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Abstract. Max-stability is the foundation of multivariate extreme values analysis. This paper
investigates the asymptotic dependence modeling of max-stable processes both with spatial and
temporal variables. Specifically the paper provides new characterizations of extremal distributions
via a dependence measure of the stochastic joint behavior at given locality s and date t. The
analytical forms of spatio-temporal asymptotic dependence structures are provided for the main
bivariate and trivariate models of max-stable processes.
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1. Introduction

In a spatial framework, modeling the extremes of multivariate phenomenas is an im-
portant adequate risk management in environment sciences. Indeed, many environmental
extremal problems such as hurricanes, floods, droughts, heat waves, sea height, annual
maxima and daily rainfall have an inherent spatial character or are time varying events.
Likewise a lot of climate change’s problematics and high impact events climatic phenom-
enas include a spatial component and can be modeled by extreme values approach. This
kind of prospect, such as climate change, have provided modeling technics and spatial tools
of extreme event statistics and their characterization are often of fundamental interest.

Multivariate extreme values (MEV) theory is often presented in the framework of co-
ordinatewise maxima, so the importance of distinction diminishes. Towards a multivariate
analogue of Fisher-Tippett we are looking for some sort of multivariate limit distribution
for conveniently normalized vectors of multivariate maxima. For an arbitrary index of
set T denoting generally a space of time, a random vector Yt = {Yj (t) ; 1 ≤ j ≤ m, t ∈ T}
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in Rm is said to be max-stable if, for all n ∈ N, every Yj (t) = (Y
(1)
j (t) ; . . . ;Y

(n)
j (t)) is

a n-dimensionnal max-stable vector, that is, there exists suitable and time-varying non-
random sequences {an (t) > 0} and

{
bn (t) ∈ Rd

}
such as

1

an (t)
[Mn (t)− bn (t)]

f.d.d−→ X (t) ; t ∈ T, (1)

where
f.d.d−→ denotes the convergence for the finite-dimensional distributions whileMn (t) =

max (Xi (t))
1 ≤ i ≤n

; t ∈ T being the component-wise maxima of the vector X (t).

The theory of extreme values is well elaborated in a statistic and mono-site scheme
(see Lo et al [10]). Let suppose now that our random variables both depend on the
time indexed by {t ∈ T, T 6= 0} ; and are studied on multiple sites and then is also in-
dexed by an area index s ∈ S. This leads to study the collections of random vec-

tors
(
Y s
j (t)

)
; j ≥ 0; t ∈ T ; s ∈ S such that for each fixed couple (t, s), the sequence

is independent and identically distributed according to a joint cumulative function Gst .
Under the assumption that this function is max-stable, every univariate margins Gst,i
lies its own domain of attraction and is expressed by on the space of interest S+

ξi,t,s
={

z ∈ R;σi,t,s + ξi,t,s

(
yst,i − µi,t,s

)
> 0; 1 ≤ i ≤ n

}
by

Gi (yi (s)) =

 exp

{
−
[
1 + ξi (s)

(
yi(s)−µi(s)

σi(s)

)] −1
ξi(si)

}
if ξi (s) 6= 0

exp
{
− exp

{
−
(
yi(s)−µi(s)

σi(s)

)}}
if ξi (s) = 0

; (2)

and for all site s, the parameters {µi,t,s ∈ R}, {σi,t,s > 0} and {ξi,t,s ∈ R} are referred to
as the location, the scale and the shape parameters respectively. Particularly, the different
values of ξi (s) ∈ R allows (2) to be a spatial EV model, that is, to belong either to Fréchet
family, the Weibull one or Gumbel one.

The peak-over-threshold approach is common used, fitting data with a generalized
Pareto distributions (GPD). This approach, like the coordinatewise one is concerned with
asymptotic stochastic behavior of sample of identical copies of variables. In particular, the
multivariate GP Distribution of a sample of i.i.d of sequences of variables, is closely linked
the underlying MEV one (see Tajvidi (2006)). More precisely, ifH defined the MEV model,
then the associated multivariate GP distribution G is defined for all x = (x1, ..., xn) ∈ Rn

and for a given x0 =
(
x

(1)
0 ; ...;x

(n)
0

)
in the support of G,

H (x1, ..., xn) =

{
−1

logG(x0)

}
log

[
G(x0 + x)

G(min(x, x0))

]
. (3)

The major contribution of this paper is to propose new model of stochastic dependence for
max-stable processes in spatial and temporal framework. Specifically, section 2 gives the
preliminaries of the study. Section 3 deals a new characterization of asymptotic models of
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time-varying models of dependence of spatial processes. In section 4 the analytical forms
these spatio-temporal models of dependence for the main usual extremal distributions
both for spatial and time varying contexts.

2. Preliminaries

This section summaries definitions and properties on the generalized Pareto processes
and the copulas of multivariate joint processes dependence which turn out to be necessary
for our approach. For this purpose the definition of multivariate copula is necessary.

Definition 1. A n-dimensional copula is a non-negative function Cn defined on Rn sat-
isfying the following properties.

i) Cn(u1, ..., ui−1, 0, ui+1, ..., un) = 0; for all (u1, ..., ui−1, ui+1, ..., un) ∈ In−1.
ii) Cn(u1, ..., ui−1, 1, ui+1, ..., un) = Cn−1(u1, ..., ui−1, ui+1, ..., un), that is, an (n-1)

copula for all i.
iii) The volume VB of any rectangle B = [a, b] ⊆ [0, 1]n is positive, that is,

VB =
∑

ε=(ε1,...,εk)∈{0,1}k
(−1)s(ε)1+...+in Cn (b1 + ε1 (a1 − b1) , ...bk + εk (ak − bk)) ≥ 0. (4)

where a = (a1, ..., an) and b = (b1, ..., bn) .

The use of copulas in stochastic analysis whas justified by the canonical parametriza-
tion of Sklar, see Joe [9] or Nelsen [12], such that the n-dimensional copula C associated to
a random vector (X1, ..., Xn) with cumulative distribution F and with continuous marginal
F1, ..., Fn is given, for (u1, ..., un) ∈ [0, 1]n by

C(u1, ..., un) = F [F−1
1 (u1), ..., F−1

n (un)]; (5)

F−1 being the generalized inverse such as F−1 (x) = inf {t ∈ [0, 1] , F (t) ≤ x}.

Even in spatial analysis, stochastic phenomenas can be modeled via copulas. Particu-
larly in a spatial context, Schmitz [14] showed that a collection of copulas and marginal
distributions also define a stochastic process. So, the above property ii) is given such as, for
all collection {Ct1,...,tn ; t1 < ... < tn, n ∈ N} of copulas satisfying the consistent condition

lim
uk→1−

Ct 1,...,t n (u1, ..., un) = Ct 1,...,t n (u1, ..., uk−1, uk+1, ..., un) ;

there exists a probability space (Ω, , P ) and a stochastic processes {(Yx) , x ∈ T} such that

P (Yt1 < x1, ..., Ytn < xn) = Ct 1,...,t n (Ft1 (x1) , ..., Ftn (xn)) ; (6)

and {(Yt) , t ∈ T} is measurable for all t ∈ T.

While studying conditional dependence of GPD models, Ferreira et al. (see [7]) have
proposed the GP processes as follows. Let C+(S) be the space of non-negative real con-
tinuous functions equipped with the supremium norm where S is compact subset of Rd.
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Theorem 1. A stochastic process W is a generalized Pareto process if the following state-
ment are satisfied.

(a) The expectation E (W (s)/ supu ∈ S) is positive for all s ∈ S,
(b) P

(
sups∈SW (s)/w0 > x) = x−1

)
for x > 1 (standard Pareto distribution),

(c) For all r > w0 and B ∈ B
(
C̄+ (S)

)
P

(
w0W

sups∈SW (s)
∈ B

∣∣∣∣ sup
s∈S

W (s) > r

)
= P

(
w0W

sups∈SW (s)
∈ B

)
; (7)

where

C+
w0

(S) =

{
f ∈ C+ (S) : sup f

s∈S
(s) = w0

}
.

.

In the relation (7) the probability ρ (B) = P

(
w0W

sups∈SW (s)
∈ B

)
is refered as the

spectral measure. In a discrete set for S, S = {s1, ..., sn} if W = (W1, ...,Wn) it provides
instead :

ρ (B) = P

w0 (W1, ...,Wn)

max
1 ≤ i ≤ n

(Wi)
∈ B

 .

3. Asymtotic Dependence for Spatio-temporal Processes

Even in spatial stochastic context, three possible distributions can describe the asymp-
totic behavior of conveniently normalized extremal distributions at a given geographical
locality s. These distributions are instead described by a class of dependence models.
Specially in a spatial framework, let DN = {s1, ..., sN} ⊂ R2 be the set of locations (ge-
ographical ereas, mines localities, ...), sampled over a

[
0, 1

m

]
×
[
0, 1

m

]
rectangle (m ∈ N),

where the phenomenas are observed. Let Y a variable of interest, observed at given site s
and date t.

Let consider the following notation of component-wise vector of spatio-temporal pro-
cess.

Y š
t (s) = Y (t, s) = {(Yt1 (s1) ; ...;Ytn (sn)) , s ∈ S, t ∈ T}

is the response vector at a given time t from a spatio-temporal and max-stable model.
So, under this notation a realisation y (t, s) = yt (s) of Yt (s) is obtained as

yi,t (s) = µi,t (si) +
σi,t (si)

ξi,t (si)

[
st (s)ξ

(i)
t (s) − 1

]
for i = 1, ...,m. (8)

Equivalently, it comes that, for a given site s DN = {s1, ..., sN} ⊂ R2

P

(
Y1(s)−b(1)

n (s)

a
(1)
n (s)

≤ y1 (s) ; ...; YN (s)−b(N)
n (sn)

a
(N)
n (sn)

≤ yN (s)

)n
= H (y1 (s) ; ...; yN (s)) . (9)
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For simplicity reasons, let denote, like in the paper [6] that Y (t, s) = Y š
t (which is

different from Y s
t , the s-th power of Yt). Then, under this notational assumption the

spatialized version of the joint distribution function F of Y is given by F št for given vector

of realization yšt =
(
y

(1)
t (s) , ..., y

(m)
t (s)

)
such as

F št (y1 (t, s) , ..., ym (t, s)) = F
(
yš11 (t) ; ...; ysmm (t)

)
= F (y1 (t, s) ; ...; ym (t, s)) .

In the same vein, the spatio-temporal copula associated to the distribution G via Sklar
parametrization (1) will be denoted as C št =

(
C š1,t; ...;C

š
m,t

)
.

So, the relation (5) provides, for all xt =
(
x

(1)
t ; ...;x

(m)
t

)
in Rm × T the relation

C št (u1; ...;um) = F št

[
š
t

(
F š1t (u1)

)−1
; ...;

(
F šmt (um)

)−1
]
. (10)

Note that, for all m ∈ N and for all geographical locality s, the spatio-temporal unit
simplex of R(m−1 is given, under the notational by

∆š
t,m =

{
λšt =

(
λš11 ; ...;λšmt

)
∈ Rm+ ;

∥∥λšt∥∥ =m
i=1 λ

ši
t = 1

}
. (11)

The following theorem provides an other characterization of the spatio-temporal ex-
treme values distribution associated the process {Ys; s ∈ S} . It is a spatio-temporal pa-
rameters version of a key result of extreme values theory, see Resnick [13] or Beirlant[1] .

Theorem 2. Let
{
Y š
t , s ∈ S, t ∈ T

}
be a spatio-temporal (ST) process with parametric

joint distribution H š
t = (H š1

t ; ...;H šm
t ). The following statements are satisfied

(a) A sufficient condition for the process H š
t to be a ST-MEV distribution is that there

exists two spatio-temporal non-random sequences
{
αšn (t) > 0

}
and

{
βšn (t) ∈ R

}
such that

lim
n ↑∞

P

(
M š
t − βšn (t)

αšn (t)
≤ yšt

)
=
(
H1

(
yš1t
)
, ...,Hm

(
yšmt
))
.

where M
š(i)
t is univariate margins of the spatio-temporal componentwise vector of max-

ima.
(b) Under the condition (a) there exists a ST vector of coefficient λs (t) and ST-

dependence function Bš
t mapping ∆š

t,m−1×S to
[

1
m−1 , 1

]
such that, for all yšt =

(
y
š(1)
t , ..., y

š(m)
t

)
∈ [0, 1]m,

H š
t

(
yš1 (t) ; ...; yšm (t)

)
= exp

[
−

m∑
i=1

yši (t)Bš
t

[
λš1 (t) , ..., , λšm (t)

]]
; (12)

where
{
λši ; 1 ≤ i ≤ m

}
are spatial coefficients.
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Proof. (a) Let {αn > 0} and {βn ∈ R} be the non-random normalizing sequences of
H. Then, their corresponding space and time extensions

{
αšn (t) > 0

}
and

{
βšn (t) ∈ R

}
are defined on the set, N∗ × S × T, such that

lim
n →∞

P

(
M š
t − βšn (t)

αšn (t)
≤ yšt

)
= lim

n →∞
P

[
n
i=1

(
M ši
t − β

ši
i (t)

αšii (t)
≤ yšit

)]
Then,

lim
n →∞

P

(
M š
t − βšn (t)

αšn (t)
≤ yšt

)
= lim

n →∞
P

[
m
i=1

(
Y ši
t ≤ αši (t) yši (t) + βši (t)

)]
.

That is equivalent, due to independence, to

lim
n →∞

P

(
M š
t − βšn (t)

αšn (t)
≤ yšt

)
= lim

n →∞

(
m
Π
i=1
P
[(
X š
i ≤ αši (t) yši (t) + βši (t)

)])
.

So, there exists a max-stable distribution G whose max-domain of attraction contains
the MEV H. Then,

lim
n →∞

P

(
M š
t − βšn (t)

αšn (t)
≤ yšt

)
= lim

n →∞

[
G
(
αšiyi

š (t) + βši (t)
)
, ...αši (t) yš (t) + βši

]n
.

Finally, since the distribution G is max-stable

lim
n →∞

P

(
M š
t − βšn (t)

αšn (t)
≤ yšt

)
=
(
H1

(
y
š(1)
t

)
, ...,Hn

(
y
š(n)
t

))
.

(b) Assume that the distribution H is a MEV model, that is its univariable marginal
Hi satisfies relation (9). Therefore, it is sufficient to show for a given site s and date t,
that, H š

t satisfies the spatio-temporal version of max-stability property.
It comes from Coles ([7]) that, at a given site s and date t the MEV model H has the

following representation Yi such as yi =
−1

log [1− λiti(si)]
with si > ui.

Note moreover that it not be restrictive to assume in the following that the spatio-
temporal multivariate process

{
Y š
k (t) , s ∈ S, t ∈ T

}
has spatio-temporal unit Fréchet mar-

gin, which it is more convenient to work with.

Y š
t ∼ Φš

θ,t ⇔ ln
(
Y š
t

)θ ∼ Λšt ⇔ −1
Y št
∼ Ψš

θ,t ⇔ Y š
t = µ

(
yšt
)

+
σ(yšt )
ξ(yšt )

[(
yšt
)ξ(yt) − 1

]
.

Therefore,

H (y1, ..., ym) = exp [−Sm max (q1λ1t1(s1) , ..., qmλmtm(sm))µd(q)] + o(max(λi).

If, in particularly, for all i = 1, ..., n we set λiti(si) = λt (s), then it follows that there
exists a spatio-temporal dependence function Bš

t = B(λ, q, y) such as:,

Bš
t (λ) = λ

i=m∑
i=1

ti(xi)Sm max

(
q1t1(x1)∑i=m
i=1 ti(xi)

, ..., qm

(
1−

∑i=m−1
i=1 ti(xi)∑i=m
i=1 ti(xi)

))
µd(q).
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Particularly under the above component-wise notation

H š
t (yš1 (t) , ..., yšn (t)) = exp

[
−

(
m∑
i=1

yši (t)

)
Bš
t

(
−q11y

š
1 (t)∑m

i=1 y
š
i (t)

; ...;
−qm−1y

š
m−1 (t)∑m

i=1 y
š
i (t)

)]
. (13)

Moreover, taking into account Dossou et al., it follows that

Bš
t

(
−q11y

š
1 (t)∑m

i=1 y
š
i (t)

; ...;
−qm−1y

š
m−1 (t)∑m

i=1 y
š
i (t)

)

= D

(
−q11yš1(t)∑m
i=1 y

š(i)
t

, . . . ,
−qm−11y

š(m−1)
t∑m

i=1 y
š(i)
t

)
+

(
1-
−q11yš1(t)∑m
i=1 y

š(i)
t

)
DN̄1


−q11yš1(t)∑m
i=1 y

š(i)
t

1− −q11yš1(t)∑m
i=1 y

š(i)
t

; . . . ;

−qm−11y
š(m−1)
t∑m

i=1 y
š(i)
t

1− −q11yš1(t)∑m
i=1 y

š(i)
t

 .

Finally, by noting λsi (t) =
−qi∑m

i=1 y
š
i (t)

it follows that

Bš
t

(
λs1, ..., λ

s
m−1

)
= D

(
λs1y

š
1 (t) , ..., λs1y

š
1 (t)

)
+ (1− t)D

(
λs1y

š
1 (t) , ..., λs1y

š
1 (t)

)
where Bš

t is the spatialized Pickands dependence function, mapping the simplex ∆s,m−1

to
[

1
m−1 ; 1

]
(see Beirlant [1] . Thus, we obtain the result as asserted

Definition 2. The space and time dependent function Bš
t

(
λs1, ..., λ

s
m−1

)
is called the

Spatio-temporal Asymptotic Dependence (STAD) function associated to the process {Ys}.

Particularly, in a the following and with a parameter θ we can set Bš
θ,t (λs) = Bš

θ (λt)

where λt ∈ ∆š
t,m. For example, for the bivariate and one parametric negative logistic model

(see Joe [9]) defined for yšt =
(
y
š(1)
t , y

š(2)
t

)
and θ = (θ1, θ2) ≥ 0 by

Gšθ
(
yšt
)

= exp

{
−
(

1

y
š(1)
t

+ 1

y
š(2)
t

−
[(
y
−š(1)θ1
t y

−š(2)θ1
t

)
−θ1
]−1
θ

)}
;

then, it follows that the corresponding ST dependence function is given by

Bš
θ (λst ) =

1

1 + λst

[
1−

(
1 + λs−θt

)−1
θ

]
with λst ∈ [0, 1]

The following theorem, proposes a spatial characterization the multivariate GP distri-
bution associated to the spatial MEV of the same process Y.

Theorem 3. Let
{
Gšt ,s ∈ S, t ∈ T

}
be a MEV distribution of a sample of copies of a

spatio-temporal max-stable process Xs
t and Hš

t the multivariate GP associated to the same
sample. Then, for a given site s0 and date t0 ,

H š
t (yst ) = −1

logGšt (yst0
)

log

(
Gšt (yst0

+yst )

Gšt

(
min(yst ,y

s
t0

)
)
)

= 1− log

(
Gšt (yst )

Gšt

(
min(yst ,y

s
t0

)
)
)
. (14)

for all yst0 ∈ support(G
š
t ).
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Proof. It should be noted that the normalizing sequences {αn > 0} and {βn ∈ R} in
Theorem 5 are given by

σn = F−1(1− 1

n
) and βn =

f (σn )

1− F (σn )
;

where f is the common density function of the sample. Moreover, it should be considered
that in this section operations on vectors are componentwisely, that is, for a given location
s of S; 

ak (s0) =
(
a

(1)
k (s0,t) ; ...; a

(m)
k (s0,t)

)
ak (s) + bk (s) =

(
a

(1)
k (s) + a

(1)
k (s) ; ...; a

(m)
k (s) + a

(m)
k (s)

)
yst
yst0

=

(
y
s(1)
t

y
s(1)
t0

; ...;
y
s(m)
t

y
s(m)
t0

) (15)

Let H be a given multivariate Pareto distribution. So for a given point yst0 =
(
ys1t0 , ..., y

sm
t0

)
with ysit0 > 0 and α > 0, it follows that

H š
t (yst ) = 1−

[
yst

y
s(1)
t0

]−α
.

In particular, for y
s(1)
t > y

s(1)
t0

, it commes that

H−1 (yst ) = (1− yst )
−1/α y

s(1)
t0

.

Therefore, we have: an (s) = G−1

([
1− 1

n

])
= n1/αyst0 .

Otherwise, asymptotically, it comes that

lim
n↑+∞

P (Mn (s) ≤ an (s0) yst ) = lim
n↑+∞

[
1−

(
n1/αyšt
yšt0

)−α]n
that is

lim
n↑+∞

P (Mn (s) ≤ an (s0) yst ) = lim
n↑+∞

[
1− n1/αy−sαt

]
which gives marginally

lim
n−→+∞

P (Mn (si) ≤ an (s0) ysit ) = exp

(
−1

y
š(i)
t

)
= H ši

t

(
yšit
)

Furthermore,
H š
t (yst ) = {

1− log

(
G(yst )

G
(
min(yst , y

s
t0

)
)) si yst ≥ 0

0 elsewhere

.(16)

Finally, using simultanously the relations (4) and (22) we obtain (20) as asserted
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4. Analytical Characterization of STAD

Note that it should be noted that even in spatio-temporal context, the dual relation
(see [8]) relying the vectors of maxima and minima holds. So, ,{

min
{
Y š
k (t)

}
1 ≤ k ≤ m

}
= −

{
max

{
−Y š

k (t)
}

1 ≤ k ≤ m

}
for all site s ∈ S and date t ∈ T.

Most of these families arise from symmetric, asymmetric or mixed extensions of a known
differentiable parametric model: the logistic family (see Degen [4]).

4.1. The Pseudo-Power function of STAD

Theorem 4. Let H š
θ,t be the parametric and max-stable distribution modeling the stochas-

tic behavior of a space and time varyng process. Then there exists a mutivariate parametric
pseudo-power function P šθ such as

Gšθ
(
ỹš1t , ..., ỹ

šm
t

)
= exp

{
−P šθ

(
ỹš1t , ..., ỹ

šm
t

)}
,

where P šθ is defined on R× S × T.
Proof. In the proof of theorem 5, the relation (13) shows that Particularly under the

above component-wise notation

H š
t (ỹš1t , ..., ỹ

šm
t ) = exp

[
−

(
m∑
i=1

yšit

)
Bš
t

(
−q1y

š1
t∑m

i=1 y
ši
t

; ...;
−qm−1y

šm−1

t∑m
i=1 y

ši
t

)]
(17)

By setting

P šθ
(
ỹš1t , ..., ỹ

šm
t

)
=

(
m∑
i=1

yšit

)
Bš
t

(
−q1y

š1
t∑m

i=1 y
ši
t

; ...;
−qm−1y

šm−1

t∑m
i=1 y

ši
t

)
.

On obtain a pseudo power function P šθ in yšit for i = 1, ..., n

Remark 1. To characterize a spatio-temporal max-stable model consists simply to provides
the underlying pseudo-power function

4.2. Analytical Form of Bivariate STAD

This section, we provide the analytical forms of the ST models of the dependence of
the main usual families of extreme distributions. According to remark 7, it is sufficient to
gives the corresponding pseudo-power function P šθ

(
ỹšt
)

where ỹšt =
(
ỹš1t , ỹ

š2
t

)
.

STAD of Logistic model and symmetric entensions
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1
Logistic model (Gumbel family) with θ ≥ 1 (voir Joe [9])

· P šθ
(
ỹšt
)

=
((
ỹš1t
)θ

+
(
ỹš2t
)θ) 1

θ
; · Bš

θ(λt) =
λt

1 + λt

[(
1 + λ−θt

) 1
θ − 1

]

2

Negative one-parametric logistic model (Galambos family) with θ ≥ 0

· P šθ
(
ỹšt
)

=

(
1

ỹ
š1
t

+ 1

ỹ
š2
t

−
[

1

ỹ
š1θ1
t

+ 1

ỹ
š1θ1
t

]−1
θ

)
; · Bš

θ(λt) =
λt

1 + λt

[
1−

(
1 + λ−θt

)−1
θ

]

3

Negative two-parametric logistic model or model of Joe (see [9] ); θ = (θ1, θ2)

· P šθ
(
ỹšt
)

=

(
yš1t + yš2t −

[
y−š1θ1t + y−š2θ1t −

(
ỹš1θ1θ2t + yš2θ1θ2t

)− 1
θ2

] 1
θ1

)

· Bš
θ(λt) =

λt
1 + λt

([
λ−θ1t + 1−

(
λθ1θ2t + 1

)−1
θ2

] 1
θ1

− 1

)
.

4

Gaussian bivariate model (or model of Hüsler-Ré̈ıss) with θ ≥ 0 (see [8])

· P šθ
(
ỹšt
)

=

[
ỹš1t Φ

(
1
θ + θ

2 log

(
ỹš1t
ỹš2t

))
+ ỹš1t Φ

(
1
θ + θ

2 log

(
ỹš2t
ỹš1t

))]
Φ being the cumulative distribution function of N(0,1).

· Bš
θ(λt) =

λt
1 + λt

[
1

λt
Φ
(

2−θ2 log(λt)
2θ

)
− Φ

(
−2+θ2 log(λt)

2θ

)]
.

5

Symmetric extension of logistic model or model of Tajvidi (see [12])

· P šθ
(
ỹšt
)

= exp

{
−
[((

ỹš1t
)θ1

+
(
ỹ
š(2)
t

)θ1)
+ θ2

(
ỹš1t ỹ

š2
t

) θ2
2

] 1
θ1

}
;with θ = (θ1, θ2)

· Bš
θ(λt) =

λt
1 + λt

[
λt
−θ1 + 1 + θ2λt

−θ1
2

] 1
θ

where 0 < θ2 ≤ 2(θ1 − 1); θ2 ≥ 2

6

Symmetric two-parametric extension of logistic model θ = (θ1, θ2) (Joe [9])

◦ P šθ
(
ỹšt
)

=

[((
ỹš1t
)θ1

+
(
ỹš2t
)θ1)− θ2

((
ỹš1t
)θ1θ2

+
(
ỹš2t
)θ1θ2) 1

θ2

] 1
θ1

· Bš
θ(λt) =

λt
1 + λt

([
λt
−θ1 + 1−

(
λt
θ1θ2 + 1

)−1
θ2

] 1
θ1

)
where θ2 > 0; θ1 ≥ 1

7

Symmetric Extension of bilogistic model, proposed by Smith (see Michel [11])

◦ P šθ
(
ỹšt
)

=
(
ỹš1t q

1−θ1 + ỹš2t2 (1− q)1−θ2
) 1
θ1 with θ = (θ1, θ2) ; 0 < θ1 ; θ2 < 1

where q = q(θ1, θ2) are the roots of equation:

1− θ1)ỹ
š(1)
t (1− q)θ2 − (1− θ2)ỹ

š(2)
t qθ1 = 0

· Bš
θ(λt) =

λt
1 + λt

[
q1−θ1 + λt(1− q)1−θ2 + 1

]
.

While studying max-stable models Joe (see [9]) and Tajvidi (see [15]) have proposed many
asymmetric extension of logistic model.

STAD of logistic model and asymmetric generalizations
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1

Asymmetric three parametric extension of logistic model with θ = (θ1, θ2, θ3)

· P šθ
(
ỹšt
)

= (1− θ2) ỹš1t − (1− θ1) ỹš2t −
[(
θ1ỹ

š1
t

)θ3
+
(
θ2ỹ

š2
t

)θ3] 1
θ3 ;

· Bš
θ(λt) =

λt
1 + λt

[
1− θ1 + θ2λt+

(
θθ31 + (θ2λt)

θ3
)] 1

θ3 with θ1 ≥ 0, θ2 ≤ 1, θ3 ≥ 1

2

Asymmetric three parametric and negative extension of logistic model

· P šθ
(
ỹšt
)

=
(
ỹš1t + ỹš2t

)
+
[(
θ1ỹ

š1
t

)−θ3
+
(
θ2ỹ

š2
t

)−θ3]−1
θ3 with θ = (θ1, θ2, θ3)

· Bš
θ(λt) =

λt
1 + λt

[
1−
(
θ−θ31 + (θ2λt)

−θ3
)]−1

θ3 where 0 < θ1, θ2 ≤ 1, θ3 > 0

3

Symmetric one parametric, mixed extension (proposed by Tajvidi (see [11])

· P šθ
(
ỹšt
)

=

[(
ỹš1t + ỹš2t

)
− θ2

(
ỹš1θ1 + ỹš2t

θ1
) 1
θ1

]
with θ ≥ 0

· Bš
θ(λt) =

1

1 + λt

[
1− θ2

[
1 + λ−θ1t

]− 1
θ1

]
.

4

Asymmetric two-parametric model (proposed by Coles and Tawn ([10])

· P šθ
(
ỹšt
)

=
[(
ỹš1t + ỹš2t

)
+ [1−B(q, θ1 + 1, θ2)] ỹš1t + ỹš2t B(q, θ1, 1 + θ2)

]−1
θ3

where B(q, θ1, θ2) is Beta distribution at q(θ1, θ2) =
θ1ỹ

š1
t

θ1ỹ
š1
t + θ2ỹ

š2
t

.

· Bš
θ(λt) =

λt
1 + λt

[
(1−B(q, θ1 + 1, θ2))

λt
+B(q, θ1, 1 + θ2)− 1

]
with θ1, θ2, θ3 > 0.

5

Bilogistic and negative model ( proposed by Müler (see Joe [9]);

· P šθ
(
ỹšt
)

=
(
ỹš1t + ỹš2t

)
− ỹš1t q1+θ1 + ỹš2t (1− q)1+θ2

where q = q(ỹš1t , ỹ
š2
t , θ) is root of equation with θ = (θ1, θ2) > 0

(1 + θ1)ỹš1t q
θ1 − (1 + θ2)ỹš2t (1− q)θ2 = 0

· Bš
θ(λt) =

λt
1 + λt

[
1− q1+θ1 − λt(1− q)1+θ2

]

6

Symmetric mixed polynomial model of Klüppelberg (see Beirlant [1])

· P šθ
(
ỹšt
)

= −
(
ỹš1t + ỹš2t

)
+ θ ỹš1t +

θỹš1t
ỹš1t + ỹš2t

· Bš
θ(λt) =

1

1 + λt

[
(1− θ) +

θ

1 + λt

]
where θ ∈ [0, 1]

7

Asymmetric, mixed polynomial model of Klüppelberg (see Beirlant [1])

· P šθ
(
ỹšt
)

=
(
ỹš1t + ỹš2t

)
− (θ1 + θ2) ỹš1t −

θ1ỹ
š1
t

ỹš1t + ỹš2t
− θ2ỹ

š2
t(

ỹš1t + ỹš2t
)2

with θ = (θ1, θ2, θ3) where: θ1 ≥ 0, θ1 + 3θ2 ≥ 0; θ1 + θ2 ≤ 1; θ1 + 2θ2 ≤ 1

· Bš
θ(λt) =

1

1 + λt

[
(θ1 + θ2) +

θ1

1 + λt
+

θ2

(1 + λt)
2

]
.
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4.3. Analytical Form of Tridimensional STAD

We provide analytical form of the STAD function of three dimensional logistic model

(see [5] and [4]). In this sub-section, let consider ỹšt =
(
ỹš1t , ỹ

š2
t , ỹ

š3
t

)
and λt =

(
λ

(1)
t , λ

(2)
t

)
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1

Trivariate logistic model of ST- max-stable distribution (see [9])

· Pθ(yšt ) =
[
ỹš1θt + ỹš2θt + ỹš3θt

] 1
θ

where θ ≥ 1.

· Bš
θ(λt) =

[
λ

(1)
t

θ + λ
(2)θ
t +

(
1− λ(1)

t − λ
(2)
t

)θ]1
θ
−
[
λ

(2)
t

θ +
(

1− λ(1)
t − λ

(2)
t

)θ]1
θ

2

Negative, two parametric extension of trivariate logistic model (see [8])

· Pθ(yšt ) = −
([
ỹš1θ1θ2t + 2−θ2 ỹš2t

θ1θ2
] 1
θ2 +

[
2−θ2 ỹš2t

θ1θ2 + ỹš3t
θ1θ2
] 1
θ2

) 1
θ1

· Bš
θ(λt) =

[λ(1)
t

θ1θ2 + 2−θ2λ
(2)
t

θ1θ2
] 1
θ2 +

[
2−θ22 λ

(2)
t

θ1θ2 +
(

1− λ(1)
t − λ

(2)
t

)θ1θ2
3

] 1
θ2

 1
θ1

−
[
2−θ2λ

(2)
t +

(
1− λ(1)

t − λ
(2)
t

)−θ1θ2 1
θ2

]

3

Trivariate Gaussian model of ST- max-stable distribution (see [8])

· Pθ(yšt ) =
∑3

i=1 ỹ
ši
t + 1

ỹ
š1
t

[
Φ

(
1

θ1
+ θ1

2 log

(
ỹ
š2
t

ỹ
š1
t

))
+ Φ

(
1
θ3

+ θ3
2 log

(
ỹ
š3
t

ỹ
š1
t

))]
− 1

ỹš2t

[
Φ

(
1

θ1
+
θ1

2
log

(
ỹš1t
ỹš2t

))
+ Φ

(
1

θ2
+
θ2

2
log

(
ỹš3t
ỹš2t

))]
− 1

ỹ
š3
t

[
Φ

(
1
θ3

+ θ3
2 log

(
ỹ
š1
t

ỹ
š3
t

))
+ Φ

(
1
θ2

+ θ2
2 log

(
ỹ
š2
t

ỹ
š3
t

))]
+ I

(
Φ̄2, θ, ρ

)
;

I being the integral I =
y−1
3

0 Φ̄2

(
1
θ2

+ θ2
2 log

(
ỹ
š(1)
t

)
; 1
θ3

+ θ3
2 log

(
ỹ
š(4)
t

)
; ρ
)
dt

and ρ =

 0 2

(
1

θ2
1

+
1

θ2
2

+
1

θ3
3

)
2

(
1

θ2
1

+
1

θ2
2

+
1

θ3
3

)
0

 ;covariance-matrix.

· Bš
θ(λt) = 2− λ(1)

t

[
Φ

(
1
θ1

+ θ1
2 log

(
λ

(1)
t

λ
(2)
t

))
+ Φ

(
1
θ3

+ θ3
2 log

(
λ

(1)
t

1−λ(1)
t −λ

(2)
t

))]
−λ(2)

t

[
Φ

(
1

θ1
+
θ1

2
log

(
λ

(1)
t

λ
(2)
t

))
+ Φ

(
1

θ2
+
θ2

2
log

(
λ

(1)
t

1− λ(1)
t − λ

(2)
t

))]
−
(

1− λ(1)
t − λ

(2)
t

)[
Φ

(
1
θ3

+ θ3
2 log

(
1−λ(1)

t −λ
(2)
t

λ
(1)
t

))
+ Φ

(
1
θ2

+ θ2
2 log

(
1−λ(1)

t −λ
(2)
t

λ
(1)
t

))]
−λ(2)

t Φ

(
1
θ2

+ θ2
2 log

(
λ

(2)
t

1−λ(2)
t

))
−
(

1− λ(2)
t

)
Φ

(
1
θ2

+ θ2
2 log

(
1−λ(2)

t

λ
(2)
t

))
+R(λ

(1)
t , λ

(2)
t , θ).

4

An asymmetric extension of logistic ST- max-stable distribution (see [9])

· P šθ
(
ỹšt
)

=
3∑
i=1
ỹšit −

(
ỹ−š1θ1t + ỹ−š3θ2t )

)−1
θ1 +

[
ỹš1θ1
t + ỹš2θ1

t −
(
ỹš2θ1θ2t + 2θ1 ỹ

š(2)θ1θ2
t

)−1
θ2

]−1
θ1

+

[
ỹš2θ1
t + ỹš3θ1

t −
(
ỹš3θ1θ2t + 2θ1 ỹš2θ1θ2t

)−1
θ2

]−1
θ1

−

[
−ỹ−š1θ1

t + ỹ−š2θ1
t + ỹ−š3θ1

t −
(
ỹš1θ1θ2t + 2θ1 ỹš2θ1θ2t

)−1
θ2 −

(
ỹš3θ1θ2t + 2θ1 ỹš2θ1θ2t

)−1
θ2

]−1
θ1

.

· Bš
θ(λt) = λ

(1)
t −

(
λ

(1)
t

θ1 +
(

1− λ(1)
t − λ

(2)
t

)θ1)−1
θ1

+

[
λ

(1)θ1

t −
(
λ

(1)θ1θ2

t + 2λ
(1)θ1θ2

2

) −1
θ1

]−1
θ2

+
[(

1− λ(1)
t − λ

(2)
t

)
+ λ

−(1)θ1

t + λ
−(2)θ2

t −
(
λ
−(1)θ1θ2

t + 2λ
−(2)θ1θ2

2

) −1
θ1

]−1
θ2 .
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5. Conclusion

The results of the study provides important characterizations of parametric max-stable
processes. Especially they show that stochasctic dependence is also the property of the
spatial and temporal coordonates of the phenomenas observed and modeled by the multi-
variate max-stable processes. In particular spalized and conditional dependence measure
are built for extremal classical structures such that pickands function are clarified both
for bivariate and trivariate models of ST stochastic processes.
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