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Abstract. In this paper, we deal with multiobjective two-person zero-sum games with fuzzy payoffs

and fuzzy goals. The aim of the paper is to explain new concepts of solutions for multiobjective

two-person zero-sum games with fuzzy payoffs and fuzzy goals. We assume that each player has

a fuzzy goal for each of the payoffs. A degree of attainment of the fuzzy goal is defined and the

max-min strategy with respect to the degree of attainment of the fuzzy goal is examined. If all of

the membership functions both for the fuzzy payoffs and for the fuzzy goals are linear, the max-min

solution is formulated as a nonlinear programming problem. The problem can be reduced to a linear

programming problem by making use of Sakawa’s method, the variable transformation by Charnes and

Cooper and the relaxation procedure.
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1. Introduction

We consider multiobjective two-person zero-sum games with fuzzy payoffs and fuzzy

goals.A payoff matrix with elements represented as fuzzy payoff matrix. For any pair of strate-

gies, a player receives a payoff represented as a fuzzy number, i.e., the strategy itself is not

fuzzy but the payoffs are fuzzy. For example, when a payoff matrix of a game is constructed

by information from a competitive system, elements of the payoff matrix would be ambiguous

if imprecision or vagueness exists in the information. this paper is related to the research

fields both of multiobjective games and fuzzy games. Most of the studies on multiobjective

games are on two-person games [5, 11, 13, 20] but recently a couple of articles have been de-

voted to the studies of n-person multiobjective games [10, 21]. The research on fuzzy games

has been develop by Aubin [1, 2] and Butnariu [6, 7]. Recently, Campos [8] has explored
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zero-sum fuzzy matrix game. The problem treated by Campos was a game with a single pay-

off, and the min-max problem was formulated using the fuzzy mathematical programming

method. Moreover, Sakawa and Nishizaki [14, 17] have explored zero-sum multiobjective

fuzzy matrix games.

In this paper, a new solution concept in a two-person zero-sum multiobjective fuzzy matrix

game is proposed. In section 2, a fuzzy expected payoff is defined, and a degree of attainment

of a fuzzy goal is considered in games with fuzzy payoff matrices. The max-min solution with

respect to a degree of attainment of a fuzzy goal is also defined. In section 3, the method

for computing the solution of a multiobjective game is proposed when membership functions

of fuzzy goals and shape functions of L-R fuzzy numbers for fuzzy payoffs are linear. Cook’s

example [12] for computing the max-min solution is formulated as a nonlinear programming

problem, but it can be transformed to a linear programming problem by making use of the

Sakawa’s method [18], by using the variable transformation by Charnes and Cooper [9] and

the relaxtion procedure [19].

2. Background

Definition 1 (Zero-sum game with fuzzy payoffs). When Player I chooses a pure strategy i ∈ I

and Player I I chooses a pure strategy j ∈ J, let eai j be fuzzy payoff for Player I and −eai j be a

fuzzy payoff for Player I I. The fuzzy payoff eai j is represented by the L-R fuzzy number :

eai j =
�

ai j , a′i j , ài j

�
LR

(1)

where ai j is a mean value, a′i j is a left spread and ài j is a right spread. The two-person zero-sum

fuzzy game can be represented as a fuzzy payoff matrix :

eA=



ea11 ... ea1n

... ... ...

eam1 ... eamn


 (2)

The game defined by (2) is called a two-person zero-sum game with fuzzy payoffs. When each

of the players chooses a strategy, a payoff for each of them is represented as a fuzzy number, but

an outcome of the game has a zero-sum structure such that, when one player receives a gain the

order player suffers an equal loss. Assuming that each of the two players has r objectives, the

following multiple fuzzy payoff matrices represent a multiobjective two-person zero-sum game

with fuzzy payoffs :

eA1 =



ea1

11 ... ea1
1n

... ... ...

ea1
m1 ... ea1

mn


 , ..., eAr =



ear

11 ... ear
1n

... ... ...

ear
m1 ... ear

mn


 (3)

A fuzzy payoff can be extended to a fuzzy expected payoff by using mixed strategies in a

procedure similar to the extension from a payoff to an expected payoff in conventional two-

person zero-sum games.
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Definition 2 (Fuzzy expected payoff). For any pair of mixed strategies x ∈ X and y ∈ Y , the

kth fuzzy expected payoff of Player I is defined as the fuzzy number

x eAk y =




m∑

i=1

n∑

j=1

ak
i j x i y j ,

m∑

i=1

n∑

j=1

a′ki j x i y j ,

m∑

i=1

n∑

j=1

àk
i j x i y j




LR

(4)

characterized by the membership function

µx eAk y : Dk→ [0,1] (5)

where Dk ∈ R is the domain of the kth payoff for Player I .

Definition 3 (Fuzzy goal). Let the domain of the kth payoff for Player I be denoted Dk ∈ R .

Then the fuzzy goal
s

G
k

with respect to the kth payoff for Player I is defined as the fuzzy set on

the set Dk characterized by the membership function

µeGk : Dk→ [0,1] (6)

A membership function value of a fuzzy goal can be interpreted as a degree of attainment of the

fuzzy goal. Then we assume that, for any pair of payoffs, a player prefers the payoff having the

greater degree of attainment of the fuzzy goal to the other payoff.[15]

Definition 4 (A degree of attainment of a fuzzy goal). For any pair of mixed strategies (x , y),

let the kth fuzzy expected payoff for Player I be denoted by x eAk y and let the kth fuzzy goal for

Player I be denoted by
s

G
k

. Then a fuzzy set expressing an attainment state of the fuzzy goal

is represented by the intersection of the fuzzy expected payoff x eAk y and the fuzzy goal
s

G
k

. The

membership function of the fuzzy set is represented as

µk
a(x ,y)

(p) =min(µx eAk y(p),µeGk (p)) (7)

where p ∈ Dk is a payoff for Player I. A degree of attainment of the kth fuzzy goal is defined as

the maximum of the membership function (7), i.e.,

⌢
µ

k

a(x ,y)(p
∗) =max

p
µk

a(x ,y)
(p) =max

p

n
min(µx eAk y(p),µeGk(p))

o
(8)

A degree of attainment of the fuzzy goal can be consider to be a concept similar to a degree of

satisfaction of the fuzzy decision by Bellman and Zadeh [4] when the fuzzy constraint is replaced

by the fuzzy expected payoff, and it can be also interpreted as a possibility of attainment of the

fuzzy goal. When Player I and I I choose mixed strategies
⌢
x and

⌢
y, respectively, the degree of

attainment of the kth fuzzy goal
⌢
µ

k

a(x ,y)(p
∗) is determined by (8). We assume that Player I

supposes that Player I I choose a strategy
⌢
y so as to minimize Player I ’s degree of attainment

of the aggregated fuzzy goal
⌢
µ

a(
⌢
x ,
⌢
y )
(p∗), i.e., Player I ’s degree of attainment of the aggregated
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fuzzy goal, assuming he choose
⌢
x , will be v(x) = miny∈Y

⌢
µ

a(
⌢
x ,
⌢
y )
(p∗). Hence,Player I chooses

a strategy so as to maximize his degree of attainment of the aggregated fuzzy goal v(x). In

short, we assume that Player I behaves according to the maximin principle in terms of a degree

of attainment of the aggregated fuzzy goal [16].

Definition 5 (Maximin solution with respect to a degree of attainment of the aggregated fuzzy

goal). For any pair of mixed strategies (x , y), let a degree of attainment of the aggregated fuzzy

goal for Player I be denoted
⌢
µa(x ,y)(p

∗). Then Player I ’s maximin value with respect to a degree

of attainment of the aggregated fuzzy goal is

max
x∈X

min
y∈Y

⌢
µa(x ,y)(p

∗) (9)

and such a strategy x is called the maximin solution with respect to the degree of attainment of

the aggregated fuzzy goal. The maximin solution can be consider to be the solution maximizing

the function, which is the minimal value of the function with respect to the opponent’s decision

variables. We assume that a player has no information about his opponent or the information is

not useful for the decision making if he has. We can also consider Player I I ’s minimax solution

with respect to a degree of attainment of the aggregated fuzzy goal in a similar way.

3. Solution Concept

We show a new method for computing the max-min solution of multiobjective game.

3.1. Multiobjective Two-person Zero-sum Games with Fuzzy Payoffs and Fuzzy

Goals.

Consider multiobjective two-person zero-sum games with fuzzy payoffs eAk, k = 1, .., r. We

assume that a player has a fuzzy goal for each of the objectives, which expresses the player’s

degree of satisfaction for the payoff. Let Player I ’s membership function of the fuzzy goal for

the kth objective be denoted by µeGk (pk) for the kth payoff pk.

When the membership function µeGk(pk) of the fuzzy goal is linear, it can be represented

as

µeGk(p
k) =





0

1− ak−pk

ak−ak

1

if pk < ak

if ak ≤ pk ≤ ak

if ak < pk



 (10)

where, for the kth objective, ak is the payoff giving the worst degree of satisfaction for Player’s

I and ak is the payoff giving the best degree of satisfaction for Player I ’s.

Morever, when the membership function µeak
i j
(pk) of the element eak

i j, which is a fuzzy
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number, of the fuzzy payoff matrix eAk for the kth objective is linear, it can be represented as

µeak
i j
(pk) =





0

(pk − ak
i j
+ ák

i j
) �ák

i j

(ak
i j
+ àk

i j
− pk) �àk

i j

0

if pk < ak
i j
− ák

i j

if ak
i j
− ák

i j
≤ pk < ak

i j

if ak
i j
≤ pk ≤ ak

i j
+ àk

i j

if ak
i j
+ àk

i j
< pk





(11)

In general, the degree of attainment of the fuzzy goal can be represented as the following

vector expression: 


max
p1

min(µx eA1 y(p
1),µeG1(p1))

...............................

max
pr

min(µx eAr y(p
r),µeGr (pr))


 . (12)

For such a problem, we employ the fuzzy decision rule by Bellman and Zadeh [4], as an

aggregation rule of multiple fuzzy goals in a way similar to the previous subsection. Then the

membership function of the aggregated fuzzy goal is expressed as

⌢
µa(x ,y)(p

∗) =min
k∈K

max
pk

min(µx eAk y(p
k),µeGk(p

k)), (13)

where p∗ = (p1∗ , ..., pr∗ ). Then, Player I ’s maximin value with respect to a degree of attain-

ment of the aggregated fuzzy goal is represented as

max
x∈X

min
y∈Y

⌢
µa(x ,y)(p

∗) =max
x∈X

min
y∈Y

min
k∈K

max
pk

min(µx eAk y(p
k),µeGk (pk)). (14)

When membership functions are linear, the maximin strategy with respect to a degree of

attainment of the aggregated fuzzy goal can be obtained by solving the mathematical pro-

gramming problem in the following theorem.

Theorem 1. For multiobjective two-person zero-sum games, if membership functions of the fuzzy

goal and shape functions of L-R fuzzy numbers for fuzzy payoffs are linear such as (10) and (11),

Player I ’s maximin solution with respect to a degree of attainment of the aggregated fuzzy goal is

equal to an optimal solution to the nonlinear programming problem:

maximize
x ,σ

σ

sub ject to

m∑

i=1

n∑

j=1

(ak
i j
+àk

i j
)xi y j−ak

m∑

i=1

n∑

j=1

àk
i j

xi y j+ak−ak

≥ σ, ∀y ∈ Y, k = 1, ..., r

m∑

i=1

x i = 1

x i ≥ 0, i = 1, ..., m

(15)

if the optimal value σ∗ satisfies 0≤ σ∗ ≤ 1 [14, 17].
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We can calculate the maximin solution with respect to a degree of attainment of the fuzzy

goal by applying a method using the relaxation procedure by Shimizu and Aiyoshi [19], in a

process similar to a single-objective case and then we obtain the maximin solution.

Consider the following relaxed problem for problem (15) by taking L points y l , l = 1, ..., L

satisfying y l ∈ Y, i.e.,

n∑

j=1

y l
j
= 1, y l

j
≥ 0, j = 1, ..., n.

maximize
x ,σ

σ

sub ject to

m∑

i=1

n∑

j=1

(ak
i j
+àk

i j
)xi y l

j
−ak

m∑

i=1

n∑

j=1

àk
i j

xi y l
j
+ak−ak

≥ σ, l = 1, ..., L, k = 1, ..., r

m∑

i=1

x i = 1

x i ≥ 0, i = 1, ..., m

(16)

Let σ =
⌢
σ, where

⌢
σ is a constant value in [0,1]. Then the constraints of the relaxed problem

(16) become as follows:

m∑

i=1

n∑

j=1

(ak
i j + àk

i j)x i y l
j
− ak ≥

⌢
σ(

m∑

i=1

n∑

j=1

àk
i j x i y l

j
+ ak − ak), l = 1, ..., L, k = 1, ..., r

m∑

i=1

x i = 1

x i ≥ 0, i = 1, ..., m

, (17)

we can find maximal constant value
⌢
σ satisfying the constraints (17).

m∑

i=1

n∑

j=1

(ak
i j
+ àk

i j
)x i y l

j
− ak = Pk

l

m∑

i=1

n∑

j=1

àk
i j

x i y l
j
+ ak − ak = Qk

l

, (18)

the first constraint of the relaxed problem (16) is equivalent to following condition

Pk
l

Qk
l

≥ σ, k = 1, ..., r, l = 1,2, ..., L (19)

We can find the maximal constant value
⌢
σ of the problem (17) by making use of the Dinkel-
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bach algorithm [3] as follows:

maximize r

sub ject to Pk
l
−
⌢
σtQ

k
l
− r ≥ 0

(

m∑

i=1

n∑

j=1

(ak
i j
+ àk

i j
)x i y l

j
− ak)− Pk

l
= 0,

(

m∑

i=1

n∑

j=1

àk
i j

x i y l
j
+ ak − ak)−Qk

l
= 0

m∑

i=1

x i = 1

x i ≥ 0,

k = 1, ..., r, l = 1,2, ...L, t = 1,2, ..., T

(20)

Where we have denoted
⌢
σt = min

§
Pk

l

Qk
l

ª
and

⌢
σ1 = 0 . If maximize r = 0, terminate,

then the feasible solution x∗ and the maximal constant value
⌢
σ must be the optimal solution�

x∗,σ∗ =
⌢
σ
�

of the relaxed problem (16). Otherwise, i.e., if maximize r 6= 0, set t = t + 1,

and solve it again.

We can find the maximal constant value
⌢
σ by repeating this procedure in a finite number

of iterations. The minimization problems for the test of feasibility and the generation of the

most violated constraint are represented as follows:

minimize

m∑

i=1

n∑

j=1

(ak
i j
+àk

i j
)x L

i
y j−ak

m∑

i=1

n∑

j=1

àk
i j

x L
i

y j+ak−ak

sub ject to

n∑

j=1

y j = 1

y j ≥ 0, j = 1, ..., n,

k = 1, ..., r. (21)

The minimization problems (21), which generates the most violated constraint, can be re-

duced to lineear programming problems by using the variable transformations by Charnes

and Cooper [9].Set

1



m∑

i=1

n∑

j=1

àk
i j

x L
i

y j + ak − ak




= tk, k = 1, ..., r (22)

and

y j t
k = zk

j , k = 1, ..., r (23)
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The minimization problem (21) can be rewritten as follows r linear programming problems:

minimize
zk ,tk

m∑

i=1

n∑

j=1

(ak
i j + àk

i j)x
L
i zk

j − ak tk

sub ject to

n∑

j=1

zk
j = tk

m∑

i=1

n∑

j=1

àk
i j x

L
i zk

j + (a− a)tk = 1

zk
j
≥ 0, j = 1, ..., n

, k = 1..., r. (24)

The kth problem in (24) is a linear programming problem which has decision variables zk =

(zk
1 , ..., zk

n) and tk, and has the two equality constraints and the nonnegative conditions of the

decision variables. Since there are r problems, the test for feasibility for the original problem

and the generation of the most violated constraint can be accomplished by solving the r linear

programming problems and finding the problem having the smallest optimal value.

The algorithm for computing the maximin solution to a multiobjective two-person zero-

sum games with fuzzy payoffs and fuzzy goals can be summarized in the following steps.

Algorithm

Step 1: Identify r fuzzy goals for the payoffs. Choose an initial point y1 ∈ Y and set l = 1. Then

formulate a relaxed problem (16), which is a linear fractional programming problem.

Step 2: Formulate the constraints (17) by setting σ =
⌢
σ in the constraints of the relaxed prob-

lem (16) and set t = 1. Compute an optimal solution (x∗,σ∗) by making use of the

problem (20) and If maximize r = 0, then the feasible solution x∗ and the maximal

constant value
⌢
σ must be the optimal solution

�
x∗,σ∗ =

⌢
σ
�

of the relaxed problem

(16). Then set x L = x∗ go to Step 3. Otherwise, i.e., if maximize r 6= 0, set t = t + 1,

and solve it again.

Step 3: Formulate r minimization linear programming problems (24) with x L.

Step 4: Solve r problems (24) and obtain r optimal solutions (zk∗ , tk∗), k = 1, ..., r. Let each of

the minimal objective function values be denoted by φk(zk∗ , tk∗), k = 1, ..., r and then

let φ
⌢

k (z
⌢

k
∗

, t
⌢

k
∗

) =min
k∈K
φk(zk∗ , tk∗).

Step 5: If φ
⌢

k (z
⌢

k
∗

, t
⌢

k
∗

) ≥ σ∗ + ε, terminate, where ε is a predetermined constant. Then x L is a

maximin solution with respect to a degree of attainment of the fuzzy goal. Otherwise,

i.e., if φ
⌢

k (z
⌢

k
∗

, t
⌢

k
∗

)< σ∗ + ε, set l = l + 1, return to Step 2.

We can also obtain Player I I ’s minimax solution with respect to a degree of attainment of

a fuzzy goal in similar way.
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Example 1. Assuming that each player has three pure strategies and three objectives, we consider

a multiobjective two-person zero-sum game with fuzzy payoffs be represented by [12, 17].

eA1 =



(2,0.2,0.2) (5,0.5,0.5) (1,0.8,0.8)

(−1,0.8,0.8) (−2,0.4,0.4) (6,0.1,0.1)

(0,0.1,0.1) (3,0.5,0.5) (−1,0.8,0.8)


 ,

eA2 =



(−3,0.8,0.8) (7,0.3,0.3) (2,0.4,0.4)

(0,0.5,0.5) (−2,0.2,0.2) (0,0.7,0.7)

(3,0.4,0.4) (−1,0.8,0.8) (−6,0.5,0.5)


 ,

and

eA3 =



(8,0.1,0.1) (−2,0.5,0.5) (3,0.7,0.7)

(−5,0.5,0.5) (6,0.4,0.4) (0,0.6,0.6)

(−3,0.8,0.8) (1,0.6,0.6) (6,0.1,0.1)


 .

Let fuzzy goals eG1, eG2 and eG3 of Player I for the three objectives be represented by the following

linear membership functions :

µeG(p) =





0 i f p1 < −1
p1+1

7.5
i f − 1≤ p1 ≤ 6.5

1 i f 6.5< p1





µeG(p) =





0 i f p2 < −2
p2+2

7.5
i f − 2≤ p2 ≤ 5.5

1 i f 5.5< p2





and

µeG(p) =





0 i f p3 < −1
p3+1

6.8
i f − 1≤ p3 ≤ 5.8

1 i f 5.8< p3





We computed the maximin solution by the Algorithm and obtained following solution :

x1 = 0.4434, x2 = 0.3178, x3 = 0.2388

y1 = 1, y2 = 0, y3 = 0
(25)

The degree of attainment of the fuzzy goal for the maximin solution was σ∗ = 0.246059388. In

Algorithm , we set the initial value of y as y1 = 0, y2 = 1, y3 = 0, and the number of iterations

was three.
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4. Conclusion

In this paper we have considered the maximin solutions with respect to a degree of at-

tainment of the fuzzy goal and have presented the computational method for their solutions.

We have used Sakawa’s method, the Dinkelbach algorithm, the variable transformation by

Charnes and Cooper and the relaxation procedure for minimax problems by Shimizu and

Aiyoshi for the maximin solutions of multiobjective two-person zero-sum games with fuzzy

payoffs and fuzzy goals.

For multiobjective two-person zero-sum games, if membership functions of the fuzzy goal

and shape functions of L-R fuzzy numbers for fuzzy payoffs are linear, the maximin solution

with respect to a degree of attainment of the aggregated fuzzy goal presented with a new

solution concept.

Finally, A numerical example has illustrated the proposed method and obtained the same

solution with Sakawa.
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