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1. Introduction

For any integer m > −p, let
∑

p,m denote the class of all meromorphic functions f of the

form:

f (z) = z−p +

∞
∑

k=m

akzk (p ∈ N = {1,2, . . .}), (1)

which are analytic and p-valent in the punctured disc

U∗ = {z : z ∈ C and 0< |z| < 1}= U\{0}. For convenience, we write
∑

p,−p+1 =
∑

p. If f and

g are analytic in U , we say that f is subordinate to g, written symbolically as follows:

f ≺ g or f (z)≺ g(z),

if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and

|w(z)| < 1 (z ∈ U) such that f (z) = g(w(z)) (z ∈ U).

In particular, if the function g is univalent in U , we have the equivalence (cf., e. g., [7]; see

also [8, p. 4]):

f (z)≺ g(z)⇔ f (0) = g(0) and f (U)⊂ g(U).
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For functions f ∈∑p,m, given by (1), and g ∈∑p,m defined by

g(z) = z−p +

∞
∑

k=m

bkzk (m> −p; p ∈ N), (2)

then the Hadamard product (or convolution) of f and g is given by

( f ∗ g) = z−p +

∞
∑

k=m

ak bkzk = (g ∗ f )(z) (m> −p; p ∈ N). (3)

For complex parameters

α1, . . .αq β1, . . . ,β s (β j /∈ Z−0 = {0,−1,−2, . . .}; j = 1,2, . . . , s),

we now define the generalized hypergeometric function qFs(α1, . . . ,αq;β1, . . . ,β s; z) by (see,

for example, [14, p.19])

qFs(α1, . . . ,αq;β1, . . . ,β s; z) =

∞
∑

k=0

(α1)k . . . (αq)k

(β1)k . . . (β s)k
· z

k

k!

(q ≤ s+ 1; q, s ∈ N0 =N ∪ {0}; z ∈ U), (4)

where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

(θ )ν =
Γ(θ + ν)

Γ(θ)
=

¨

1 (ν = 0;θ ∈ C\{0}),
θ(θ − 1) . . . (θ + ν − 1) (ν ∈ N ;θ ∈ C).

(5)

Corresponding to the function hp(α1, . . . ,αq;β1, . . . ,β s; z), defined by

hp(α1, . . . ,αq;β1, . . . ,β s; z) = z−p
qFs(α1, . . . ,αq;β1, . . . ,β s; z), (6)

we consider a linear operator

Hp(α1, . . . ,αq;β1, . . . ,β s; z) : Σp→ Σp,

which is defined by the following Hadamard product (or convolution):

Hp(α1, . . . ,αq;β1, . . . ,β s) f (z) = hp(α1, . . . ,αq;β1, . . . ,β s; z) ∗ f (z). (7)

We observe that, for a function f (z) of the form (1), we have

Hp(α1, . . . ,αq;β1, . . . ,β s) f (z) = z−p +

∞
∑

k=m

(α1)k+p . . . (αq)k+p

(β1)k+p . . . (β s)k+p

· ak

(k+ p)!
zk. (8)

If, for convenience, we write

Hp,q,s(α1) = Hp(α1, . . . ,αq;β1, . . . ,β s), (9)
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then one can easily verify from the definition (7) that

z(Hp,q,s(α1) f (z))
′
= α1Hp,q,s(α1+ 1) f (z)− (α1 + p)Hp,q,s(α1) f (z). (10)

For m = −p + 1 (p ∈ N), the linear operator Hp,q,s(α1) was investigated recently by Liu and

Srivastava [5] and Aouf [1].

In particular, for s = 1,q = 2,α1 > 0,β1 > 0 and α2 = 1, we obtain the linear operator

ℓp(α1,β1) f (z) = Hp(α1, 1;β1) f (z)( f ∈∑p), which was introduced and studied by Liu and

Srivastava [4].

We note that, for any integer n> −p and f ∈∑p,m,

Hp,2,1(n+ p, 1; 1) f (z) = Dn+p−1 f (z) =
1

zp(1− z)n+p
∗ f (z)

where Dn+p−1 is the differential operator studied by Uralegaddi and Somanatha [17].

Making use of the principle of differential subordination as well as the linear operator

Hp,q,s(α1), we now introduce a subclass of the function class
∑

p,m as follows:

For fixed parameters A and B(−1 ≤ B < A≤ 1), we say that a function f ∈∑p,m is in the

class
∑m

p,q,s(α1; A, B), if it satisfies the following subordination condition:

−zp+1(Hp,q,s(α1) f (z))
′

p
≺ 1+ Az

1+ Bz
. (11)

In view of the definition of subordination, (11) is equivalent to the following condition:

�

�

�

�

�

zp+1(Hp,q,s(α1) f (z))
′
+ p

Bzp+1(Hp,q,s(α1) f (z))
′
+ pA

�

�

�

�

�

< 1 (z ∈ U).

For convenience, we write

Σm
p,q,s(α1; 1− 2ζ

p
, 1) = Σm

p,q,s(α1;ζ),

where Σm
p,q,s(α1;ζ) denotes the class of functions f (z) ∈ Σp,m satisfying the following inequal-

ity:

Re
¦

−zp+1(Hp,q,s(α1) f (z))
′©
> ζ (0≤ ζ < p; z ∈ U) .

We note that Σ
−p+1
p,q,s (α1; A+ (B − A)

ρ

p
, B) = Σp,q,s(α1,A, B,ρ), 0 ≤ ρ < p; p ∈ N), where the

class Σp,q,s(α1,A, B,ρ) was introduced and studied by Aouf [1]. We also observe that:

(i)
∑−p+1

p,2,1 (n+ p, 1; 1; A, B) = Cn,p(A, B) (n> −p; p ∈ N ;−1≤ B < A≤ 1), is the subclass of
∑

p studied by Uralegaddi and Somanatha [17];

(ii)
∑−p+1

p,2,1 (n+ p, 1; 1; 1− 2α

p
,−1) =
∑

n,p(α) (n> −p; p ∈ N ; 0≤ α < p), is the subclass of
∑

p studied by Cho and Nunokawa [2];
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(iii) For q = 2, s = 1, α1 = a > 0, β1 = c > 0 and α2 = 1, we have

Σa,c(p; m,A, B) =

(

f (z) ∈ Σp,m :−zp+1(ℓp(a, c) f (z))
′

p
≺ 1+ Az

1+ Bz
,−1≤ B < A≤ 1, z ∈ U

)

,

(12)

where the class Σa,c(p; m,A, B) was studied by Patel and Cho [12].

2. Preliminary Lemmas

To establish our main results, we need the following lemmas.

Lemma 1 ([3]). Let the function h be analytic and convex (univalent) in U with h(0) = 1.

Suppose also that the function ϕ given by

ϕ(z) = 1+ cp+mzp+m+ cp+m+1zp+m+1 + . . . (13)

in analytic in U. If

ϕ(z) +
zϕ
′
(z)

γ
≺ h(z) (Re(γ)≥ 0;γ 6= 0), (14)

then

ϕ(z) ≺ψ(z) = γ

p+m
z
−γ

p+m

z
∫

0

t
γ

p+m
−1

h(t)d t ≺ h(z),

and ψ is the best dominant of (14).

With a view to starting a well-known result (Lemma 2 below), we denote by P(γ) the class

of functions ϕ given by

ϕ(z) = 1+ b1z + b2z2 + . . . , (15)

which are analytic in U and satisfy the following inequality:

Re
�

ϕ(z)
	

> γ (0≤ γ < 1; z ∈ U) .

Lemma 2 ([10]). Let the function ϕ, given by (15), be in the class P(γ). Then

Re
�

ϕ(z)
	 ≥ 2γ− 1+

2(1− γ)
1+ |z| (0≤ γ < 1; z ∈ U).

Lemma 3 ([16]). For 0≤ γ1,γ2 < 1, we have

P(γ1) ∗ P(γ2)⊂ P(γ3) (γ3 = 1− 2(1− γ1)(1− γ2)).

The result is the best possible.
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For real or complex numbers a, b and c (c /∈ Z−0 ), the Gaussian hypergeometric function is

defined by

2F1(a, b; c; z) = 1+
ab

c
· z

1!
+

a(a+ 1)b(b+ 1)

c(c + 1)
· z

2

z!
+ . . . .

We note that the above series converges absolutely for z ∈ U and hence represents an analytic

function in U (see, for details [18, Chapter 14]).

Each of the identities (asserted by Lemma 4 below) is well-known (cf., e.g., [18, Chapter

14]).

Lemma 4 ([18]). For real or complex parameters a, b and c (c /∈ Z−0 ),

1
∫

0

t b−1(1− t)c−b−1(1− zt)−ad t =
Γ(b)Γ(c− b)

Γ(c)
2Γ1(a, b; c; z) (Re(c) > Re(b)> 0); (16)

2F1(a, b; c; z) = (1− z)−a
2F1(a, b; c;

z

z − 1
); (17)

2F1(a, b; c; z) = 2F1(a, b− 1; c; z) +
az

c
2F1(a+ 1, b; c + 1; z); (18)

2F1(a, b;
a+ b+ 1

2
;

1

2
) =

p
πΓ( a+b+1

2
)

Γ( a+1

2
)Γ( b+1

2
)
. (19)

Lemma 5 ([13]). Let Φ be analytic in U with

Φ(0) = 1 and Re {Φ(z)} > 1

2
(z ∈ U).

Then, for any function F analytic in U, (Φ ∗ F) (U) is contained in the convex hull of F(U).

3. Main Results

Remark 1. Throughout our present paper, we assume that:

−1≤ B < A≤ 1,λ > 0, p ∈ N and α1 ∈ C\{0}.

Theorem 1. Let the function f defined by (1) satisfying the following subordination condition:

− (1−λ)z
p+1(Hp,q,s(α1) f (z))

′
+λzp+1(Hp,q,s(α1 + 1) f (z))

′

p
≺ 1+ Az

1+ Bz
.

Then

−zp+1(Hp,q,s(α1) f (z))
′

p
≺ Q(z) ≺ 1+ Az

1+ Bz
, (20)
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where the function Q given by

Q(z) =







A

B
+ (1− A

B
)(1+ Bz)−1

2F1(1,1;
α1

λ(p+m)
+ 1; Bz

1+Bz
) (B 6= 0)

1+
α1A

λ(p+m)+α1
z (B = 0)

is the best dominant of (20). Furthermore,

Re

(

−zp+1(Hp,q,s(α1) f (z))
′

p

)

> ξ (z ∈ U), (21)

where

ξ =







A

B
+ (1− A

B
)(1− B)−1

2F1(1,1;
α1

λ(p+m)
+ 1; B

B−1
) (B 6= 0)

1− α1A

λ(p+m)+α1
(B = 0).

The estimate in (21) is the best possible.

Proof. Consider the function ϕ defined by

ϕ(z) = −zp+1(Hp,q,s(α1) f (z))
′

p
(z ∈ U). (22)

Then ϕ is of the form (13) and is analytic in U . Differentiating (22) with respect to z and

using (10), we obtain

− (1−λ)z
p+1(Hp,q,s(α1) f (z))

′
+λzp+1(Hp,q,s(α1) f (z))

′

p

= ϕ(z) +
λ

α1

zϕ
′
(z)≺ 1+ Az

1+ Bz
(z ∈ U).

Now, by using Lemma 1 for β =
α1

λ
, we obtain

−zp+1(Hp,q,s(α1) f (z))
′

p
≺ Q(z)

=
α1

λ(p+m)
z
− α1
λ(p+m)

z
∫

0

t
α1

λ(p+m)
−1

�

1+At

1+ Bt

�

d t

=







A

B
+ (1− A

B
)(1+ Bz)−1

2F1(1,1;
α1

λ(p+m)
+ 1; Bz

1+Bz
) (B 6= 0)

1+
α1A

λ(p+m)+α1
z (B = 0),
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by change of variables followed by the use of the identities (16), (17) and (18) (with a = 1,

c = b+ 1, b =
α1

λ(p+m)
). This proves the assertion (20) of Theorem 1.

Next, in order to prove the assertion (21) of Theorem 1, it suffices to show that

inf
|z|<1
{Re(Q(z))}= Q(−1). (23)

Indeed we have, for |z| ≤ r < 1,

Re

�

1+ Az

1+ Bz

�

≥ 1− Ar

1− Br
.

Upon setting

g(ζ, z) =
1+ Aζz

1+ Bζz
and dν(ζ) =

α1

λ(p+m)
ζ

α1
λ(p+m)

−1
dζ (0≤ ζ≤ 1),

which is a positive measure on the closed interval [0,1], we get

Q(z) =

1
∫

0

g(ζ, z)dν(ζ),

so that

Re {Q(z)} ≥
1
∫

0

�

1− Aζr

1− Bζr

�

dν(ζ) = Q(−r) (|z| ≤ r < 1) .

Letting r → 1− in the above inequality, we obtain the assertion (21) of Theorem 1.

Finally, the estimate in (21) is the best possible as the function Q is the best dominant of

(20).

Taking λ = 1, A= 1− 2σ

p
(0 ≤ σ < p) and B = −1 in Theorem 1, we obtain the following

corollary.

Corollary 1. The following inclusion property holds true for the function class Σm
p,q,s(α1;σ):

Σm
p,q,s(α1 + 1;σ)⊂ Σm

p,q,s(α1;β(p, m,α1,σ))⊂ Σm
p,q,s(α1;σ),

where

β(p, m,α1,σ) = σ+ (p−σ)
�

2F1(1,1;
α1

p+m
+ 1;

1

2
)− 1

�

.

The result is the best possible.

Taking λ= 1 and m= 1− p (p ∈ N) in Theorem 1, we obtain the following corollary.
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Corollary 2. The following inclusion property holds true for the function class Σp,q,s(α1; A, B):

Σp,q,s(α1 + 1; A, B) ⊂ Σp,q,s(α1; 1− 2σ

p
,−1)⊂ Σp,q,s(α1; A, B),

where

σ =







A

B
+ (1− A

B
)(1+ B)−1

2F1(1,1;α1 + 1; B

B−1
) (B 6= 0)

1− α1A

1+α1
(B = 0).

The result is the best possible.

Remark 2.

(i) Taking λ = 1, q = 2, s = 1, α1 = a, β1 = c (a > 0; c > 0) and α2 = 1 in Theorem 1, we

obtain the result obtained by Patel and Cho [12, Theorem 1];

(ii) Taking m = −p+ 1, λ = 1, q = 2, s = 1, α1 = n+ p(n > −p), α2 = β1 = 1 in Theorem

1, we obtain the result obtained by Patel and Cho [12, Corollary 2] which improves the

corresponding result obtained by Uralegaddi and Somanatha [17];

(iii) Taking q = 2, s = 1, α1 = a > 0, β1 = c > 0 and α2 = 1 in Corollary 2, we obtain the

result obtained by Patel and Cho [12, Corollary 1].

Theorem 2. If f ∈ Σm
p,q,s(α1;θ) (0≤ θ < p), then

Re
¦

−zp+1
�

(1−λ)(Hp,q,s(α1) f (z))
′
+λ(Hp,q,s(α1 + 1) f (z))

′�©
> θ (|z| < R), (24)

where

R=







p

α2
1 +λ

2(p+m)2 −λ(p+m)

α1







1

p+m

.

The result is the best possible.

Proof. Since f ∈ Σm
p,q,s(α1;θ), we write

−zp+1(Hp,q,s(α1) f (z))
′
= θ + (p− θ)u(z) (z ∈ U). (25)

Then, clearly, u is of the form (13), is analytic in U , and has a positive real part in U . Differ-

entiating (25) with respect to z and using (10), we obtain

−
zp+1
�

(1−λ)(Hp,q,s(α1) f (z))
′
+λ(Hp,q,s(α1 + 1) f (z))

′�
+ θ

p− θ = u(z) +
λ

α1

zu
′
(z). (26)
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Now, by applying the well-known estimate [6]

�

�

�zu
′
(z)

�

�

�

Re{u(z)} ≤
2(p+m)r p+m

1− r2(p+m)
(|z| = r < 1)

in (26), we obtain

Re

(

−
zp+1
�

(1−λ)(Hp,q,s(α1) f (z))
′
+λ(Hp,q,s(α1 + 1) f (z))

′�
+ θ

p− θ

)

≥ Re{u(z)} ·
�

1− 2λ(p+m)r p+m

α1(1− r2(p+m))

�

. (27)

It is easily seen that the right-hand side of (27) is positive provided that r < R, where R is

given as in Theorem 2. This proves the assertion (24) of Theorem 2.

In order to show that the bound R is the best possible, we consider the function f ∈ Σp,m

defined by

−zp+1(Hp,q,s(α1) f (z))
′
= θ + (p− θ )1+ zp+m

1− zp+m
(0≤ θ < p; p ∈ N ; z ∈ U).

Noting that

−
zp+1
�

(1−λ)(Hp,q,s(α1) f (z))
′
+λ(Hp,q,s(α1 + 1) f (z))

′�
+ θ

p− θ

=
α1−α1z2(p+m) + 2λ(p+m)zp+m

α1(1− zp+m)2
= 0

for z = R
1

p+m exp
�

iπ

p+m

�

, we complete the proof of Theorem 2.

Putting λ= 1 in Theorem 2, we obtain the following result.

Corollary 3. If f ∈ Σm
p,q,s(α1;θ) (0 ≤ θ < p; p ∈ N), then f ∈ Σm

p,q,s(α1 + 1;θ) for |z| < R∗,
where

R∗ =







p

α2
1
+ (p+m)2 − (p+m)

α1







1

p+m

.

The result is the best possible.

Remark 3. Taking s = 1, q = 2, α1 = a and β1 = c (a > 0; c > 0) and α2 = 1 in Corollary 3,

we obtain the result obtained by Patel and Cho [12, Theorem 2].
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Theorem 3. Let f ∈ Σm
p,q,s(α1; A, B) and let

Fδ,p( f )(z) =
δ

zδ+p

z
∫

0

tδ+p−1 f (t)d t (δ > 0; z ∈ U). (28)

Then

−zp+1(Hp,q,s(α1)Fδ,p f (z))
′

p
≺ Φ(z)≺ 1+ Az

1+ Bz
, (29)

where the function Φ given by

Φ(z) =







A

B
+ (1− A

B
)(1+ Bz)−1

2F1(1,1; δ

p+m
+ 1; Bz

Bz+1
) (B 6= 0)

1+ δ

δ+p+m
Az (B = 0),

is the best dominant of (29). Furthermore,

Re

(

−zp+1(Hp,q,s(α1)Fδ,p( f )(z))
′

p

)

> ξ∗ (z ∈ U), (30)

where

ξ∗ =







A

B
+ (1− A

B
)(1− B)−1

2F1(1,1; δ

p+m
+ 1; B

B−1
) (B 6= 0)

1− δ

δ+p+m
A (B = 0).

The result is the best possible.

Proof. Defining the function ϕ by

ϕ(z) = −zp+1(Hp,q,s(α1)Fδ,p( f )(z))
′

p
(z ∈ U), (31)

we note that ϕ is of the form (13) and is analytic in U . Using the following operator identity:

z(Hp,q,s(α1)Fδ,p( f )(z))
′
= δHp,q,s(α1) f (z)− (δ+ p)Hp,q,s(α1)Fδ,p( f )(z) (32)

in (31) and differentiating the resulting equation with respect to z, we find that

−zp+1(Hp,q,s(α1) f (z))
′

p
≺ ϕ(z) + zϕ

′
(z)

δ
≺ 1+ Az

1+ Bz
.

Now the remaining part of Theorem 3 follows by employing the techniques that we used in

proving Theorem 1 above.

Putting m= 1− p (p ∈ N) in Theorem 3, we obtain the following corollary.
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Corollary 4. If δ > 0 and f ∈ Σp,q,s(α1; A, B), then

Fδ,p( f )(z) ∈ Σp,q,s(α1; 1− 2ξ

p
,−1)⊂ Σp,q,s(α1; A, B),

where

ξ=







A

B
+ (1− A

B
)(1+ B)−1

2F1(1,1;δ+ 1; B

B−1
) (B 6= 0)

1− δ

δ+1
A (B = 0).

The result is the best possible.

Remark 4. By observing that

zp+1(Hp,q,s(α1)Fδ,p( f )(z))
′
=
δ

zδ

z
∫

0

tδ+p(Hp,q,s(α1) f (t))
′
d t ( f ∈ Σp,m; z ∈ U), (33)

Corollary 4 can be restated as follows:

If δ > 0 and f ∈ Σp,q,s(α1; A, B), then

Re







− δ

pzδ

z
∫

0

tδ+p(Hp,q,s(α1) f (t))
′
d t







> ξ (z ∈ U).

where ξ is given as in Corollary 4.

In view of (33), Theorem 3 for A= 1− 2θ

p
(0≤ θ < p; p ∈ N) and B = −1 yields

Corollary 5. If δ > 0 and if f ∈ Σp,m satisfies the following inequality:

Re
¦

−zp+1(Hp,q,s(α1) f (z))
′©
> θ (0≤ θ < p; p ∈ N ; z ∈ U),

then

Re







−δ
zδ

z
∫

0

(Hp,q,s(α1) f (t))
′
d t







> θ + (p− θ)
�

2F1(1,1;
δ

p+m
+ 1;

1

2
)− 1

�

(z ∈ U).

The result is the best possible.

Remark 5. Putting s = 1, q = 2, α1 = a, β1 = c (a > 0; c > 0) and α2 = 1 in Theorem 3, we

obtain the result obtained by Patel and Cho [12, Theorem 3].
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Theorem 4. Let f ∈ Σp,m. Suppose also that g ∈ Σp,m satisfies the following inequality:

Re
¦

zp(Hp,q,s(α1)g(z))
©

> 0 (z ∈ U).

If
�

�

�

�

�

Hp,q,s(α1) f (z)

Hp,q,s(α1)g(z)
− 1

�

�

�

�

�

< 1 (z ∈ U),

then

Re

(

−z(Hp,q,s(α1) f (z))
′

Hp,q,s(α1) f (z)

)

> 0 (|z| < R0),

where

R0 =

p

g(p+m)2 + 4p(2p+m)− 3(p+m)

2(2p+m)
.

Proof. Letting

w(z) =
Hp,q,s(α1) f (z)

Hp,q,s(α1)g(z)
− 1= tp+mzp+m+ tp+m+1zp+m+1 + . . . (34)

we note that w is analytic in U , with w(0) = 0 and |w(z)| ≤ |z|p+m (z ∈ U). Then, by applying

the familiar Schwarz lemma [9], we obtain

w(z) = zp+mΨ(z),

where the functions Ψ is analytic in U and |Ψ(z)| ≤ 1 (z ∈ U). Therefore, (34) leads us to

Hp,q,s(α1) f (z) = Hp,q,s(α1)g(z) (1+ zp+mΨ(z)) (z ∈ U). (35)

Differentiating (35) logarithmically with respect to z, we obtain

z(Hp,q,s(α1) f (z))
′

Hp,q,s(α1) f (z)
=

z(Hp,q,s(α1)g(z))
′

Hp,q,s(α1)g(z)
+

zp+m
¦

(p+m)Ψ(z) + zΨ
′
(z)
©

1+ zp+mΨ(z)
. (36)

Putting ϕ(z) = zpHp,q,s(α1)g(z), we see that the function ϕ is of the form (13), is analytic in

U , Re{ϕ(z)} > 0 (z ∈ U) and

z(Hp,q,s(α1)g(z))
′

Hp,q,s(α1)g(z)
=

zϕ
′
(z)

ϕ(z)
− p,

so that we find from (36) that

Re

(

−z(Hp,q,s(α1) f (z))
′

Hp,q,s(α1) f (z)

)

≥ p−
�

�

�

�

�

zϕ
′
(z)

ϕ(z)

�

�

�

�

�

−
�

�

�

�

�

zp+m
¦

(p+m)Ψ(z) + zΨ
′
(z)
©

1+ zp+mΨ(z)

�

�

�

�

�

(z ∈ U). (37)
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Now, by using the following known estimates [11] (see also [6]):
�

�

�

�

�

ϕ
′
(z)

ϕ(z)

�

�

�

�

�

≤ 2(p+m)r p+m−1

1− r2(p+m)
(|z| = r < 1)

and
�

�

�

�

�

(p+m)Ψ(z) + zΨ
′
(z)

1+ zp+mΨ(z)

�

�

�

�

�

≤ (p+m)

1− r p+m
(|z| = r < 1)

in (37), we obtain

Re

(

−z(Hp,q,s(α1) f (z))
′

Hp,q,s(α1) f (z)

)

≥ p− 3(p+m)r p+m− (2p+m)r2(p+m)

1− r2(p+m)
(|z|= r < 1) ,

which is certainly positive, provided that r < R0, R0 being given as in Theorem 4.

Theorem 5. Let −1 ≤ B j < A j ≤ 1 ( j = 1,2). If each of the functions f j ∈ Σp satisfies the

following subordination condition:

(1−λ)zpHp,q,s(α1) f j(z) +λzpHp,q,s(α1 + 1) f j(z) ≺
1+A jz

1+ B jz
( j = 1,2; z ∈ U), (38)

then

(1−λ)zpHp,q,s(α1)G(z) +λzpHp,q,s(α1 + 1)G(z)≺ 1+ (1− 2ζ)z

1− z
(z ∈ U), (39)

where

G(z) = Hp,q,s(α1) ( f1 ∗ f2)(z)

and

ζ = 1− 4(A1− B1)(A2− B2)

(1− B1)(1− B2)

�

1− 1

2
2F1(1,1;

α1

λ
+ 1;

1

2
)

�

.

The result is the best possible when B1 = B2 = −1.

Proof. Suppose that each of the functions f j ∈ Σp ( j = 1,2) satisfies the condition (38).

Then, by letting

φ j(z) = (1−λ)zpHp,q,s(α1) f j(z) +λzpHp,q,s(α1 + 1) f j(z) ( j = 1,2), (40)

we have

ϕ j(z) ∈ P(γ j) (γ j =
1− A j

1− B j

; j = 1,2).

Using the identity (10) in (40), we observe that

Hp,q,s(α1) f j(z) =
α1

λ
z−p− α1

λ

z
∫

0

t
α1
λ
−1φ j(t)d t ( j = 1,2),
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which, in view of the definition of G given already with (39), yields

Hp,q,s(α1)G(z) =
α1

λ
z−p− α1

λ

z
∫

0

t
α1
λ
−1ϕ0(t)d t, (41)

where, for convenience,

φ0(z) = (1−λ)zpHp,q,s(α1)G(z) +λzpHp,q,s(α1 + 1)G(z)

=
α1

λ
z−

α1
λ

z
∫

0

t
α1
λ
−1 (ϕ1 ∗ϕ2)(t)d t. (42)

Since ϕ1 ∈ P(γ1) and ϕ2 ∈ P(γ2), it follows from Lemma 3 that

(ϕ1 ∗ϕ2) ∈ P(γ3) (γ3 = 1− 2(1− γ1)(1− γ2)). (43)

Now, by using (43) in (42) and then appealing to Lemma 2 and Lemma 4, we obtain

Re{ϕ0(z)} =
α1

λ

1
∫

0

u
α1
λ
−1 Re{ϕ1 ∗ϕ2}(uz)du

≥ α1

λ

1
∫

0

u
α1
λ
−1(2γ3− 1+

2(1− γ3)

1+ u|z| )du

>
α1

λ

1
∫

0

u
α1
λ
−1(2γ3− 1+

2(1− γ3)

1+ u
)du

= 1− 4(A1− B1)(A2 − B2)

(1− B1)(1− B2)
(1− α1

λ

1
∫

0

u
α1
λ
−1(1+ u)−1du)

= 1− 4(A1− B1)(A2 − B2)

(1− B1)(1− B2)

�

1− 1

2
2F1(1,1;

α1

λ
+ 1;

1

2
)

�

= ζ (z ∈ U).

When B1 = B2 = −1, we consider the functions f j ∈ Σp ( j = 1,2), which satisfy the hypothesis

(38) of Theorem 5 and are defined by

Hp,q,s(α1) f j(z) =
α1

λ
z−

α1
λ

z
∫

0

t
α1
λ
−1(

1+A j t

1− t
)d t ( j = 1,2).
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Thus it follows from (42) and Lemma 4 that

ϕ0(z) =
α1

λ

1
∫

0

u
α1
λ
−1

�

1− (1+ A1)(1+ A2) +
(1+ A1)(1+ A2)

1− uz

�

du

= 1− (1+ A1)(1+A2) + (1+ A1)(1+ A2)(1− z)−1. 2F1(1,1;
α1

λ
+ 1;

z

z − 1
)

→ 1− (1+A1)(1+ A2) +
1

2
(1+ A1)(1+ A2) ·2 F1(1,1;

α1

λ
+ 1;

1

2
) as z→−1,

which evidently completes the proof of Theorem 5.

Putting A j = 1− 2θ j, B j = −1 ( j = 1,2; 0≤ θ j < 1), s = 1, q = 2, α1 = a > 0, β1 = c > 0

and α2 = 1 in Theorem 5, we obtain the following corollary.

Corollary 6. If the functions f j ∈ Σp ( j = 1,2) satisfy the following inequality:

Re
¦

(1+λp)zpℓp(a, c) f j(z) +λzp+1 (ℓp(a, c) f j(z))
′©

> θ j (0≤ θ j < 1; j = 1,2; z ∈ U), (44)

then

Re
¦

(1+λp)zpℓp(a, c)( f1 ∗ f2)(z) +λzp+1(ℓp(a, c)( f1 ∗ f2)(z))
′©
> η0 (z ∈ U),

where

η0 = 1− 4(1− θ1)(1− θ2)

�

1− 1

2
2F1(1,1;

a

λ
+ 1;

1

2
)

�

.

The result is the best possible.

Choosing A j = 1− 2φ j , B j = 1 ( j = 1,2; 0≤ φ j < 1), q = s+ 1, α1 = β1 = p,

α j = 1 ( j = 2,3, . . . , s + 1) and β j = 1 ( j = 2,3, . . . , s) in Theorem 5, we obtain the following

result which refines the work of Yang [19, Theorem 4] and the work of Srivastava and Patel

[15, Corollary 6].

Corollary 7. If the functions f j ∈ Σp ( j = 1,2) satisfy the following inequality:

Re

�

(1+λ)zp f j(z) +
λ

p
zp+1 f

′
j (z)

�

> φ j (0≤ φ j < 1; j = 1,2; z ∈ U), (45)

then

Re

�

(1+λ)zp( f1 ∗ f2)(z) +
λ

p
zp+1( f1 ∗ f2)(z))

′
�

> ρ0 (z ∈ U),

where

ρ0 = 1− 4(1−φ1)(1−φ2)

�

1− 1

2
2F1(1,1;

p

λ
+ 1;

1

2
)

�

.

The result is the best possible.
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Theorem 6. If f ∈ Σp,m satisfies the following subordination condition:

(1−λ)zpHp,q,s(α1) f (z) +λzpHp,q,s(α1 + 1) f (z)≺ 1+ Az

1+ Bz
,

then

Re
¦

zpHp,q,s(α1) f (z)
©

1

d > ξ
1

d (d ∈ N ; z ∈ U),

where ξ is given as in Theorem 1. The result is the best possible.

Proof. Defining the function ϕ by

ϕ(z) = zpHp,q,s(α1) f (z) ( f ∈ Σp,m; z ∈ U), (46)

we see that the function ϕ is of the form (13) and is analytic in U . Differentiating (46) with

respect to z and using the identity (10), we obtain

(1−λ)zpHp,q,s(α1) f (z) +λzpHp,q,s(α1 + 1) f (z) = ϕ(z) +
λ

α1

zϕ
′
(z)≺ 1+ Az

1+ Bz
.

Now, by following the lines of the proof of Theorem 1 mutates mutandis, and using the

elementary inequality:

Re
�

w
1

d

�

≥ (Re w)
1

d (Re(w)> 0; d ∈ N),

we arrive at the result asserted by Theorem 6.

Putting

A=

�

2F1(1,1;
α1

λ(p+m)
+ 1;

1

2
)− 1

�

·
�

2− 2F1(1,1;
α1

λ(p+m)
+ 1;

1

2
)

�−1

,

B = −1, s = 1, q = 2, α1 = a > 0,β1 = c > 0, α2 = 1 and d = 1 in Theorem 6, we obtain the

following corollary.

Corollary 8. If f ∈ Σp,m satisfies the following inequality:

Re
¦

(1+λp)zpℓp(a, c) f (z) +λzp+1(ℓp(a, c) f (z))
′©
>

3− 2 2F1(1,1; a

λ(p+m)
+ 1; 1

2
)

2
h

2− 2F1(1,1; a

λ(p+m)
+ 1; 1

2
)
i z ∈ U),

(47)

then

Re
¦

zpℓp(a, c) f (z)
©

>
1

2
(z ∈ U).

The result is the best possible.

From Corollary 6 and Theorem 6 (for m = −p+ 1, A= 1− 2η0, B = −1 and d = 1), we

obtain the following result.
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Corollary 9. If the function f j ∈ Σp ( j = 1,2) satisfy the inequality (44), then

Re
¦

zpℓp(a, c)( f1 ∗ f2)(z)
©

> η0 + (1−η0)

�

2F1(1,1;
a

λ
+ 1;

1

2
)− 1

�

(z ∈ U),

where η0 is given as in Corollary 6. The result is the best possible.

Putting

A=

�

2F1(1,1;
p

λ(p+m)
+ 1;

1

2
)− 1

�

·
�

2− 2F1(1,1;
p

λ(p+m)
+ 1;

1

2
)

�−1

,

B = −1, q = s+ 1, α1 = β1 = p, α j = 1 ( j = 2,3, . . . , s+ 1), β j = 1 ( j = 2,2, . . . , s) and d = 1

in Theorem 6, we obtain the following result which refines the work of Srivastava and Patel

[15, Corollary 7].

Corollary 10. If f ∈ Σp,m satisfies the following inequality:

Re

�

(1+λ)zp f (z) +
λ

p
zp+1 f

′
(z)

�

>
3− 2 2F1(1,1;

p

λ(p+m)
+ 1; 1

2
)

2
h

2− 2F1(1,1;
p

λ(p+m)
+ 1; 1

2
)
i (z ∈ U), (48)

then

Re
�

zp f (z)
	

>
1

2
(z ∈ U).

The result is the best possible.

From Corollary 7 and Theorem 6 (for m= −p+ 1, A= 1− 2η0, B = −1, d = 1, q = s+ 1,

α1 = β1 = p, α j = 1 ( j = 2,3, . . . , s+ 1) and β j = 1 ( j = 2,3, . . . , s)), we deduce the following

result.

Corollary 11. If the functions f j ∈ Σp ( j = 1,2) satisfy the inequality (45), then

Re
�

zp( f1 ∗ f2)(z)
�

> ρ0 + (1−ρ0)

�

2F1

�

1,1;
p

λ
+ 1;

1

2

�

− 1

�

(z ∈ U),

where ρ0 is given as in Corollary 7. The result is the best possible.

Theorem 7. Let f ∈ Σm
p,q,s(α1; A, B) and let g ∈ Σp,m satisfy the following inequality:

Re
�

zp g(z)
	

>
1

2
(z ∈ U).

Then

( f ∗ g) ∈ Σm
p,q,s(α1; A, B) .
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Proof. We have

−zp+1(Hp,q,s(α1)( f ∗ g)(z))
′

p
= −zp+1(Hp,q,s(α1) f (z))

′

p
∗ zp g(z) (z ∈ U).

Since

Re
�

zp g(z)
	

>
1

2
(z ∈ U)

and the function
1+ Az

1+ Bz

is convex (univalent) in U , it follows from (11) and Lemma 5 that ( f ∗ g)(z) ∈ Σm
p,q,s(α1; A, B).

This completes the proof of Theorem 7.

In view of Corollary 10 and Theorem 7, we have Corollary 11 below.

Corollary 12. If f ∈ Σm
p,q,s(α1; A, B) and the function g ∈ Σp,m satisfies the inequality (48), then

( f ∗ g) ∈ Σm
p,q,s(α1; A, B).
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