EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 4, 2017, 916-928
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

On the Lattice of Convex Sublattices of $S\left(B_{n}\right)$ and $S\left(C_{n}\right)$

G. Sheeba Merlin ${ }^{1, *}$, A. Vethamanickam ${ }^{2}$
${ }^{1}$ Department of Mathematics, Karunya University, Coimbatore, India
${ }^{2}$ Department of Mathematics, Rani Anna College for Women, Tirunelveli, India

Abstract

In this paper we prove that $C S\left[S\left(B_{n}\right)\right]$ and $C S\left[S\left(C_{n}\right)\right]$ are Eulerian lattices under the set inclusion relation but they are neither simplicial nor dual simplicial.

2010 Mathematics Subject Classifications: 06A06, 06A07, 06B10
Key Words and Phrases: Lattices, Convex Sublattices, Dual Simplicial Lattices, Eulerian Lattices

1. Introduction

The study of lattice of convex sublattices of a lattice was started by K. M. Koh[3], in the year 1972. He investigated the internal structure of a lattice L, in relation to $C S(L)$, like so many other authors for various algebraic structures such as groups, Boolean algebras, directed graphs and so on.

In [3], several basic properties of $C S(L)$ have been studied where one of the results proved is "If L is complemented then $C S(L)$ is complemented". Also, the connection of the structure of $C S(L)$ with those of the ideal lattice $I(L)$ and the dual ideal lattice $D(L)$ are examined by K. M. Koh. He also derived the best lower bound and upper bound for the cardinality of $C S(L)$, where L is finite. In a subsequent paper[1], Chen C. K., Koh K. M., proved that

$$
C S(L \times K) \cong[(C S(L)-\{\emptyset\}) \times(C S(K)-\{\emptyset\})] \cup\{\emptyset\} .
$$

Finally they proved that when L is a finite lattice and $C S(L) \cong C S(M)$ and if L is relatively complemented(complemented) then M is relatively complemented(complemented). This is true for Eulerian lattices, since an Eulerian lattice is relatively complemented. These results gave motivation for us to look into the connection between L and $C S(L)$ for Eulerian lattices which are a class of lattices not defined by identities. A construction of a new Eulerian lattice $S\left(B_{n}\right)$ from a Boolean algebra B_{n} of rank n is found in the thesis
*Corresponding author.
Email addresses: sheebamerlin@karunya.edu (G. Sheeba Merlin), dr_vethamanickam@yahoo.co.in (A. Vethamanickam)
of V. K. Santhi in $1992[11]$. In 2012, Subbarayan had proved in his paper that the lattice of convex sublattices of a boolean algebra B_{n}, of rank $n, C S\left(B_{n}\right)$ with respect to the set inclusion relation is a dual simplicial Eulerian lattice.

In this paper, we are going to look at the similar structure of $C S\left(S\left(B_{n}\right)\right)$. $S\left(B_{4}\right)$ is shown in the following diagram.

Figure 1: $S\left(B_{2}\right)$

Figure 2: $S\left(B_{4}\right)$

2. Preliminaries

Throughout this section $C S(L)$ is equipped with the partial order of set inclusion relation.

Definition 2.1. A finite graded poset P is said to be Eulerian if its Möbius function assumes the value $\mu(x, y)=(-1)^{l(x, y)}$ for all $x \leq y$ in P, where $l(x, y)=\rho(y)-\rho(x)$ and ρ is the rank function on P.

An equivalent definition for an Eulerian poset is as follows:
Lemma 2.2. [5] A finite graded poset P is Eulerian if and only if all intervals $[x, y]$ of length $l \geq 1$ in P contain an equal number of elements of odd and even rank.

Example 2.3. Every Boolean algebra of rank n is Eulerian and the lattice C_{4} of Figure 2 is an example for a non-modular Eulerian lattice.

Also, every C_{n} is Eulerian for $n \geq 4$.

Figure 3: Non-modular Eulerian lattice

Lemma 2.4. [12] If L_{1} and L_{2} are two Eulerian lattices then $L_{1} \times L_{2}$ is also Eulerian.
We note that any interval of an Eulerian lattice is Eulerian and an Eulerian lattice cannot contain a three element chain as an interval.

Definition 2.5. A poset P is called Simplicial if for all $t \neq 1 \in P,[0, t]$ is a Boolean algebra and P is called Dual Simplicial if for all $t \neq 0 \in P,[t, 1]$ is a Boolean algebra.

Lemma 2.6. [1] Let L and K be any two lattices. Then

$$
C S(L \times K) \cong[(C S(L)-\{\emptyset\}) \times(C S(K)-\{\emptyset\})] \cup\{\emptyset\} .
$$

Lemma 2.7. [14] Let B_{n} be a Boolean lattice of rank n. Then $C S\left(B_{n}\right)$ is a dual simplicial Eulerian lattice.

3. Convex Sublattices of $S\left(B_{n}\right)$

Theorem 3.1. The lattice of convex sublattices of $S\left(B_{n}\right), C S\left(S\left(B_{n}\right)\right)$ with respect to the set inclusion relation is an Eulerian lattice.

Proof. It is clear that the rank of $\operatorname{CS}\left(S\left(B_{n}\right)\right)$ is $n+2$.
We are going to prove that $C S\left(S\left(B_{n}\right)\right)$ is Eulerian.
That is, to prove that this interval $\left[\emptyset, B_{n}\right]$ has the same number of elements of odd and even rank.

Figure 4: $C S\left[S\left(B_{2}\right)\right]$
Let A_{i} be the number of elements of rank i in $C S\left(S\left(B_{n}\right)\right)$.

$$
\begin{align*}
A_{1}= & \text { The number of singleton subsets of } C S\left[S\left(B_{n}\right)\right] \\
= & 2+n+2+2 n+\binom{n}{2}+2\binom{n}{2}+\binom{n}{3}+2\binom{n}{3}+\binom{n}{4} \\
& +\ldots+2\binom{n}{n-2}+\binom{n}{n-1}+2\binom{n}{n-1} \\
= & 2+\binom{n}{1}+2\binom{n}{0}+2\binom{n}{1}+\binom{n}{2}+2\binom{n}{2}+\binom{n}{3} \\
& +2\binom{n}{3}+\binom{n}{4}+\ldots+2\binom{n}{n-2}+\binom{n}{n-1}+2\binom{n}{n-1} \tag{1}
\end{align*}
$$

$A_{2}=$ The number of rank 2 elements in $C S\left(S\left(B_{n}\right)\right)$
$=$ The number of edges in $S\left(B_{n}\right)$
$=$ number of edges containing $0+$ number of edges containing the atoms + number of edges from the rank 2 elements $+\ldots+$ number of edges containing the coatoms of $S\left(B_{n}\right)$.

$$
\begin{equation*}
=n+2 \tag{2}
\end{equation*}
$$

$$
\text { Number of edges containing an extreme atom } \quad=n
$$

There are 2 such extreme atoms. Therefore total number of such edges $=2\binom{n}{1}$.
From an atom of a middle copy, the number of edges $=n-1+2=n+1$.
There are n such atoms.
Therefore total number of such type of edges $=n(n+1)$.
Totally from the atoms, the number of edges is equal to

$$
\begin{equation*}
2\binom{n}{1}+\binom{n}{1}(n+1) \tag{3}
\end{equation*}
$$

Number of edges from a rank 2 element in an extreme copy $=n-1$.
There are $2 n$ such elements.
Therefore the number of edges from these elements $=2\binom{n}{1}(n-1)$.
The number of edges from the rank 2 elements in the middle copy $=\binom{n}{2} \times(n-$ $2+2)=\binom{n}{2} \times n$.

The total number of edges from rank 2 elements is

$$
\begin{equation*}
2\binom{n}{1}(n-1)+\binom{n}{2} \times n \tag{4}
\end{equation*}
$$

The number of edges from the rank 3 elements in the middle copy is $n-3+2=n-1$. There are $\binom{n}{3}$ such elements.
Therefore the number of edges from the rank 3 elements in the middle copy $=\binom{n}{3}(n-1)$.

The number of edges from a rank 3 element in an extreme copy is $n-2$.
There are $2\binom{n}{2}$ such elements.
Therefore number of edges from rank 3 elements in the extreme copies $=2\binom{n}{2}(n-$ 2).

Therefore total number of edges from rank 3 elements of $C S\left(S\left(B_{n}\right)\right)$ is

$$
\begin{equation*}
2\binom{n}{2}(n-2)+\binom{n}{3}(n-1) \tag{5}
\end{equation*}
$$

Proceeding like this we get the number of edges from the co-atoms $=2 n=2\binom{n}{n-1}(n-\overline{n-1})$

From (2), (3), (4) and (5), the total number of edges in $S\left(B_{n}\right)$ is

$$
\begin{align*}
A_{2}=n+2+2\binom{n}{1} & +\binom{n}{1}(n+1)+2\binom{n}{1}(n-1) \\
& +\binom{n}{2} n+\binom{n}{3}(n-1)+2\binom{n}{2}(n-2) \\
& +\ldots+2\binom{n}{n-1}(n-\overline{n-1}) \\
= & 2+\binom{n}{1}+2\binom{n}{1}+\binom{n}{1}(n+2-1) \\
& +2\binom{n}{1}(n-1)+\binom{n}{2}(n+2-2)+2\binom{n}{2}(n-2) \\
& +\binom{n}{3}(n+2-3)+\ldots+2\binom{n}{n-1}(n-\overline{n-1}) \tag{6}
\end{align*}
$$

$A_{3}=$ The number of 4-element sublattices.
The number of 4 -element sublattices from $0=2\binom{n}{1}+\binom{n}{2}$.
Fix an atom $a \in S\left(B_{n}\right)$.
If a is the bottom element of the left copy of $S\left(B_{n}\right)$ then $[a, 1] \simeq B_{n}$.
Therefore the number of B_{2} 's containing a is $\binom{n}{2}$.
Similarly the number of B_{2} 's containing the bottom element of the right copy is $\binom{n}{2}$.
If a is in the middle copy of $S\left(B_{n}\right)$ then $[a, 1] \simeq S\left(B_{n-1}\right)$.
In this $S\left(B_{n-1}\right)$, we have two extreme copies and a middle copy.
Therefore the number of B_{2} 's containing a is $2(n-1)+\binom{n-1}{2}$.
There are $\binom{n}{1}$ such atoms. Therefore the total number of B_{2} 's containing all the atoms in the middle copy is

$$
\binom{n}{1}\left[2(n-1)+\binom{n-1}{2}\right] .
$$

Therefore the number of B_{2} 's containing all the atoms of $S\left(B_{n}\right)$ is

$$
\begin{equation*}
2\binom{n}{2}+\binom{n}{1}\left[2(n-1)+\binom{n-1}{2}\right] \tag{8}
\end{equation*}
$$

Fix a rank 2 element x in $S\left(B_{n}\right)$. If x is in the left copy of $S\left(B_{n}\right)$, we have,

$$
[x, 1] \simeq B_{n-1}
$$

A B_{2} containing x emanates from a rank 2 element in that B_{n-1}.
There are $\binom{n-1}{2}$ rank 2 elements in B_{n-1}.
Therefore the number of B_{2} 's containing x in the left copy is $\binom{n-1}{2}$.
There are n such rank 2 elements x in the left copy.
The number of B_{2} 's in the left copy containing all the rank 2 elements is $\binom{n-1}{2} n$.
Similarly the same number in the right copy.
If x is in the middle copy of $S\left(B_{n}\right)$, then

$$
[x, 1] \simeq S\left(B_{n-2}\right) .
$$

The number of B_{2} 's containing x in the left copy of that $S\left(B_{n-2}\right)$ is $n-2$. Similarly the number in the right copy is $n-2$.

Come to the middle copy $\simeq B_{n-2}$. Therefore the number of B_{2} 's containing x in the middle copy of that $S\left(B_{n-2}\right)$ is $\binom{n-2}{2}$.

Therefore the total number of B_{2} 's containing x in this $S\left(B_{n-2}\right)$ is $2(n-2)+\binom{n-2}{2}$.
There are $\binom{n}{2}$ such x 's. Therefore the total number of B_{2} 's containing all the rank 2 elements in the middle copy is

$$
\begin{equation*}
\binom{n}{2}\left[2(n-2)+\binom{n-2}{2}\right]+2\binom{n}{1}\binom{n-1}{2} . \tag{9}
\end{equation*}
$$

Fix a rank 3 element x of $S\left(B_{n}\right)$. If x is in the left copy of $S\left(B_{n}\right)$, then

$$
[x, 1] \simeq B_{n-2} .
$$

A B_{2} containing x emanates from a rank 4 element in that B_{n-2}.
Therefore the number of B_{2} 's containing x in the left copy of $S\left(B_{n}\right)$ is $\binom{n}{2}\binom{n-2}{2}$.

Similarly to the right copy.
Come to the middle copy. If x is in the middle copy of $S\left(B_{n}\right)$, then

$$
\therefore[x, 1] \simeq S\left(B_{n-3}\right) .
$$

In this $S\left(B_{n-3}\right)$ we have to calculate the number of B_{2} 's containing x.
The number of B_{2} 's containing x in the left copy of $S\left(B_{n-3}\right)$ is $n-3$.
Similarly the number in the right copy of this $S\left(B_{n-3}\right)$ is $n-3$.
The number of B_{2} 's containing x in the middle copy of this $S\left(B_{n-3}\right)$ is $\binom{n-3}{2}$.

Therefore, the number of B_{2} 's in this $S\left(B_{n-2}\right)$ containing x is $2(n-3)+\binom{n-3}{2}$.
There are $\binom{n}{3}$ such rank 3 elements in x in the middle copy of $S\left(B_{n}\right)$.
Therefore the total number of B_{2} 's containing x in $S\left(B_{n}\right)$ is

$$
\binom{n}{3}\left[2(n-3)+\binom{n-3}{2}\right] .
$$

Therefore the total number of B_{2} 's containing all the rank 3 elements is

$$
\begin{equation*}
2\binom{n}{2}\binom{n-2}{2}+\binom{n}{3}\left[2(n-3)+\binom{n-3}{2}\right] \tag{10}
\end{equation*}
$$

Continuing like this, we get, the number of B_{2} 's containing all the rank $(n-2)$ elements in $S\left(B_{n}\right)$ is

$$
\begin{equation*}
2\binom{n}{n-3} \times 3+\binom{n}{n-2} \times 4 \tag{11}
\end{equation*}
$$

The number of B_{2} 's containing rank $(n-1)$ elements is

$$
\begin{equation*}
2\binom{n}{n-2}+\binom{n}{n-1} \tag{12}
\end{equation*}
$$

From (7), (8), (9), (10), (11) and (12) we get,

$$
\begin{aligned}
A_{3}=2\binom{n}{1} & +\binom{n}{2}+2\binom{n}{2}+\binom{n}{1}\left[2(n-1)+\binom{n-1}{2}\right] \\
& +\binom{n}{2}\left[2(n-2)+\binom{n-2}{2}\right]+2\binom{n}{1}\binom{n-1}{2} \\
+ & 2\binom{n}{2}\binom{n-2}{2}+\binom{n}{3}\left[2(n-3)+\binom{n-3}{2}\right]+\ldots \\
& +2\binom{n}{n-3} \times 3+\binom{n}{n-2} \times 4+2\binom{n}{n-2}+\binom{n}{n-1} .
\end{aligned}
$$

That is,

$$
\begin{array}{r}
A_{3}=2\binom{n}{1}+\binom{n}{2}+2\binom{n}{2}+2\binom{n}{1}\binom{n-1}{1}+\binom{n}{1}\binom{n-1}{2} \\
+2\binom{n}{1}\binom{n-1}{2}+2\binom{n}{2}\binom{n-2}{1}+\binom{n}{2}\binom{n-2}{2} \\
+2\binom{n}{2}\binom{n-2}{2}+2\binom{n}{3}\binom{n-3}{1}+\binom{n}{3}\binom{n-3}{2} \\
+\ldots+2\binom{n}{n-2}+\binom{n}{n-1} . \tag{13}
\end{array}
$$

Similar argument will give,
$A_{4}=$ the number of rank 3 sublattices.

$$
\begin{aligned}
A_{4}=\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{1} & {\left[2\binom{n-1}{2}+\binom{n-1}{3}\right] } \\
& +\binom{n}{2}\left[2\binom{n-2}{2}+\binom{n-2}{3}\right]+2\binom{n}{2}\binom{n-2}{3} \\
& +2\binom{n}{1}\binom{n-1}{3}+\binom{n}{3}\left[2\binom{n-3}{2}+\binom{n-3}{3}\right] \\
& +\ldots+2\binom{n}{n-3}+\binom{n}{n-2} .
\end{aligned}
$$

That is,

$$
\begin{array}{r}
A_{4}=2\binom{n}{2}+\binom{n}{3}+2\binom{n}{2}+2\binom{n}{1}\binom{n-1}{2}+\binom{n}{1}\binom{n-1}{3} \\
+2\binom{n}{1}\binom{n-1}{3}+2\binom{n}{2}\binom{n-2}{2}+\binom{n}{2}\binom{n-2}{3} \\
+2\binom{n}{2}\binom{n-2}{3}+2\binom{n}{3}\binom{n-3}{2}+\binom{n}{3}\binom{n-3}{3} \\
+\ldots+2\binom{n}{n-3}+\binom{n}{n-2} . \tag{14}
\end{array}
$$

$A_{5}=$ the number of rank 4 sublattices.

$$
\begin{array}{r}
A_{5}=2\binom{n}{3}+\binom{n}{4}+2\binom{n}{4}+2\binom{n}{1}\binom{n-1}{3}+\binom{n}{1}\binom{n-1}{4} \\
+2\binom{n}{1}\binom{n-1}{4}+2\binom{n}{2}\binom{n-2}{3}+\binom{n}{2}\binom{n-2}{4} \\
\\
+2\binom{n}{2}\binom{n-2}{4}+2\binom{n}{3}\binom{n-3}{3}+\binom{n}{3}\binom{n-3}{4} \tag{15}\\
+\ldots+2\binom{n}{n-4}+\binom{n}{n-3}
\end{array}
$$

and so on.
Finally, we get

$$
\begin{gather*}
A_{n}=2\binom{n}{n-2}+\binom{n}{n-1}+2\binom{n}{n-1}+2\binom{n}{1}\binom{n-1}{n-2} . \tag{16}\\
A_{n+1}=2\binom{n}{n-1}+(n+2) \tag{17}
\end{gather*}
$$

C ase (i): Suppose n is even.

$$
\left.\begin{array}{rl}
A_{1} & -A_{2}+A_{3}-A_{4}+\ldots+A_{n+1} \\
= & \binom{n}{0}[2+2-2]+\binom{n}{1}\left[1+2-1-2-n-2+1-2\binom{n-1}{1}+2\right. \\
& +2\binom{n-1}{1}+\binom{n-1}{2}+2\binom{n-1}{2}-2\binom{n-1}{2}-\binom{n-1}{3} \\
& -2\binom{n-1}{3}+2\binom{n-1}{3}+\binom{n-1}{4}+2\binom{n-1}{4}+\ldots \\
& \left.+\binom{n-1}{n-1}\right]+\binom{n}{2}\left[1+2-n-2+2\binom{n-2}{1}+1+2+2\binom{n-2}{1}\right. \\
& +\binom{n-2}{2}+2\binom{n-2}{2}-2-2\binom{n-2}{2}-\binom{n-2}{3}-2\binom{n-2}{3} \\
& \left.+2\binom{n-2}{3}+\binom{n-2}{4}+2\binom{n-2}{4}+\ldots+\binom{n-2}{n-2}\right]+\binom{n}{3}[1 \\
& +2-n-2+3+2\binom{n-3}{1}+\binom{n-3}{2}-1-2-2\binom{n-3}{2}+2 \\
n \\
n-3 \\
n-1
\end{array}\right)[1+2-2 .
$$

C ase ($i i$): Suppose n is odd.

$$
\begin{aligned}
& A_{1}-A_{2}+A_{3}-A_{4}+\ldots-A_{n+1} \\
&=\binom{n}{0}[2+2-2]+\binom{n}{1}\left[1+2-1-2-n-2+1-2\binom{n-1}{1}+2\right. \\
&+2\binom{n-1}{1}+\binom{n-1}{2}+2\binom{n-1}{2}-2\binom{n-1}{2}-\binom{n-1}{3} \\
&-2\binom{n-1}{3}+2\binom{n-1}{3}+\binom{n-1}{4}+2\binom{n-1}{4}+\ldots \\
&\left.+\binom{n-1}{n-1}\right]+\binom{n}{2}\left[1+2-n-2+2\binom{n-2}{1}+1+2+2\binom{n-2}{1}\right. \\
&+\binom{n-2}{2}+2\binom{n-2}{2}-2-2\binom{n-2}{2}-\binom{n-2}{3}-2\binom{n-2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+2\binom{n-2}{3}+\binom{n-2}{4}+2\binom{n-2}{4}+\ldots+\binom{n-2}{n-2}\right]+\binom{n}{3}[1 \\
& +2-n-2+3+2\binom{n-3}{1}+\binom{n-3}{2}-1-2-2\binom{n-3}{2}+2 \\
& \left.-\binom{n-3}{3}+1+2\binom{n-3}{3}+\binom{n-3}{n-3}\right]+\ldots-\binom{n}{n-1}[1+2-2 \\
& \left.-1+1-1-2+2-\binom{n-\overline{n-1}}{n-\overline{n-1}}\right]-\binom{n}{n}[2] \\
= & 2\left[\binom{n}{0}+\binom{n}{2}+\ldots+\binom{n}{n-1}\right]-\left[\binom{n}{1}+\binom{n}{2}+\ldots\right. \\
= & \left.+\binom{n}{n-1}\right] \\
= & 0 .
\end{aligned}
$$

Hence the interval $\left[\emptyset, S\left(B_{n}\right)\right]$ has the same number of elements of odd and even rank.
Though in the above theorem we have proved that $\operatorname{CS}\left(S\left(B_{n}\right)\right)$ is Eulerian, it is not dual simplicial. For example, $C S\left(S\left(B_{2}\right)\right)$ itself is not dual simplicial. For a general nonBoolean Eulerian lattice it seems difficult to decide the structure, but for C_{n} we give the proof in the next section.

4. Convex Sublattices of $S\left(C_{n}\right)$

Theorem 4.1. The lattice of convex sublattices of $S\left(C_{n}\right)$ with respect to the set inclusion relation is an Eulerian lattice.

Proof. We are going to prove that $C S\left(S\left(C_{n}\right)\right)$ is Eulerian. That is to prove the interval [5, $S\left(C_{n}\right)$] has the same number of elements of odd and even rank.

Let A_{i} be the number of elements of rank i in $C S\left(S\left(C_{n}\right)\right.$).

$$
\begin{align*}
A_{1} & =\text { The number of singleton subsets of } C S\left(S\left(C_{n}\right)\right) \\
& =1+n+2+3 n+2 n+1 \\
& =6 n+4 \tag{18}\\
A_{2} & =\text { The number of rank } 2 \text { elements in } C S\left(S\left(C_{n}\right)\right) \\
& =2+n+2 n+4 n+4 n+2 n+2 n \\
& =15 n+2 . \tag{19}
\end{align*}
$$

$$
A_{3}=\text { The number of 4-element sublattices }
$$

Figure 5: $S\left(C_{5}\right)$

$$
\begin{align*}
& =2 n+n+2 n+2 n+2 n+2 n+n \\
& =12 n \tag{20}
\end{align*}
$$

$$
\begin{align*}
A_{4} & =\text { The number of rank } 3 \text { sublattices } \\
& =2 n+n+2 \\
& =3 n+2 \tag{21}
\end{align*}
$$

Therefore,

$$
A_{1}-A_{2}+A_{3}-A_{4}=6 n+4-15 n-2+12 n-3 n-2=0
$$

Hence the interval $\left[5, S\left(C_{n}\right)\right]$ has a same number of elements of odd and even rank.

References

[1] Chen C. K., Koh K. M., On the lattice of convex sublattices of a finite lattice, Nanta Math., 5 (1972), 92-95.
[2] Gratzer G., General Lattice Theory, Birkhauser Verlag, Basel, 1978.
[3] Koh K. M., On the lattice of convex sublattices of a finite lattice, Nanta Math., 5 (1972), 18-37.
[4] Lavanya S., Parameshwara Bhatta S., A new approach to the lattice of convex sublattices of a lattice, Algebra Univ., 35 (1996), 63-71.
[5] Paffenholz A., Constructions for Posets, Lattices and Polytopes, Doctoral Dissertation, School of Mathematics and Natural Sciences, Technical University of Berlin, (2005).
[6] Ramana Murty P. V., On the lattice of convex sublattices of a lattice, Southeast Asian Bulletin of Mathematics, 26 (2002), 51-55.
[7] Rota C. G., On the foundations of Combinatorial theory I, Theory of Mobius functions, Z. Wahrschainlichkeitstheorie, 2 (1964), 340-368.
[8] Stanley R.P., Some aspects of groups acting on finite posets, J. Combinatoria theory, A. 32 (1982), 131-161.
[9] Stanley R.P., A survey of Eulerian posets, Polytops: abstract, convex and computational, Kluwer Acad. Publi., Dordrecht, (1994), 301-333.
[10] Stanley R.P., Enumerative Combinatorics, Woodsworth \& Brooks, Cole, Vol 1, 1986.
[11] Santhi V. K., Topics in Commutative Algebra, Ph. D thesis, Madurai Kamaraj University, 1992.
[12] Vethamanickam A., Topics in Universal Algebra, Ph. D thesis, Madurai Kamaraj University, 1994.
[13] Vethamanickam A., Subbarayan R., Some simple extensions of Eulerian lattices, Acta Math. Univ., Comenianae, 79(1) (2010), 47-54.
[14] Subbarayan R., Vethamanickam A., On the lattice of convex sublattices, Elixir Dis. Math., Comenianae, 50 (2012), 10471-10474.

