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1. Introduction and Definitions

LetB denote the class of functions

f : U−→ C,

where

U := U(1) and U(r) := {z : z ∈ C and |z|< r}.

We also denote by fA the class of functions f ∈ B which are analytic in U (see, for

details, [32]).

We say that a function f ∈B is subordinate to a function F ∈B , and we write

f (z)≺ F(z) or, simply, f ≺ F,

if and only if there exists a function w ∈B with

|w(z)| ≦ |z| (z ∈ U) ,

such that (see, for details, [15])

f (z) = F
�
w(z)

�
(z ∈ U) .

In particular, if F is univalent in U, we have the following equivalence:

f (z) ≺ F(z)⇐⇒ f (0) = F(0) and f (U) ⊂ F(U).

For functions f , g ∈ fA of the forms:

f (z) =

∞∑

n=0

anzn and g(z) =

∞∑

n=0

bnzn,

by f ∗ g we denote the Hadamard product (or convolution) of f and g, defined by

�
f ∗ g

�
(z) :=

∞∑

n=0

an bnzn =:
�

g ∗ f
�
(z) (z ∈ U) .
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We denote byA the class of functions f ∈B of the form:

f (z) = z+

∞∑

n=2

anzn (z ∈ U). (1.1)

We also denote by Tη
�
η ∈ R

�
the class of functions f ∈ A of the form (1.1) for

which

arg(an) = π+ (1− n)η (n ∈ N \ {1}; N := {1, 2, 3, · · · }). (1.2)

For η = 0, we obtain the familiar class T0 of functions with negative coefficients.

Moreover, we define

T :=
⋃

η∈R

Tη. (1.3)

The class T was introduced by Silverman [24] (see also [31]). It is called the

class of functions with varying argument of coefficients.

Let

α ∈ [0, 1) and r ∈ (0, 1].

A function f ∈A is said to be convex of order α in U(r) if and only if

ℜ

�
1+

z f ′′(z)

f ′(z)

�
> α

�
z ∈ U(r); 0 ≦ α < 1; 0< r ≦ 1

�
.

A function f ∈A is said to be starlike of order α in U(r) if and only if

ℜ

�
z f ′(z)

f (z)

�
> α

�
z ∈ U(r); 0≦ α < 1; 0 < r ≦ 1

�
. (1.4)

We denote by S c (α) the class of all functions f ∈ A , which are convex of order α in

U, and by S ∗ (α) we denote the class of all functions f ∈ A , which are starlike of

order α in U. We also set

S c = S c(0) and S ∗ = S ∗(0).
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It is easy to show that, for a function f ∈ Tη, the condition (1.4) is equivalent to

the following inequality:

����
z f ′(z)

f (z)
− 1

����< 1−α
�
z ∈ U(r); 0≦ α < 1; 0< r ≦ 1

�
. (1.5)

LetB be a subclass of the class A . We define the radius of starlikeness of order α

and the radius of convexity of order α for the classB by

R∗
α
(B) = inf

f ∈B

�
sup
�

r ∈ (0, 1] : f is starlike of order α in U(r)
	�

and

Rc
α
(B) = inf

f ∈B

�
sup
�

r ∈ (0, 1] : f is convex of order α in U(r)
	�

,

respectively.

Let k, A and B be real parameters such that

k ≧ 0, 0 ≦ B ≦ 1 and − 1 ≦ A< B.

Also let ϕ,φ ∈ A . By W
�
φ,ϕ; A, B; k

�
we denote the class of functions f ∈ A such

that
�
ϕ ∗ f

�
(z) 6= 0 (z ∈ U \ {0})

and �
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− k

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

���� ≺
1+ Az

1+ Bz
. (1.6)

If 0≦ B < 1, then the condition (1.6) is equivalent to the following inequality:

�����

�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− k

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

����−
1− AB

1− B2

�����<
B− A

1− B2
(z ∈ U). (1.7)

On the other hand, if B = 1, then we have

ℜ

��
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)

�
− k

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

����>
1+ A

2
(z ∈ U) . (1.8)



J. Dziok and H. Srivastava / Eur. J. Pure Appl. Math, 2 (2009), (302-324) 306

Related to the function classes T and Tη, we define the following two classes:

T W
�
φ,ϕ; A, B; k

�
:= T ∩W

�
φ,ϕ; A, B; k

�

and

T W η
�
φ,ϕ; A, B; k

�
:= Tη ∩W

�
φ,ϕ; A, B; k

�
.

For our present investigation, we assume that ϕ and φ are the functions of the

following forms:

ϕ(z) = z +

∞∑

n=2

αnzn and φ(z) = z +

∞∑

n=2

β nzn (z ∈ U), (1.9)

where the real sequences
�
αn

	
and

�
β n

	
are constrained further by

0≦ αn < β n (n ∈ N \ {1}) .

Moreover, let us put

dn := (k+ 1) (1+ B)β n− (kB + A+ k+ 1)αn (n ∈ N \ {1}) . (1.10)

The function classesW
�
φ,ϕ; A, B; k

�
andWη

�
φ,ϕ; A, B; k

�
unify and extend var-

ious known classes of analytic functions. We choose to list a few of these associated

analytic function classes in the last section (Section 8).

The object of the present paper is to investigate coefficient estimates, distortion

theorems, subordination theorems, convolution properties, integral means inequali-

ties, and radii of conexity and starlikenes of functions in the general classes

T W η
�
φ,ϕ; A, B; k

�
and T W

�
φ,ϕ; A, B; k

�
,

which we have introduced here.
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2. Coefficient Inequalities and Coefficient Estimates

In this section, we first derive a sufficient condition for a function f to belong to

the class W
�
φ,ϕ; A, B; k

�
.

Theorem 2.1. Let
�
dn

	
be defined by (1.10), 0 ≦ B ≦ 1, and −1 ≦ A < B. If a

function f of the form (1.1) with

�
ϕ ∗ f

�
(z) 6= 0 (z ∈ U \ {0}),

satisfies the following condition:

∞∑

n=2

dn

��an

�� ≦ B − A, (2.1)

then the function f belongs to the class W
�
φ,ϕ; A, B; k

�
.

Proof. Let 0 ≦ B < 1. Then, for a function f of the form (1.1), we have

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− k

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

����−
1− AB

1− B2

����

≦ (k+ 1)

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

����+
B (B − A)

1− B2

≦ (k+ 1)

∞∑
n=2

�
βn−αn

�
|an||z|

n−1

1−
∞∑

n=2

αn|an||z|n−1

+
B (B− A)

1− B2
.

Thus, by (2.1), we obtain (1.7). Consequently, f ∈ W
�
φ,ϕ; A, B; k

�
. We now sup-

pose that B = 1. Then simple calculations give

k

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

����−ℜ
��
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
−

1+ A

2

�

≦ (k+ 1)

����
�
φ ∗ f

�
(z)�

ϕ ∗ f
�
(z)
− 1

����
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≦ (k+ 1)

∞∑
n=2

�
β n−αn

�
|an||z|

n−1

1−
∞∑

n=2

αn|an||z|n−1

,

which, by means of (2.1), leads us to (1.8). Therefore, f ∈ W
�
φ,ϕ; A, B; k

�
, and the

proof of Theorem 2.1 is completed.

Our next theorem shows that the condition (2.1) is necessary as well for func-

tions of the form (1.1) satisfying the argument property (1.2) to belong to the class

T W η
�
φ,ϕ; A, B; k

�
.

Theorem 2.2. Let f be a function of the form (1.1) satisfying the argument property

(1.2). Then f belongs to the class T W η
�
φ,ϕ; A, B; k

�
if and only if the condition (2.1)

holds true.

Proof. In view of Theorem 2.1, we need only to show that each function f from the

class T W η
�
φ,ϕ; A, B; k

�
satisfies the coefficient inequality (2.1). Let f be a function

of the form (1.1) and satisfying the argument property (1.2) belong to the class

T W η
�
φ,ϕ; A, B; k

�
. Then, putting z = r iη in the conditions (1.7) and (1.8), we

obtain

(k+ 1)

∞∑
n=2

�
β n−αn

�
|an|r

n−1

1−
∞∑

n=2

αn|an|rn−1

<
B− A

1+ B
.

We thus find that

∞∑

n=2

�
(k+ 1) (1+ B)β n− (k (1+ B) + 1+ A)αn

�
|an|r

n−1 < B − A,

which, upon letting r → 1−, readily yields the assertion (2.1).

Since the condition (2.1) is independent of η, Theorem 2.2 yields the following

result.
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Theorem 2.3. Let f be a function of the form (1.1) satisfying the agument property

(1.2). Then f ∈ T W
�
φ,ϕ; A, B; k

�
if and only if the condition (2.1) holds true.

From Theorems 2.2 and 2.3 we can obtain the following coefficient estimates for

functions in the classes

T W η
�
φ,ϕ; A, B; k

�
and T W

�
φ,ϕ; A, B; k

�
,

respectively.

Corollary 2.1. If a function f of the form (1.1) belongs to the class T W η
�
φ,ϕ; A, B; k

�
,

then
��an

��≦
B− A

dn

(n ∈ N \ {1}), (2.2)

where dn is defined by (1.10). The result is sharp and the functions fn,η given by

fn,η(z) = z−
B − A

dn

ei(1−n)ηzn (z ∈ U; n ∈ N) (2.3)

are the extremal functions.

Corollary 2.2. If a function f of the form (1.1) belongs to the class T W
�
φ,ϕ; A, B; k

�
,

then the coefficient estimates given by (2.2) hold true. The result is sharp and the func-

tions fn,η

�
η ∈ R

�
given by (2.3) are the extremal functions.

3. Distortion Theorems

By applying Theorem 2.2, we can deduce the following lemma.

Lemma 3.1. Let a function f of the form (1.1) belong to the class T W η
�
φ,ϕ; A, B; k

�
.

If the sequence
�
dn

	
defined by (1.10) satisfies the following inequality:

d2 ≦ dn (n ∈ N \ {1}) , (3.1)
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then
∞∑

n=2

an ≦
B− A

d2

.

Moreover, if

nd2 ≦ 2dn (n ∈ N \ {1}) , (3.2)

then
∞∑

n=2

nan ≦
2 (B− A)

d2

.

Theorem 3.1. Let a function f belong to the class T W η
�
φ,ϕ; A, B; k

�
. If the sequence

�
dn

	
defined by (1.10) satisfies (3.1), then

r −
B− A

d2

r2 ≦
�� f (z)

�� ≦ r +
B− A

d2

r2 (|z|= r < 1) . (3.3)

Moreover, if (3.2) holds true, then

1−
2 (B− A)

d2

r ≦
�� f ′(z)

��≦ 1+
2 (B− A)

d2

r (|z|= r < 1) . (3.4)

The result is sharp and the extremal function f2,η is given by (2.3).

Proof. Let a function f of the form (1.1) belong to the class T W η
�
φ,ϕ; A, B; k

�
.

Then, for |z|= r < 1,

�� f (z)
�� =

�����z +
∞∑

n=2

anzn

����� ≦ r +

∞∑

n=2

��an

�� rn

= r + r2

∞∑

n=2

��an

�� rn−2 ≦ r + r2

∞∑

n=2

��an

��

and

�� f (z)
�� =

�����z +
∞∑

n=2

anzn

����� ≧ r −
∞∑

n=2

��an

�� rn

= r − r2

∞∑

n=2

��an

�� rn−2 ≧ r−r2

∞∑

n=2

��an

�� ,

which, in light of Lemma 3.1, yields (3.3). Analogously, we can prove (3.4).

Theorem 3.1 implies the following corollary:
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Corollary 3.1. Let a function f belong to the class T W
�
φ,ϕ; A, B; k

�
. If the sequence

�
dn

	
defined by (1.10) satisfies (3.1), then the assertion (3.3) holds true. Moreover,

if we assume that (3.2) is satisfied, then the assertion (3.4) holds true. The result is

sharp and the extremal functions f2,η

�
η ∈ R

�
are given by (2.3).

4. Results Involving Subordination Between Analytic Functions

Before stating and proving our subordination theorems for the function classes

T W η
�
φ,ϕ; A, B; k

�
and T W

�
φ,ϕ; A, B; k

�
,

we need the following definition as well as Lemma 4.1.

Definition 4.1. A sequence {bn} of complex numbers is said to be a subordinating factor

sequence if, for each function f of the form (1.1) from the class S c, we have

∞∑

n=1

bnanzn ≺ f (z)
�
a1 = 1

�
. (4.1)

Lemma 4.1. (see [36]) The sequence {bn} is a subordinating factor sequence if and only

if

ℜ

 
1+ 2

∞∑

n=1

bnzn

!
> 0 (z ∈ U) . (4.2)

Theorem 4.1. Let the sequence
�
dn

	
, defined by (1.10), satisfy the inequality (3.1). If

g ∈ S c and f ∈ T W η
�
φ,ϕ; A, B; k

�
, then

ǫ( f ∗ g)(z)≺ g(z) (4.3)

and

ℜ
�

f (z)
�
>−

1

2ǫ
(z ∈ U) , (4.4)

where

ǫ =
d2

2
�
B− A+ d2

� . (4.5)

The constant factor ǫ cannot be replaced by a larger number.
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Proof. Let a function f of the form (1.1) belong to the class T W η
�
φ,ϕ; A, B; k

�

and suppose that

g(z) = z+

∞∑

n=2

cnzn (z ∈ U)

belongs to the class S c. Then

ǫ( f ∗ g)(z) = ǫz +

∞∑

n=2

�
ǫan

�
cnzn.

Thus, by the above Definition, the subordination result (4.3) holds true if

�
ǫan

	∞
n=1

�
a1 = 1

�

is a subordinating factor sequence. In view of Lemma 4.1, this is equivalent to the

following inequality:

ℜ

 
1+ 2

∞∑

n=1

ǫanzn

!
> 0 (z ∈ U) . (4.6)

By (3.1) for |z|= r < 1, we have

ℜ

 
1+ 2

∞∑

n=1

ǫanzn

!
= ℜ

 
1+ 2ǫz +

∞∑

n=2

d2

B − A+ d2

anzn

!

≧ 1− 2ǫr −
r

B− A+ d2

∞∑

n=2

dn

��an

�� rn−1.

Consequently, by using Theorem 2.2, we obtain

ℜ

 
1+ 2

∞∑

n=1

ǫanzn

!
≧ 1−

d2

B− A+ d2

r −
B− A

B − A+ d2

r > 0.

This evidently proves the inequality (4.6) and hence the subordination result (4.3).

The inequality (4.4) follows from (4.3) by taking

g(z) =
z

1− z
= z+

∞∑

n=2

zn (z ∈ U) .
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We next observe that the function f2,η of the form (2.3) belongs to the class

T W η
�
φ,ϕ; A, B; k

�
. It is easily verified that

min
�
ℜ
�
ǫ f2,η (z)

�	
= −

1

2
(z ∈ U) .

This shows that the constant (4.5) cannot be replaced by any larger number.

Directly from Theorem 4.1, we can obtain Theorem 4.2 below.

Theorem 4.2. Let the sequence
�
dn

	
, defined by (1.10), satisfy the inequality (3.1). If

g ∈ S c and f ∈ T W
�
φ,ϕ; A, B; k

�
, then the conditions (4.3) and (4.4) hold true. The

constant factor ǫ in (4.3) cannot be replaced by a larger number.

5. Integral Means Inequalities

Following the work of Littlewood [11], we obtain here some integral means in-

equalities for functions belonging to the class T W η
�
φ,ϕ; A, B; k

�
.

Lemma 5.1. (see [11]) Let f , g ∈ fA . If f ≺ g, then

∫ 2π

0

�� f (reiθ )
��η dθ ≦

∫ 2π

0

��g(reiθ )
��η dθ

�
0< r < 1; η > 0

�
. (5.1)

Silverman [23] found that the following function:

g(z) = z −
z2

2
(z ∈ U) ,

is often extremal over the family of functions with negative coefficients. He applied

this function to resolve a certain integral means inequality, which was conjectured

in [25] and settled in [26], that (5.1) holds true for all functions f with negative

coefficients. Silverman [26] also proved his conjecture for some subclasses of T .

Applying Lemma 5.1 and Theorem 2.2, we now prove the following result.
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Theorem 5.1. Let the sequence
�
dn

	
defined by (1.10) satisfy the inequality (3.1). If

f ∈ T W η
�
φ,ϕ; A, B; k

�
, then

∫ 2π

0

�� f (reiθ )
��λ dθ ≦

∫ 2π

0

�� f2,η(reiθ )
��λ dθ (0 < r < 1; λ > 0) , (5.2)

where f2,η(z) is defined by (2.3).

Proof. For a function f of the form (1.1), the inequality (5.2) is equivalent to the

following inequality:

∫ 2π

0

�����1+
∞∑

n=2

anzn−1

�����

λ

dθ ≦

∫ 2π

0

����1−
B− A

d2

e−iη z

����
λ

dθ
�

z = reiθ
�

.

Thus, by Lemma 5.1, it suffices to show that

∞∑

n=2

anzn−1 ≺−
B − A

d2

e−iηz. (5.3)

Upon setting

w(z) =

∞∑

n=2

d2eiη

A− B
an zn−1 (z ∈ U) ,

and using (3.1) and Theorem 2.2, we obtain

|w(z)| =

�����

∞∑

n=2

d2

A− B
an zn−1

�����≦ |z|
∞∑

n=2

dn

B− A

��an

��≦ |z| (z ∈ U) .

Since
∞∑

n=2

anzn−1 =−
B − A

d2

e−iηw(z) (z ∈ U) ,

by the definition of subordination, we have (5.3). This completes the proof of Theo-

rem 5.1.

We can restate Theorem 5.1 as Theorem 5.2 below.

Theorem 5.2. Let the sequence
�
dn

	
defined by (1.10) satisfy the inequality (3.1). If a

function f of the form (1.1) satisfying the argument property (1.2) belongs to the class

T W
�
φ,ϕ; A, B; k

�
, then the integral means inequality (5.2) holds true.
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6. The Radii of Convexity and Starlikeness

We begin this section by proving the following result.

Theorem 6.1. The radius of starlikeness of order α for the class T W η
�
φ,ϕ; A, B; k

�
is

given by

R∗
α

�
T W η

�
φ,ϕ; A, B; k

��
= inf

n∈N\{1}

�
(1−α) dn

(n−α) (B − A)

� 1

n−1

, (6.1)

where dn is defined by (1.10).

Proof. A function f ∈ Tη of the form (1.1) is starlike of order α in the disk U(r)

(0< r ≦ 1) if and only if it satisfies the condition (1.5). Since

����
z f ′(z)

f (z)
− 1

���� =

��������

∞∑
n=2

(n− 1 )anzn

z +
∞∑

n=2

anzn

��������
≦

∞∑
n=2

(n− 1 )
��an

�� |z|n−1

1−
∞∑

n=2

��an

�� |z|n−1

,

by putting |z|= r, the condition (1.5) is true if

∞∑

n=2

n−α

1−α

��an

�� rn−1 ≦ 1. (6.2)

By Theorem 2.2, we have
∞∑

n=2

dn

B− A

��an

�� ≦ 1,

so that the condition (6.2) is true if

n−α

1−α
rn−1 ≦

dn

B− A
(n ∈ N \ {1}),

that is, if

r ≦

�
(1−α) dn

(n−α) (B− A)

� 1

n−1

(n ∈ N \ {1}).

It follows that each function f ∈ T W η
�
φ,ϕ; A, B; k

�
is starlike of order α in the disk

U(r), where

r = R∗
α

�
T W η

�
φ,ϕ; A, B; k

��

is defined by (6.1).
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Theorem 6.2. The radius of convexity of order α for the class T W η
�
φ,ϕ; A, B; k

�
is

given by

Rc
α

�
T W η

�
φ,ϕ; A, B; k

��
= inf

n∈N\{1}

�
(1−α) dn

n (n−α) (B− A)

� 1

n−1

,

where dn is defined by (1.10).

Proof. The proof of Theorem 6.2 is analogous to that of Theorem 6.1, and we

omit the details involved.

By applying Theorems 6.1 and 6.2, we obtain the following two corollaries.

Corollary 6.1. The radius of starlikeness of order α for the class T W
�
φ,ϕ; A, B; k

�
is

given by

R∗
α

�
T W

�
φ,ϕ; A, B; k

��
= inf

n∈N\{1}

�
(1−α) dn

(n−α) (B − A)

� 1

n−1

,

where dn is defined by (1.10).

Corollary 6.2. The radius of convexity of order α for the class T W
�
φ,ϕ; A, B; k

�
is

given by

Rc
α

�
T W

�
φ,ϕ; A, B; k

��
= inf

n∈N\{1}

�
(1−α) dn

n (n−α) (B− A)

� 1

n−1

,

where dn is defined by (1.10).

7. Convolution Properties

Theorem 7.1. Let the sequence
�
dn

	
defined by (1.10) satisfy the inequality (3.1) with

d2 ≧ B− A.

If

f ∈ T W η
�
φ,ϕ; A, B; k

�
and g ∈ T W µ

�
φ,ϕ; A, B; k

�
,

then

f ∗ g ∈ T W η+µ
�
φ,ϕ; A, B; k

�
.
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Proof. Let the functions f and g of the forms:

f (z) = z +

∞∑

n=2

anzn and g(z) = z+

∞∑

n=2

bnzn (z ∈ U) . (7.1)

belong to the classes

T W η
�
φ,ϕ; A, B; k

�
and T W µ

�
φ,ϕ; A, B; k

�
,

respectively. Then, by appealing to Theorem 2.2, we have

∞∑

n=2

dn

B − A

��an

�� ≦ 1 and

∞∑

n=2

dn

B− A

��bn

��≦ 1.

Thus, by the Cauchy-Schwarz inequality, we obtain

∞∑

n=2

dn

B− A

Æ��an bn

��≦ 1 . (7.2)

In order to prove that
∞∑

k=2

dn

B− A

��an bn

��≦ 1,

by virtue of (7.2), it is sufficient to show that

��an bn

��≦
Æ��anbn

�� (n ∈ N \ {1})

or, equivalently, that Æ��an bn

�� ≦ 1 (n ∈ N \ {1}).

We note from (7.2) that

Æ��an bn

�� ≦
B − A

dn

(n ∈ N \ {1}).

Consequently, we need only to prove that

B− A

dn

≦ 1 (n ∈ N \ {1}).

Since d2 ≧ B − A, by hypothesis, so the last inequality follows from (3.1).

By applying Theorem 7.1, we obtain the following corollary.
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Corollary 7.1. Let the sequence
�
dn

	
defined by (1.10) satisfy the inequality (3.1)

with

d2 ≧ B− A.

If

f , g ∈ T W
�
φ,ϕ; A, B; k

�
,

then

f ∗ g ∈ T W
�
φ,ϕ; A, B; k

�
.

Theorem 7.2. Let the sequence
�
dn

	
defined by (1.10) satisfy the inequality (3.1) with

d2 ≧ 2 (B− A) .

If the functions f and g of the form (7.1) belong to the class T W η
�
φ,ϕ; A, B; k

�
, then

the function h(z) given by

h(z) = z−
∞∑

n=2

(
��an

��2+
��bn

��2) zn (7.3)

belongs to the class T W 0

�
φ,ϕ; A, B; k

�
.

Proof. Suppose that each of the functions f and g of the form (7.1) belongs to the

class T W η
�
φ,ϕ; A, B; k

�
. Then, by Theorem 2.2, we have

∞∑

n=2

�
dn

B − A

��an

��
�2

≦ 1 and

∞∑

n=2

�
dn

B− A

��bn

��
�2

≦ 1.

We thus obtain
∞∑

n=2

1

2

�
dn

B− A

�2���an

��2 +
��bn

��2
�
≦ 1. (7.4)

In order to prove that
∞∑

k=2

dn

B − A

���an

��2+
��bn

��2
�
≦ 1,

by means of (7.4), it is sufficient to show that

dn

B− A
≧ 2 (n ∈ N \ {1}).

Since d2 ≧ 2 (B− A) , by hypothesis, so the last inequality follows from (3.1).
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8. Concluding Remarks and Observations

We conclude this paper by observing that, in view of the subordination relation

(1.6), by suitably choosing the functions φ and ϕ, we can consider various new or

known classes of functions. Let

Wn

�
ϕ; A, B; k

�
:=W

 
zϕ′ (z) ,

n−1∑

k=0

ϕ
�

x kz
�

; A, B; k

!
(n ∈ N; x = e

2πi

n ).

In particular, the class

Wn

�
ϕ; A, B

�
:=Wn

�
ϕ; A, B; 0

�

consists of functions f ∈A , which satisfy the following subordination condition:

z
�
ϕ ∗ f

�′
(z)

n−1∑
k=0

�
ϕ ∗ f

��
x kz
� ≺

1+ Az

1+ Bz
.

It is related to the class of starlike functions with respect to n-symmetric points. More-

over, by putting n = 1, we obtain the class

W
�
ϕ; A, B

�
:=W1

�
ϕ; A, B

�

defined by the following subordination condition:

z
�
ϕ ∗ f

�′
(z)�

ϕ ∗ f
�
(z)
≺

1+ Az

1+ Bz
.

This class is related to the familiar class of starlike functions. Analogously, the class

defined by

Hn

�
ϕ;γ, k

�
:=Wn

�
ϕ; 2γ− 1, 1; k

� �
0 ≦ γ < 1

�

consists of functions f ∈A , which satisfy the following condition:

ℜ




z
�
ϕ ∗ f

�′
(z)

n−1∑
k=0

�
ϕ ∗ f

��
x kz
� − γ



> k

���������

z
�
ϕ ∗ f

�′
(z)

n−1∑
k=0

�
ϕ ∗ f

��
x kz
� − 1

���������

(z ∈ U) .
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It is related to the class of k-uniformly convex functions of order γ with respect to

n-symmetric points. Moreover, by setting n = 1, we obtain the function class

H
�
ϕ;γ, k

�
:=H1

�
ϕ;γ, k

�
,

which is defined by the following condition:

ℜ

�
z
�
ϕ ∗ f

�′
(z)�

ϕ ∗ f
�
(z)
− γ

�
> k

�����
z
�
ϕ ∗ f

�′
(z)�

ϕ ∗ f
�
(z)
− 1

����� (z ∈ U) .

This class is related to the class of k-uniformly convex functions of order γ. The

function classes

UST
�
γ, k
�

:=H
�

z

1− z
;γ, k

�

and

UCV
�
γ, k
�

:=H

�
z

(1− z)
2
;γ, k

�

are the well-known classes of of k-starlike functions of order γ and k-uniformly convex

functions of order γ, respectively. In particular, the function classes

UCV := UCV (1, 0) and k− UCV := UCV (k, 0)

were introduced by Goodman [8] (see also [14] and [22]) and Kanas et al. ( [10]

and [9]), respectively (see also [7], [20], [21], [33], [34] and [35]).

We note that the following function class:

HT
�
ϕ;γ, k

�
:= T0 ∩H

�
ϕ;γ, k

�

was investigated recently by Raina and Bansal [19].

If we set

h(α1, z) := z q Fs(α1, · · · ,αq;β1, · · · ,β s; z),

where qFs is the generalized hypergeometric function (see, for details, [29]), then

we obtain the following function class:

UH
�
q, s,λ,γ, k

�
:=HT

�
λh(α1+ 1, z) + (1−λ)h(α1, z);γ, k

�
(0≦ λ ≦ 1)
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which was introduced and studied by Ramachandran et al. [20] (see also several re-

cent works including, for example, [4], [5], [6], [12], [13], [18], [27], [34] and

[35], which investigate various properties and applications of the Dziok-Srivastava

operator defined by means of the Hadamard product involving the generalized hyper-

geometric function q Fs).

Let λ be a convex parameter. A function f ∈A is said to belong to the class

Vλ
�
ϕ; A, B

�
:=W

�
λ
ϕ (z)

z
+ (1−λ)ϕ′ (z) , z; A, B; 0

�

if it satisfies the following condition:

λ

�
ϕ ∗ f

�
(z)

z
+ (1−λ)

�
ϕ ∗ f

�′
(z)≺

1+ Az

1+ Bz
.

Moreover, a function f ∈A is said to belong to the class

Uλ
�
ϕ; A, B

�
:=W

�
λ
ϕ (z)

z
+ (1−λ)ϕ′ (z) ; A, B; 0

�

if it satisfies the following condition:

z
�
ϕ ∗ f

�′
(z) + (1−λ) z2

�
ϕ ∗ f

�′′
(z)

λ
�
ϕ ∗ f

�
(z) + (1− λ) z

�
ϕ ∗ f

�′
(z)
≺

1+ Az

1+ Bz
. (8.1)

The above-defined function classes

Wn

�
ϕ; A, B

�
, Hn

�
ϕ;γ, k

�
, Uλ

�
ϕ; A, B

�
and Vλ

�
ϕ; A, B

�

generalize several important classes, many of which were investigated systematically

in earlier works (see, for example, [1], [2], [3], [16], [17], [28] and [30]).

If we apply the results presented in this paper to the classes discussed above, we

can easily be led to a remarkably large number of additional new or known results.
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