extensively studied
in time series and econometrics literature. [44] introduce a generalisation in which the unit
root is stochastic. More precisely, they assume that the random variable yt is generated
by

yt = exp{αt}yt−1 + εt (20)

where αt has the form
αt = µ+ ραt−1 + ηt (21)

with |ρ| < 1 and ηt ∼ iidN (0, σ2η) and independent of εt ∼ iid(0, σ2). Denoting Eαt =
µ/(1 − ρ) = m, one obtains the following condition for the mean of the time-varying
coefficient to equal one: m + σ2α/2 = 0, where σ2α = σ2η/(1 − ρ2). This follows from the
properties of the normal distribution (ηt was assumed normal), and the subsequent model
is called STUR A. This outcome may be compared with the results of [16] in the previous
subsection, where an exponentially transformed random variable has a constant mean
when this restriction holds.

The stochastic root fluctuates around unity, which means that the STUR process de-
fined by equations (20) and (21) may contain explosive as well stationary periods. How
persistent they are depends on ρ and σ2η in (21). [44] define another STUR model called
STUR B, but it is ignored here. Instead of exp{αt} and (21), [55], in a parallel develop-
ment, write (20) as yt = αtyt−1 + εt, where αt = 1 + δt with δt = ρδt−1 + ηt, |ρ| ≤ 1. [61]
and [81] consider a special case of this, where ρ = 0.

The randomness of αt makes STUR models quite different from the standard unit root
process, obtained in STUR A by setting σ2η = m = 0. Obviously, if σ2η is small, stochastic
unit roots are in practice quite difficult to distinguish from standard unit roots. The usual
’power failures’ associated with the ADF unit root test should therefore be apparent when
the unit root is stochastic as in (20) and (21). The simulations run in [44] support this
conclusion. As [54] and, later, [81] point out, the STUR process becomes very erratic
when σ2η increases. Parameter estimation by maximum likelihood is complicated by the
fact that αt is unobserved, and [44] therefore maximise the likelihood by simulation. This
involves independent draws from distributions of αt.

Another property of the stochastic unit root process is that, as observed by [54],
it cannot be made weakly stationary by differencing. This is also discussed in [16] in
connection with the exponential transformation. The original process is strictly stationary,
but the marginal distribution of yt has no finite moments. This and other properties of
STUR A are studied by [80]. As the author points out, sample autocorrelations of the
STUR process therefore have no meaning. Yoon’s paper also contains references to other
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researchers’ work on STUR. More discussion on STUR processes and further references
can be found in [73], Chapter 11.

5.3. Nonlinear cointegration

As Clive Granger developed the concept of (linear) cointegration discussed in this issue
by Castle and Hendry, it is only natural that he would be interested in nonlinearities in
nonstationary series and nonlinear cointegration. The first time he turns to this extension
is in [22], see also [38]. He points out that the fact that a set of economic variables are not
linearly cointegrated ’does not necessarily imply that there is no equilibrium relationship
among them.’ In order to study this possibility further, Granger introduces time-varying
parameter (TVP) cointegration. In doing so, he first defines a univariate TVP-I(0) process.
This is done by first using the result of [10] stating that any univariate process {yt} with
Eyt = 0 and bounded variance for all t has a generalised Wold representation

yt =
∞∑
j=0

cjtεt−j

where cjt is a deterministic double (indexed by j and t) sequence such that
∑∞

j=0 c
2
jt ≤

M <∞ for all t, and εt is zero mean white noise. The time-varying parameter I(0) process
is defined thereafter through the evolutionary spectrum

ft(ω) =
1

2π
|
∞∑
j=0

cjt exp{iωj}|2

see [63], as follows: If a time series yt with no deterministic component has an evolutionary
spectrum ft(ω) that is bounded from above and positive for all t and ω, then {yt} is TVP-
I(0). (Recall that [20] defines cointegration using the frequency domain.)

The linear I(1) process can be generalised to the TVP-I(1) process in the same way.
Let yt be an N -vector such that

yt = Ct(B)wt (22)

where B is the lag operator, wt =
∑t

j=1 εt−j with εt being vector white noise, and Ct(0) =

IN for all t. Furthermore, defining Ct(z) =
∑∞

j=0 Cjtz
j , assume

∑∞
j=0 CjtΩC′jt < ∞ for

all t, where Ω = Eεtε
′
t. If these conditions are satisfied, then {yt} is TVP-I(1).

Cointegration can now be defined in the usual way. Write

Ct(B) = Ct(1) + C∗t (B)(1− B)

and rewrite (22) as
yt = Ct(1)wt + C∗t (B)εt

TVP cointegration occurs if there exists an N -vector αt such that α′tCt(1) = 0′ for all t.
This is no doubt a strong condition.
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It may be mentioned that [39] introduce non-symmetry or asymmetry into an error-
correction model of the relationship between sales st and production pt that involves
positive and negative inventories. This is done by splitting a stationary variable or a linear
combination of nonstationary variables, xt, say, to two components, x+t = max{xt, 0} and
x−t = min{xt, 0} and entering both in the same equation. Such a model allows asymmetry
in the response of ∆st and ∆pt to changes in xt, but the model is still linear in parameters
and will therefore not be studied here.

[33] examine the effect of transformations of integrated variables on unit root tests.
The conclusion is that if the data are monotonically transformed, the unit root test applied
should be a rank-based one as it is invariant to such transformations. [33] also ask the
following question. Suppose xt and yt are two variables that are I(1) and cointegrated.
Are the nonlinearly transformed variables g(xt) and g(yt) also cointegrated? To answer
the question, they assume that

xt = µ+ xt−1 + et

where et is white noise and independent of xt, and that

yt = αxt + εt

where εt is stationary. This means that yt and xt are linearly cointegrated. Then, by a
mean-value expansion,

g(yt) = g(αxt + εt) = g(αxt) + εtg
′(αxt + rt)

where rt is a residual. Now, εtg
′(αxt + rt) is (mean) stationary with mean zero and some

heteroskedasticity, so g(yt)− g(αxt) is mean stationary. This implies that g(yt) and g(xt)
are cointegrated if α = 1 or if g(αxt) = αkg(xt), in which case the cointegrating parameter
is αk. Note that the cointegrating relationship considered is linear.

[27] briefly considers the case of nonlinear cointegration where there exist r linear
cointegrating relationships between the elements of yt: zt = B′yt. The error-correction
model becomes

Φ(B)∆yt = Γf(zt−1) + εt

where f(zt) = (f1(zt), ..., fr(zt))
′ a vector of nonlinear functions. Two examples for r = 1

are given: f(zt) = z3t and f(zt) = max(zt, 0), the latter as in [39]. Granger points out that
the parameters in zt are usually estimated in the linear framework. He mentions that it
is unclear whether that is efficient or not. This may still be an unresolved issue.

[43] look at many different types of nonlinear cointegration. To cite the authors,
their aim is ’to suggest and examine generalizations [of cointegration] whilst maintaining
the idea of cointegration and, consequently, to provide ways of making interpretations
of the results of cointegration analysis both more realistic and more useful’. One of the
generalisations is nonlinear cointegration. They illustrate it by the following bivariate
example: Begin by generating a pair of possibly unobserved univariate series zt and wt
from

zt = λtzt−1 + εzt, |λt| < 1 (23)
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wt = φtwt−1 + εwt, |φt| > 1 (24)

where {εzt} and {εwt} are martingale difference sequences, zt = xt − atyt and wt =
c1xt + c2tyt. Note the time-varying parameters λt, φt, at and c2t. Assuming c2t = 1− c1at
(there is a typo in the paper) yields the pair

xt = c2tzt + atwt (25)

yt = −c1zt + wt (26)

so xt and yt are expressed as linear functions of zt and wt. Inserting (23) and (24) into
(25) and (26) gives the following nonlinear error-correction model:

(1− φtB)xt = γ1tzt−1 + εxt

(1− φtB)yt = γ2tzt−1 + εyt

where γ1t = c2t(λt − φt) and γ2t = −c1(λt − φt). The error term εxt equals

εxt = φt(at − at−1) + c2tεzt + atεwt.

It is seen that assuming εxt to be white noise requires at = at−1(= a), that is, the coin-
tegrating relationship is stable. Obviously, deriving an error-correction model with white
noise errors in which at is time-varying is not completely straightforward if the equations
(23) and (24) form the starting-point.

Granger and Swanson discuss possible representations for at. They suggest that it may
be a stochastic unit root process or that it may change smoothly over time. The alter-
native that at is stochastic unit root process may not have been studied in the literature.
Assuming at stochastic has been considered (in a broad sense) by [48]. They postulate
the m-dimensional model

yt = µ+ Πtwt + εt

wt = wt−1 + ηt

Πt = Π + Vt

where εt, ηt and vec(Vt) are stationary vectors with mean zero. In this framework the au-
thors define the concepts of stochastically integrated vector and stochastic cointegration.
Asymptotic inference is discussed and the estimators simulated. No empirical example is
given, however. Continuing this line of research, [60] derive a test of stochastic cointegra-
tion against no cointegration.

In [65], the long-run parameter changes smoothly over time. Using the bivariate model
in [43] as an example, the error-correcting term zt = yt − atxt, where at = G(t/T ; γ, c), is
a deterministic function of (rescaled) time and T is the number of observations. Further-
more, as in [56],

G(t/T ; γ, c) = (1 + exp{−γ(t/T − c)})−1, γ > 0

or
G(t/T ; γ, c) = 1− exp{−γ(t/T − c)2}, γ > 0.
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The other parameters are assumed constant, although this assumption could be relaxed.
Asymptotic inference and testing the null hypothesis at ≡ a are discussed. This paper
also contains an empirical application.

Returning to [43], they also show how a certain myopic cost function leads to a non-
linear error-correction model. Assuming the elements of the N -vector yt are I(1) and that
zt = A′yt, where zt is an r × 1 vector, r < N, A is an N × r matrix, has all its elements
I(0). This cost function is a nonlinear function zt. The agent is minimizing the cost of
straying from the equilibrium defined as zt = 0. It turns out, after some algebra, that this
leads to the following error-correction model:

∆yt = Γg(δ′zt−1) + εt (27)

where g(δ′zt) = (g1(δ
′
1zt), ..., gr(δ

′
rzt))

′. Each equation of (27) contains r linear combina-
tions of the I(0) variable zt, but they enter these equations nonlinearly. Since Granger and
Swanson present ideas rather than applications, models of this type are neither specified
nor estimated in the paper. They do have an example of the (bivariate) situation in which
nonlinearity is such that the cointegration component g1(zt) = 0 for |zt| < z∗, whereas
g1(zt) = γ(z − z∗)α, α > 0, with g1(z) = g1(−z), outside this band. This means that the
model does not ’equilibrium correct’ when zt is sufficiently close to the equilibrium point
zero. This idea is similar to threshold cointegration as defined by [3]. For more discussion
on nonlinear cointegration, see [73], Chapter 11, and references therein.

6. Nonlinear models with misleading linear properties

[16] conclude: ’The relevance of these results for econometric practice should not be
underestimated: evaluation techniques, using autocorrelations and regressions of the future
on the present, are all essentially linear and thus potentially misleading when considering
nonlinearity.’ Granger returns to this theme in the form of a simple example in [46]. The
model is

yt = sgn(yt−1) + εt (28)

where εt ∼ iidN (0, σ2), and the sign function sgn(x) = 1, if x > 0, = −1, if x < 0,
and zero otherwise. This sign-autoregressive model is also used in simulations of [53].
It generates switches whose frequency depends on σ2. In theory, the autocorrelations will
decline exponentially as in the linear stationary first-order AR model. In fact, using sample
sizes of 2000 and 20000 it is found by simulation that the decay of the autocorrelations ρk
is slower than exponential. Instead of a decay rate ρk = φk, |φ| < 1, ln |ρk|/ ln k appears
to remain constant when k increases, albeit not in every realisation. This corresponds to
the theoretical form of the autocorrelations from a stationary fractionally integrated, I(d),
process. Setting p = Pr{εt < −1} = Pr{εt > 1}, simulations with T = 20000 show how
the estimated memory index d̂ increases from 0.251 for p = 0.01 to 0.749 when p = 0.001.
Clearly, from autocorrelations one could infer that the observations are generated by a
linear long memory model. Interestingly, this possibility of misinterpretation is stronger
in subsamples where T = 2000. There d̂ = 0.742 already for p = 0.01. The conclusion is
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that it may sometimes be difficult in practice to distinguish between nonlinear and linear
models.

The authors argue that because a very simple model is already capable of producing
autocorrelations of that type, the same is likely to happen with more complex nonlinear
models. A good example of this is the stationary threshold autoregressive model by [52]
that in many applications would constitute a relevant alternative to linear AR models
with a unit root.

A question Granger and Teräsvirta do not answer is how long series are required for
the decay rate of autocorrelations to be exponential, as the theory prescribes. Simulations
show that a rough answer would be T = 250000.

Granger returns to this topic in [34]. The set-up is somewhat different in that the
model generates breaks, but the results are quite similar to the ones in [46]. The model is
again very simple:

yt = mt + εt (29)

where εt is white noise (0, σ2ε). Furthermore,

mt = mt−1 + qtηt (30)

where the mutually independent variables qt and ηt are iid: qt ∼ Bernoulli(p), and ηt ∼
N (0, σ2η). Combining (29) and (30) yields

yT = m0 +
T∑
t=1

qtηt + εT (31)

where m0 is the starting-value. It is seen from (31) that the frequency of breaks must
depend on p and their size on σ2η. The difference between (31) and (28) is that in the
former model the switches are generated by the model, whereas in the latter they have
exogenous causes. To make the asymptotics work, [34] assume that asymptotically there
are sufficiently many breaks: pT → c > 0 as T →∞. This prevents the distance between
adjacent breaks from becoming infinite as T →∞.

Simulations with T = 2000 and σ2ε = 1 (Table 1 of the paper) show that for the smallest
p = 0.0025 (five breaks on average) and smallest variance σ2η = 0.005, the estimated

memory index d̂ = 0.076. When p = 0.05 (the largest value, 100 breaks on average)
and σ2η = 0.1, d̂ = 0.825. These results support earlier ones suggesting that in practice
(linear) models with breaks on one hand and long memory on the other are often hard
to distinguish from each other. Power transformations of break processes are examined
in [13]. Their simulation results show that the estimated d varies little with the power,
whereas d increases when the break probability p decreases.

7. Forecasting

7.1. Forecasting with nonlinear models

Forecasting has always been one of the areas of interest for Clive Granger. For an
overview, see Clements, this issue. [45] and [73], Chapter 14, among others, discuss the
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difficulties present in generating multi-step forecasts from nonlinear models. The forecasts
considered here are made at time T and are conditional expectations given the information
set FT . The minimum mean square forecast error criterion gives the optimal one-period
mean forecast fyT,1 = E{yT+1|FT }. To illustrate Granger’s contribution to the multi-step
forecasting problem, we follow [73], Chapter 14, and consider the simple regression model

yt+1 = g(xt) + εt (32)

where εt is zero mean white noise. For example,

yt+1 = x2t + εt (33)

where xt follows a linear AR(1)-process xt = φxt−1 +ηt, |φ| < 1, and ηt has mean zero and
the cumulative distribution function D. Now, the forecast fyT,1 = g(xT ), as E{εT+1|FT } =
0. The optimum two-step forecast is

fyT,2 = E{yT+2|FT } = E{g(xT+1)|FT }.

As xT+1 is not usually known at time T , it has to be forecast from the AR(1)-process,
which is not difficult, the result being fxT,1 = φxT . There are four alternative ways of
computing the two-step forecast

fyT,2 = E{g(fxT,1 + ηT+1)|FT }. (34)

They are:
(i) näıve,
so that the presence of ηT+1 in (34) is ignored by putting its value to zero. The forecast

is fnyT,2 = g(fxT,1).
(ii) exact,

feyT,2 =

∫ ∞
−∞

g(fxT,1 + z)dD(z).

For example, if ηt ∼ iid N (0, σ2η), then D(z) is the cumulative distribution function of the
normal variable. The value of the integral is determined by numerical integration. The
variance σ2η is usually unknown, but in practice the residual variance from the estimated
model is used as an estimate. The integral can also be approximated numerically, which
leads to

(iii) Monte Carlo,

fmy
T,2 =

1

N

N∑
j=1

g(fxT,1 + zj)

where zj , j = 1, . . . , N, are random numbers drawn independently from the distribution
D. Even here, estimates have to be substituted for the unknown parameters in D such as
the variance. For N large enough, feyT,2 and fmy

T,2 should be virtually identical. If D is
not assumed known (up to the variance), one can still apply
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(iv) bootstrap,

fbyT,2 =
1

NB

NB∑
j=1

g(fxT,1 + η̂
(j)
t )

where η̂
(j)
t , j = 1, . . . , NB, are the NB independent draws with replacement from the set

of residuals {η̂t}Tt=2 coming from the estimated AR(1) model over the sample period.
For the particular model (33), the four forecasts will be, effectively,

fnyt,2 = φ2x2t

feyt,2 ' fm
y
t,2 = φ2x2t + σ2η

and fbyt,2 = φ2x2t + σ̂2η

(assuming N−1B
∑NB

j=1 η̂
(j)
t is near zero). The näıve method yields biased forecasts, as σ2η

is ignored. In practice the function g(·) in (32) is not known so that its form has to
be specified and the parameters estimated. Thus g has to be replaced by ĝ in the four
forecasts above.

7.2. Nonlinear combination of forecasts

In a classic paper, [4] argue that a combination of forecasts often leads to a more
accurate forecast than the individual ones. Since the publication of this work, various
weighting schemes have been examined and their performance investigated over the years.
A weighting scheme can be time-varying and the weights functions of random variables.
[12] examine the situation in which the weights are nonlinear functions of them. Suppose
there are two forecasts of yT+1: f

y
1,T and fy2,T , made at time T. A nonlinear combination

fyC,T of these depending nonlinearly on xT may be written as

fyC,T = w(xT )(α1f
y
1,T + α2f

y
2,T ) + {1− w(xT )}(α3f

y
1,T + α4f

y
2,T ) (35)

where w(xT ) = (1 + exp{−γxT })−1 with γ > 0. The weights thus change smoothly from
α1 and α2 to α3 and α4 as a function of xT . When γ → ∞, the switch becomes abrupt.
This alternative as well as some others are also discussed in the paper. A simple example
of the weights in (35) would be the one with α1 = α4 = 1 and α2 = α3 = 0.

An empirical example involving two series of UK inflation forecasts indicates that
a simple linear combination does not improve forecasting accuracy compared to single
forecasts whereas the nonlinear weights do. When γ <∞, meaning that the transition is
smooth, the slope parameter has to be selected by the user. One way of doing that is to
take historical forecasts, experiment with different values of γ and see which one or ones
work best.
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8. Other topics

8.1. Chaos

The nonlinear models considered so far have been stochastic. In many branches of
science, nonlinear processes in use are deterministic, such as chaos. A question then is,
whether even economic time series could be regarded as generated by deterministic pro-
cesses, which is the case in some economic theory models. (Granger’s answer is negative,
see, for example, [24]). [57] examine white chaos, a deterministic process with the same
properties as linear white noise in that no linear dependence can be detected in realisa-
tions of it using normal statistical techniques. As an example, random number generators
produce such series. White chaos is thus another example of a nonlinear model with
misleading linear properties.

Granger and his co-authors look at a measure, the so-called correlation integral, used
to detect chaos and a test based on that measure. Given a time series {yt, t = 1, ..., T},
let yt = (yt, yt+1, ..., yt+m+1) be an m-vector. The correlation integral is defined using yt
as follows:

Cm(ε) = lim
T→∞

T−2{number of pairs (i, j), i 6= j, such that |yt+i − yt+j | < ε,

i, j = 0, 1, ...,m− 1} (36)

For small ε, (36) grows exponentially with rate νm: Cm(ε) ≈ exp{νm}, where m is
called the embedding dimension. The corresponding correlation dimension equals C(ε) =
exp{ν}. For appropriate choices of ε and m, C(ε) may be numerically approximated by
Cm(ε). The exponent ν is constant for various models of chaos, but for stochastic white
noise C(ε) = exp{m}, i.e., the correlation dimension grows exponentially with the em-
bedding dimension. Simulations of Cm(ε) in [57] support this conclusion. Applying the
correlation integral to two daily financial series, the IBM and the Standard and Poor 500
index returns with 5900 observations, they find no evidence of white chaos.

The authors also examine a statistical test based on the correlation integral, the so-
called BDS test by [8] (the working paper version of the test appeared in 1987). The null
hypothesis of the BDS test is that the process (time series) consists of iid observations, and
the alternative is that this is not true. [57] consider the size and power of the test when it
is applied to the residuals of a linear autoregressive model. The data-generating process
is either the logistic map with the parameter value four or any of the models considered
in [53], and T = 200. It is found that the empirical size of the test varies strongly with
ε: in simulations, ε = 0.8j , j = 1, 2, ..., 10. Both the largest values of ε corresponding to
j = 1, 2 and the smallest one for which j = 10 are useless in the sense that the test is
strongly positively size-distorted. The results on power show that the test convincingly
rejects the null hypothesis when data are generated by the logistic map. However, the test
also has power against other nonlinear models. It would therefore be a mistake to claim
that a rejection by the BDS test would be an indication of white chaos.

[57] remark that if one wants to distinguish between white chaos and stochastic white
noise, one would need a statistical test in which chaos is the null hypothesis. Unfortunately,
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such a test does not exist. [25], discussing the paper by [9], points out that the difference
between a stochastic iid (assuming white noise is not enough) process and white chaos
becomes clear in forecasting. While the former is never forecastable, the latter can be
forecast perfectly if the starting-values are known and there is no measurement error.

8.2. Aggregation of nonlinear series

The set-up in [53] is used again by [40] who are studying the effects of aggregation on
nonlinearity. They construct a situation in which there is nonlinearity at the micro level,
but only either the cross-sectionally or temporally aggregated series is actually observed.
In cross-sectional aggregation the micro equation has the form

yjt = f(yj,t−1, yj,t−2, ...; εj,t−1, εj,t−2, ...) + εjt

where the zero mean white noise error process εt = et + ηjt, with the common error et
and an idiosyncratic one, ηjt, where ηjt and ηkt, j 6= k, are independent. All have finite
variances. The bilinear model (7), i.e.,

yjt = θ12yj,t−2εj,t−1 + εjt

serves as a convenient theoretical example as it is linear in parameters. A cross-sectional
aggregation of N series leads to

Yt = θ12et−1Yt−2 +Net + θ12

N∑
j=1

yj,t−2ηj,t−1 +
N∑
j=1

ηjt (37)

where Yt =
∑N

j=1 yjt. Note that the parameter θ12 is the same across the equations.
Effects of aggregation are controlled by the balance between the components Net and
the sum θ12

∑N
j=1 yj,t−2ηj,t−1 +

∑N
j=1 ηjt. The former one has variance of order O(N2),

whereas the latter ones, due to the independence of ηjt and ηkt, has variance of order
O(N). Consequently, for large N the term Net will dominate, and the model (37) for Yt
is still approximately bilinear, as the last two sums in (37) can be ignored. If et = 0,
meaning that there is no common component in the errors, the two sums play a bigger
role, and the model can no longer be recognised as bilinear.

The authors conduct a simulation study using the tests and models in [53] and varying
the variance of et and ηjt (the latter is assumed to be identical for all ηjt). The results are in
line with the ones in the aforementioned example and support the claim that aggregation
weakens nonlinearity present on the micro level. Temporal aggregation is also considered,
and the results are similar.

8.3. Nonlinear dependence and trends

It is not difficult to find situations in which linear dependence measures indicate no
dependence, but the variables in question are nonlinearly dependent. Using standard
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autocorrelation coefficients to determine the maximum lag in a potentially nonlinear uni-
variate model may in those cases be misleading. [41] study lag selection in nonlinear
moving average and autoregressive models. The authors apply the mutual information
coefficient which is a function of Shannon entropy normalised to lie between zero and one.
Computing this dependence measure requires nonparametric density estimation, which is
discussed in the paper. Simulations show the usefulness of this measure in determining
the lag structure of these models.

[42] look at another measure of nonlinear dependence based on the normalised Bhattacharya–
Matusita–Hellinger dependence measure. They demonstrate its connection with yet an-
other dependence measure: the copula. This measure is also computed using kernel es-
timation. These authors examine its performance using the same set of models as [41]
and find it fully satisfactory. In addition they consider chaos in the form of the logistic
map. They find that linear autocorrelation estimates do not indicate any dependence in
the series generated by the logistic map, which agrees with the results in [57]. On the
contrary, their dependence measure provides strong evidence against independence. More
discussion on nonlinear dependence can be found in [73], Chapter 4.

[1] were the first econometricians to examine common nonlinear features in multiple
equation systems. [47] extend the definition of common features to distributions and apply
copulas to investigate the nonlinear dependence of consumption and income on the business
cycle. Their results ’give some support to the claim that the impact of the business cycle
on the joint distribution of consumption and income is through the marginal distributions
and not through their dependence structure’. This makes the business cycle a ’common
factor in distribution’ for consumption and income.

Finally, it should be mentioned that Granger has always been very interested in trends.
In [23] he considers models that generate linear or nonlinear trends. In [36] the authors
look at both stochastic and deterministic nonlinear trends related to growth processes. The
paper [79], written jointly with Hal White, contains a wealth of information on trends:
history, definitions, generating mechanisms, estimation, forecasting and so on. Anyone
interested in trends cannot afford to miss it.

9. Final remarks

This paper allows a glimpse on the large amount of work Clive Granger has done in
the area of nonlinear models and modelling. An attempt is made to describe a few of
the new ideas related to nonlinearity that Granger has produced over the years. Many of
them can be pursued further, and it is hoped that this will be the case in the future.
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