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Abstract. Differential equations involving causal operators is an area of research that unifies
many types of mathematical models such as ordinary differential equations, integro differential
equations, delay differential equations and so on. Also, Stability in terms of two measures is
another concept that unifies various types of stability. It has been observed that set differential
equations generalizes ordinary differential equations (ODEs) and the study of ODEs can be done
in semilinear metric space. In this paper, combining all the fore mentioned notions an attempt is
made to obtain stability results in terms of two measures for set differential equations involving
causal operators.
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1. Introduction

During the past couple of decades the theory of set differential equations attracted
the attention of many researchers and much of the basic theory is given in [ 9 ]. Some
of the papers dealing with stability of set differential equations are [ 7, 5 ]. The reason
for the continued interest in this area of research is that studying differential equations in
metric space is gaining attention and also for the following reasons: the base space Kc(Rn),
consisting of all compact convex subsets of Rn endowed with Hausdorff metric, is a semi
linear metric space. If the Hukuhara derivative and the Hukuhara integral are restricted
to R they become the conventional derivative and integral and one can observe that the
theory of ordinary differential equations (ODE’s) can be developed in a semi linear metric
space. Similarly when we restrict to Rn, then the theory of vector differential equations can
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be studied in a semi linear space. Further, it is useful in studying multi valued inclusions
and also is related to fuzzy differential equations. Also, one can observe that the solution
U(t) of the set differential equation has the interesting nature that as time increases the
diameter of U(t) is non decreasing. It has been observed that this is due to the fact that,
in the generation of the set differential equation (SDE) from an ODE, certain undesirable
elements may enter the solution U(t) and hence the norm used may not be suitable to
develop stability without some adjustment. Therefore while studying the stability theory
for SDE’s the concept of Hukuhara difference in the initial values was introduced in [ 11
] so as to see that the properties of the solutions of the ODE’s are preserved to a certain
extent in the SDE. For a detailed description through an example see [ 11 ].

The stability theory via the Lyapunov function has been extensively studied and is
applied in various models due to the fact that the Lyapunov function helps to study the
qualitative behavior of the solution without knowing the solution.

Of late it has been observed that the Lyapunov function can be utilized to construct
simpler scalar differential equations to study complex systems. Also, Lyapunov function
can be used as a generalized distance and can be utilized to study the qualitative and
quantitative behavior of solutions of differential equations.

Owing to the developments in the study of many physical phenomena, new concepts
of stability such as partial stability, practical stability, eventual stability have been intro-
duced. All these developments posed the question of unifying all the definitions under one
set up. This lead to the introduction of stability theory in terms of two measures [ 10 ].

The notion of causal operators has been introduced by Tonneli [ 1 ]. A causal operator
or a non anticipative operator is an operator whose prior information or memory is known
till the present time ’t’. Ordinary differential equations, delay differential equations, inte-
gro differential equations, impulsive differential equations etc. are some of the differential
equations involving causal operators. The unifying character of the causal operator makes
it an interesting topic of study. In [ 2, 3, 4 ] the mathematical model of SDE involving
causal operator with memory was introduced. The existence and uniqueness results, com-
parison theorems and stability results has been studied. Much of the basic theory has
been established in [ 8 ].

In this paper an attempt has been made to combine all the above set ups and de-
velop some stability results in two measures for set differential equations involving causal
operators.

2. Preliminaries

In this section, we begin with the definition of Hausdorff metric, Hukuhara difference
and proceed to define the semi metric space Kc(Rn). Next we proceed to define the
Hukuhara derivative, Hukuhara integral and a partial order in Kc(Rn) [ 9 ]. Further, we
state some important properties that are useful tools in establishing our main results.

Let Kc(Rn) denote the collection of all nonempty, compact and convex subsets of Rn.
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We define the Hausdorff metric by

D[A,B] = max[ sup
x∈B

d(x,A), sup
y∈A

d(y,B) ], (1)

where d(x,A) = inf[d(x, y) : y ∈ A], A and B are bounded sets in Rn. We note that
Kc(Rn) with this metric is a complete metric space. It is known that if the space Kc(Rn)
is equipped with the natural algebraic operations of addition and non-negative scalar
multiplication, then Kc(Rn) becomes a semi linear metric space which can be embedded
as a complete cone into a corresponding Banach space. The Hausdorff metric (1) satisfies
the following properties:

D[A+ C,B + C] = D[A,B] and D[A,B] = D[B,A], (2)

D[λA, λB] = λD[A,B], (3)

D[A,B] ≤ D[A,C] +D[C,B], (4)

for all A,B,C ∈ Kc(Rn) and λ ∈ R+.
Let A,B ∈ Kc(Rn). The set C ∈ Kc(Rn) satisfying A = B + C is known as the

Hukuhara difference of the sets A and B and is denoted by the symbol A − B. We say
that the mapping F : I → Kc(Rn) has a Hukuhara derivative DHF (t0) at a point t0 ∈ I,
if

lim
h→0+

F (t0 + h)− F (t0)

h
and lim

h→0+

F (t0)− F (t0 − h)

h

exist in the topology of Kc(Rn) and are equal to DHF (t0). Here I is any interval in R.
With these preliminaries, we consider the IVP for set differential equation

DHU = F (t, U), U(t0) = U0 ∈ Kc(Rn), t0 ≥ 0, (5)

where F ∈ C[R+ ×Kc(Rn),Kc(Rn)].

The mapping U ∈ C1[J, Kc(Rn)], J = [t0, t0 + a] is said to be a solution of IVP (5)

on J if it satisfies (5) on J .
Since U(t) is continuously differentiable, we have

U(t) = U0 +

∫ t

t0

DHU(s)ds, t ∈ J. (6)

Hence, we can associate with the IVP (5) the Hukuhara integral

U(t) = U0 +

∫ t

t0

F (s, U(s))ds, t ∈ J. (7)

where the integral is the Hukuhara integral which is defined as,∫
F (s)ds = {

∫
f(s)ds : f is any continuous selector of F}



Ch. A. Naidu,̧ D. B. Dhaigude, J. V. Devi / Eur. J. Pure Appl. Math, 10 (4) (2017), 645-654 648

Observe also that U(t) is a solution of IVP (5) on J iff it satisfies (7) on J.
We now proceed to define a partial order in the metric space (Kc(Rn), D). We begin

with the definition of a cone in this set up.

Let K(Ko) be the subfamily of Kc(Rn) consisting of set U ∈ Kc(Rn) such that any
u ∈ U is a non-negative (positive) vector of n components satisfying ui ≥ 0 (ui > 0) for
i=1...n. Then K is a cone in Kc(Rn) and K0 is the nonempty interior of K.

Definition 1. For any U and V ∈ Kc(Rn), if there exists Z ∈ Kc(Rn) such that Z ∈
K(K0) and U = V + Z then we say that U ≥ V (U > V ). Similarly we can define
U ≤ V (U < V ).

To introduce the causal operator [ 9, 10, 8 ] which is also known as a non anticipative
operator we first introduce the following notation and notion.
Let E = C[[t0, T ],Kc(Rn)], We define a norm D0 : E ×E → R+ as follows: for U, V ∈ E,

D0[U, V ] = sup
t0≤t≤T

D[U(t), V (t)] (8)

where D is the Hausdorff metric.

Definition 2. By a causal operator or a Volterra operator or a nonanticipative operator
we mean a mapping Q: E → E satisfying the property that

if U(s) = V (s), t0 ≤ s ≤ t < T then (QU)(s) = (QV )(s), t0 ≤ s ≤ t < T.

To develop the stability results in terms of two measures we need new concepts that
are introduced in [ 5 ], which we present below.

K = {a ∈ C[R+,R+] : a(u) is strictly increasing in u and a(0) = 0}

L = {σ ∈ C[R+,R+], σ(u) is strictly decresing in u and limu→∞ σ(u) = 0}

CK = {a ∈ C[R2
+,R+], a(t, s) ∈ K for each t and a(t, s) is continious for each s}

Γ = {h ∈ C[R+ ×Kc(Rn),R+] : inf
(t,U)

h(t, U) = 0}

Γ0 = {h ∈ Γ : inf
U

h(t, U) = 0, for each t ∈ R+}

We next give the definitions that must be satisfied by a function V when the notion of
two measures is involved, thus introducing a Lyapunov like function. Let V ∈ C[R+ ×
Kc(Rn), R+], then V is said to be

Definition 3. h-Positive definite if there exists a ρ > 0 and a function b ∈ K such that
b(h(t, U)) ≤ V (t, U), whenever h(t, U) < ρ.
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Definition 4. h-decrescent if there exists a ρ > 0 and a function a ∈ K such that V (t, U) ≤
a(h(t, U)), whenever h(t, U) < ρ.

Definition 5. h- weakly decrescent if there exists a ρ > 0 and a function a ∈ CK such
that V (t, U) ≤ a(t, h(t, U)), whenever h(t, U) < ρ.

Let h0, h ∈ Γ, Then we say that

Definition 6. h0 is finer than h if there exists a ρ > 0 and a function φ ∈ CK such that
h0(t, U) ≤ ρ implies h(t, U) ≤ φ(t, h0(t, U)).

Definition 7. h0 is uniformly finer than h if φ is independent of t in the above definition.

3. Stability Results

In this section, we develop the stability results for set differential equations involving
causal operators given by

DHU = (QU)(t) U(t0) = U0, (9)

where Q ∈ C[E,E] is a causal operator E = C[J,Kc(Rn)], and J=[0,T].
We assume that the operator Q is smooth enough to gaurantee existence, uniqueness of
solutions and continuous dependence of solutions U(t) = U(t, t0, U0) of (9) with respect
to the initial values.

Now we state from [ 10 ] the various stability concepts for the system (9) in terms of
two measures h0, h ∈ Γ.

Assume that the system (9) admits the trivial solution U(t) = θ through (t0, θ), then
the differential system (9) is

Definition 8. (h0, h)−equi stable if for each ε > 0, t0 ∈ R+, there exists a positive
function δ = δ(t0, ε) that is continuous in t0 for each ε such that

h0(t0, U0) < δ ⇒ h(t, U(t)) ≤ ε, t ≥ t0,

where U(t, t0, U0) is any solution of (9).

Definition 9. (h0, h)− uniformly stable if the δ in Definition 8 is independent of t0.

Definition 10. (h0, h)− equi attractive, if for each ε > 0, t0 ∈ R+, there exists a positive
constant δ0 = δ(t0) and T = T (t0, ε) such that

h0(t0, U0) < δ0 ⇒ h(t, U(t)) < ε, t ≥ t0 + T.

.

Definition 11. (h0, h)− uniformly attractive, if Definition 10 holds with δ0 and T being
independent of t0.
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Definition 12. (h0, h)− equi asymptotically stable if the Definition 8 and Definition 10
hold simultaneously.

Definition 13. (h0, h)− uniformly asymptotically stable if the Definition 9 and Definition
11 hold simultaneously.

In order to use the method of Lyapunov function, it is necessary to select minimal
subset of E over which the derivative of the Lyapunov function can be conveniently esti-
mated. To define this set, we consider
V ∈ C[R+ ×Bb,R+], where Bb = B(θ, b) = {U ∈ Kc(Rn) : D[U, θ] ≤ b}

E1 = {U ∈ E;V (s, U(s)) ≤ V (t, U(t)), t0 ≤ s ≤ t},

where V ∈ C[R+ ×Kc(Rn), R+] is a Lyapunov function.
In order to discuss the stability properties of (9) let us assume that the solutions of (9)

exist and are unique for all t ≥ t0. In addition, in order to match the behavior of solutions
of (9) with those of the corresponding ordinary differential equations with causal map, we
assume that U0 = V0+W0 so that Hukuhara difference U0−V0 = W0 exists. Consequently,
in what follows, we consider the solutions U(t) = U(t, t0, U0 − V0) = U(t, t0,W0) . Hence
we have the initial value problem.

DHU = (QU)(t) U(t0) = W0, where U0 = V0 +W0 (10)

This idea is clearly explained with example in the paper [ 7 ].
Now we will state the comparison result, which is analogous to the comparison result in [
6 ].

Theorem 1. Suppose that the following hypotheses hold
(i) V ∈ C[R+ ×Kc(Rn),R+], V(t,U) is locally Lipschitzian in U,
(ii) for t ≥ t0 and U ∈ E1,

D+V (t, U(t)) ≤ g(t, V (t, U(t))

Where

D+V (t, U(t)) = lim sup
h→0+

1

h
[V (t+ h, U(t) + h(QU)(t))− V (t, U(t))]

(iii) r(t) = r(t, t0, u0) is the maximal solution of the scalar differential equation

u′ = g(t, u), u(t0) = u0 ≥ 0

where g ∈ C[R2
+,R+] existing on [t0,∞) then if U(t; t0, U0) is any solution of IVP (9)

existing on [t0,∞) ,

V (t0, U0) ≤ u0 implies V (t, U(t)) ≤ r(t), t ≥ t0.

Corollary 1. If, in addition to the assumptions of Theorem 1 with g(t,u)=0 and U(t) ∈ E1

then V (t, U(t)) ≤ V (t0, U0), t ≥ t0 , where U(t) is any solution of IVP (9).
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Now we prove the main stability results for the system (9)

Theorem 2. Suppose that the following hypothesis hold
(i) V ∈ C[R+ ×Kc(Rn), R+], h ∈ Γ, V(t,U) is locally Lipschitzian in U and h-positive
definite,
(ii) D+V (t, U(t)) ≤ 0 for (t, U) ∈ S(h, ρ) where

S(h, ρ) = {(t, U) ∈ R+ ×Kc(Rn), h(t, U) < ρ, ρ > 0}

and U ∈ E1 then
(A) if, in addition, h0 ∈ Γ, h0 is finer than h and V(t,U) is h0-weakly decrescent, then the
system ( 9) is (h0, h)- equistable.
(B) if, in addition, h0 ∈ Γ, h0 is uniformly finer than h and V(t,U) is h0- decrescent, then
the system ( 9) is (h0, h)-uniformly stable.

Proof. Given that V(t,U) is h0 -weakly decrescent, then by the definition for t0 ∈ R+,
W0 ∈ Kc(Rn), there exist constsnt δ0 = δ0(t0) > 0 and a function a ∈ CK such that

V (t0,W0) ≤ a(t0, h0(t0,W0)) (11)

provided h0(t0,W0) < δ0 and W0 = U0 − V0. Also from hypothesis V(t,U) is h-positive
definite, implies that there exist constant ρ0 ∈ (0, ρ) and a function b ∈ K such that

b(h(t, U)) ≤ V (t, U) whenever h(t, U) ≤ ρ0 (12)

and by the assumption that h0 is finer than h, there exists a constant δ1 = δ1(t0) > 0 and
function φ ∈ CK such that

h(t0,W0) ≤ φ(t0, h0(t0,W0)) if h0(t0,W0) < δ1, (13)

where δ1 is chosen so that φ(t0, δ1) < ρ0.
Let ε ∈ (0, ρ0) and t0 ∈ R+ be given, then by the assumption on ’a’, there exists a
δ2 = δ2(t0, ε) > 0 that is continuous in t0 such that

a(t0, δ2) < b(ε). (14)

Now choose δ(t0) = min{δ0, δ1, δ2} then h0(t0,W0) < δ, where W0 = U0 − V0.

b(h(t0,W0)) ≤ V (t0,W0) ≤ a(t0, h0(t0,W0)) < b(ε)

Hence h(t0,W0) < ε.
Now we claim that for every solution U(t) = U(t, t0,W0) = U(t, t0, U0 − V0) of (10) with
h0(t0,W0) < δ implise

h(t, U(t)) < ε, t ≥ t0, (15)

Suppose (15) is not true, then there would exists a t1 > t0 such that

h(t1, U(t1)) = ε, and h(t, U(t)) < ε for t ∈ [t0, t1)
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for some U(t) = U(t, t0,W0) of (10).
Set m(t) = V (t, U(t)) for t ∈ [t0, t1]. Since V(t, U) is locally Lipschitzian in U, it follows
from Corollory 1 that m(t) is non increasing in [t0, t1] and V (t, U(t)) ≤ V (t0,W0), δ ≤
t ≤ t1. Thus it follows that

b(ε) = b(h(t1, U(t1)) ≤ V (t1, U(t1)) ≤ V (t0,W0) < b(ε),

which is a contraduction to (15) and hence the system (10) is (h0, h)-equistable.
Now we prove the second part of the theorem.
Since V (t, U) is h- positive definite, there exists a constant 0 < ρ0 ≤ ρ, 0 < δ0 and a
function a ∈ K such that

b(h(t, U)) ≤ V (t, U), (t, U) ∈ S(h, ρ0) (16)

and since V(t,U) is h0-decrescent, there exist constants 0 < ρ0 ≤ ρ, δ0 > 0 and b ∈ K,
such that

V (t, U) ≤ a(h0(t, U)), if h0(t, U) < δ0. (17)

Also we have h0 is uniformly finer than h, there exists a constant δ1 > 0, independent of
’t’ and a function φ ∈ CK such that

h(t0,W0) ≤ φ(t0, h0(t0,W0)) if h0(t0,W0) < δ1, (18)

where δ1 chosen so that φ(t0, δ1) < ρ0.
Let ε ∈ (0, ρ0) and t0 ∈ R+ be given. By the assumption on ’a’ there exists a δ2 = δ2(ε) > 0
such that a(δ2) < b(ε). Choose δ = min{δ0, δ1, δ2} then

h0(t0,W0) < δ, where W0 = U0 − V0. (19)

We claim that for every solution U(t) = U(t, t0,W0) = W (t, t0, U0 − V0) of (10) with

h0(t0,W0) < δ =⇒ h(t, U(t)) < ε, t ≥ t0. (20)

Suppose it is not true, then there would exists a t1 > t0 such that

h(t1, U(t1)) = ε and h(t, U(t)) < ε for t ∈ [t0, t1)

for some U(t) = U(t, t0,W0) of (10).
Set m(t) = V (t, U(t)) for t ∈ [t0, t1). Since V(t, U) is locally Lipschitzian in U, it follows
from Corollary 1 that m(t) is non increasing in [t0, t1] and it follows that

b(ε) = b(h(t1, U(t1)) ≤ V (t1, U(t1)) ≤ V (t0,W0) < b(ε),

which is a contraduction to (15) hence the system (10) is (h0, h)-uniformly stable.

Now we will prove uniform asymptotic stability result.
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Theorem 3. Suppose that
(i) h0, h ∈ Γ and h0 is uniformly finer than h; (ii) V ∈ C[R+ × Kc(Rn), R+], h ∈ Γ,
V(t,U) is locally Lipschitzian in U and h-positive definite, h0-decrescent and

D+V (t, U(t)) ≤ −c(h0(t, U)) for (t, U) ∈ S(h, ρ)

where c ∈ K
S(h, ρ) = {(t, U) ∈ R+ ×Kc(Rn), h(t, U) < ρ, ρ > 0}

and U ∈ E1 then
the system (10) is (h0, h)-uniformly asymptotically stable.

Proof. Since V (t, U) is h-positive definite and h0 decrescent, there exists a constant
0 < ρ0 ≤ ρ, and functions a, b ∈ K such that

b(h(t, U)) ≤ V (t, U), (t, U) ∈ S(h, ρ0), (21)

and
V (t, U) ≤ a(h0(t, U)), if h0(t, U) ≤ δ0, (22)

then by the Theorem 2 the system (10) is (h0.h)- uniformly stable.
Now we will prove asymptotic stability.
Let ε = ρ0 then there exists δ1 = δ1(ρ) > 0 such that

h0(t0,W0) < δ1 ⇒ h(t, U(t)) < ρ0, t ≥ t0, (23)

where U(t) = U(t, t0,W0) is any solution of (10).
Let 0 < ε < ρ0 and δ = δ(ε) be the same δ as in the definition of (h0, h)- uniform stability.

Assume that h0(t0, U0) < δ∗ = min{δ0, δ1} and set T = T (ε) = a(δ∗)
c(δ) + 1

To prove (h0, h)- uniform asymptotic stability, it is enough to show that there exists a
t∗ ∈ [t0, t0 + T ] such that

h0(t
∗, U(t∗)) < δ, (24)

Suppose (24) is not true, then there exists a solution U(t) = U(t, t0,W0) of (10) with
h0(t0,W0) < δ∗ such that

h0(t, U(t)) ≥ δ, t ∈ [t0, t0 + T ]. (25)

Let m(t) = V (t, U(t)), then it follows from hypothesis (ii) that

D+m(t) ≤ −c(h0(t, U(t)), t ≥ t0. (26)

Then from the equation (22) we get,∫ t0+T

t0

C(h0(s, U(s))ds ≤ m(t0) ≤ a(δ∗),

also from (25) we have ∫ t0+T

t0

C(h0(s, U(s))ds ≥ C(δ)T > a(δ∗)

which is a contraduction. Hence proof of the theorem is complete.
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