
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 3, No. 3, 2010, 347-369
ISSN 1307-5543 – www.ejpam.com

SPECIAL ISSUE ON

GRANGER ECONOMETRICS AND STATISTICAL MODELING

DEDICATED TO THE MEMORY OF PROF. SIR CLIVE W.J. GRANGER

A Modern Approach to Teaching Econometrics

David F. Hendry∗ and Bent Nielsen

Economics Department, Oxford University
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applied studies and to undertake empirical research in economics. The unified theoretical framework
is that of likelihood, using likelihood-ratio tests for inference and evaluation, and focusing on develop-
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Preface by David Hendry

Although my first interchanges with Clive Granger involved disagreements over modeling
non-stationary economic time series, that stimulus led to his famous formulation of the con-
cept of cointegration, and associated developments in econometric modeling (see [20, 34],
and http://nobelprize.org/nobel_prizes/economics/laureates/2003/granger-lecture.pdf

, based on [13], and [7] ). Clive was already well known both for his ideas on causality
[12], appraised in [26], and distinguished from exogeneity in [8]), and for re-emphasizing
the dangers in applying static regression models to integrated data (in [16], following pio-
neering research by [38]). From my first visit to the University of California at San Diego
in 1975, where Clive had moved in 1974, our friendship blossomed, built around a common
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desire to improve the quality of econometric model building, especially by a better match to
the empirical evidence: Clive’s contributions to doing so have been one of the most successful
research programmes in econometrics, and are a lasting contribution (for formal Obituaries,
see [29], and [28]). My own approach focused on implementing modeling methods, and led
to our only joint publication [14], discussing automatic modeling. Clive also kept the theory
of economic forecasting under the spotlight when it was not in fashion [see 15, 17], another
interest we had in common (including our accidentally adopting the same title in [3]). In
addition to his astonishing creativity and innovative ideas, Clive was a master of written and
presentational clarity, so we also shared a desire to communicate both with students (Clive
supervised a large number of successful doctoral students) and colleagues on a world-wide
basis. The paper which follows develops modeling ideas in the teaching domain, where ma-
jor changes in how we explain and teach econometrics to the next generation could further
enhance the quality with which econometrics is applied to the many pressing problems facing
the world.

1. Introduction

There are six reasons why now is a good time to review the teaching of econometrics.
Over the last quarter century, there have been:

(1). massive changes in the coverage, approaches, and methods of econometrics;

(2). huge improvements in computer hardware and computational methods;†

(3). improvements to software, data, and graphics capabilities, which have been at least as
impressive;

(4). considerable advances in teaching methods, from mathematical derivations written on
blackboards, through overheads to live computer projection;

(5). few discussions of computer-based teaching of econometrics since [18] proposed an
approach based on PcGive [21], describe its history);

(6). new approaches to teaching econometrics [see e.g., 27], emphasizing empirical model-
ing.

The last is the focus of this paper, where every student is taught while having continuous
computer access to automatic modeling software (in Oxford, based on [22], within OxMetrics:
see [6]). Computer-based teaching of econometrics is feasible at all levels, from elementary,
through intermediate, to advanced. We cannot cover all those aspects, and will only briefly
describe how we teach the first steps in econometrics, noting some tricks that help retain
student interest, before moving on to model selection in non-stationary data. Such ideas can
even be communicated to less mathematically oriented undergraduates, enabling them to

†These have, of course, been ongoing from hand calculations at its start in the 1930s, through punched card/tape-
fed mainframe computers, workstations, to powerful PCs and laptops.
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progress in a year from introducing independent, identically distributed (IID) binary data to
selecting cointegrated equations in the face of structural breaks.

At the outset, we assume no knowledge of even elementary statistical theory, so first ex-
plain the basic concepts of probability; relate those to distributions, focusing on location,
spread and shape; turn to elementary notions of randomness; then apply these ideas to distri-
butions of statistics based on data. There are six central themes:

• likelihood;

• testing assumptions;

• economically relevant empirical applications;

• mastery of software to implement all the procedures;

• an emphasis on graphical analysis and interpretation;

• rigorous evaluation of all “findings“.

Derivations are only used where necessary to clarify the properties of methods, concepts,
formulations, empirical findings, and interpretations, but also simultaneously upskill students’
mathematical competence. By adopting the common framework of likelihood, once that fun-
damental idea is fully understood in the simplest IID binary setting, generalizations to more
complicated models and data generation processes (DGPs) follow easily. A similar remark
applies to evaluation procedures, based on likelihood ratio tests: the concept is the same,
even though the distribution may alter with more complicated and realistic DGPs with time
dependence, non-stationary features etc. (which include changes in means and variances as
well as stochastic trends). The theory and empirical sections of the course proceed in tandem.
Once a given statistical or econometric idea has been introduced, explained and illustrated, it
is applied in a computer class where every student has their own workstation on line to the
database and software.

Sections 2 and 3 describe the first steps in theory and practice respectively, then §4 dis-
cusses regression analysis graphically and as a generic “line-fitting” tool. Those set the scene
for introducing simple models and estimation in §5, leading to more general models in §6,
and model selection in §7. Section 8 notes some implications for forecasting–Clive’s other
great interest–and §9 concludes.

2. Theory First Steps

To introduce elementary statistical theory, we consider binary events in a Bernoulli model
with independent draws, using sex of a child at birth as the example. This allows us to
explain sample versus population distributions, and hence codify these notions in distribution
functions and densities.

Next, we consider inference in the Bernoulli model, discussing expectations and variances,
then introduce elementary asymptotic theory (the simplest law of large numbers and central
limit theorem for IID processes) and inference.
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It is then a small generalization to consider continuous variables, where we use wages (wi)
in a cross section as the example. The model thereof is the simplest case, merely wi = β + ui ,
where β is the mean wage and ui characterizes the distribution around the mean. Having
established that case, regression is treated as precisely the same model, so is already familiar.
Thus, building on the simple estimation of means leads to regression, and hence to logit
regression, and then on to bivariate regression models.

2.1. The Way Ahead

In the lectures, regression is applied to an autoregressive analysis of the Fulton fish-market
data from [11]. The natural next step is to model price and quantity jointly as a system, lead-
ing to simultaneity and identification, resolved using as instruments dummies for “structural
breaks” induced by stormy weather at sea. In the system, over-identified instrumental vari-
ables regression is simply reduced-rank regression. This makes it easy to move on to unit roots
and a system analysis of cointegration, picking up model selection issues en route, and illus-
trating the theory by Monte Carlo simulation experiments. Thus, each topic segues smoothly
into the next.

3. Empirical First Steps

Simultaneously, we teach OxMetrics and PcGive so that students can conduct their own em-
pirical work. Here, we focus on the computer-class material, which moves in parallel, but ana-
lyzes different data each year. We have collected a large databank of long historical time series
from 1875–2000 (available at http://press.princeton.edu/titles/8352.html), and
offer the students the choice of modeling any one of the key series, such as the unemploy-
ment rate (denoted Ur), gross domestic product (g, where a lower-case letter denotes the log
of the corresponding capital), price inflation (∆p, where P is the implicit deflator of G), or
real wages (w − p). We assume students chose Ur , leading to a classroom-wide discussion of
possible economic theories of unemployment based around supply and demand for a factor of
production–but replete with ideas about “too high real wages” , “lack of demand for labour” ,
“technological change” , “population growth” , “(im)migration” , “trade union power” , “overly
high unemployment benefits” etc.–as well as the relevant institutions, including companies,
trade unions and governments. An advantage of such a long-run data series is that many
vague claims are easily rebutted as the sole explanation, albeit that one can never refute that
they may be part of the story. The next step is to discuss the measurement and sources of data
for unemployment and working population, then get everyone to graph the level of Ur (here
by OxMetrics as in fig. 1). It is essential to carefully explain the interpretation of graphs in
considerable detail, covering the meaning of axes, their units, and any data transforms, espe-
cially the roles and properties of logs. Then one can discuss the salient features, such as major
events, cycles, trends and breaks, leading to a first notion of the concept of non-stationarity,
an aspect that Clive would have liked. It is also easy to relate unemployment to the student’s
own life prospects, and those of their fellow citizens. Everyone in the class is made to make a
new comment in turn–however simple–about some aspect of the graph, every time. Neverthe-
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Figure 1: Graph of Historical Data on UK Unemployment Rate.

less, it is usually several sessions before students learn to mention the axes’ units first. We aim
to produce students who will be able to critically interpret published empirical findings, and
sensibly conduct their own empirical research, so one cannot finesse difficulties such as non-
stationarity and model selection. The non-stationarity visible in whatever series is selected
is manifest(e.g., fig. 1), including shifts in means and variances, any “epochs” of markedly
different behaviour, and changes in persistence. Figure 2 shows possible general comments,
whereas fig. 3 adds specific details, most of which might arise in discussion. Thus, a detailed
knowledge of the historical context is imparted as a key aspect of modeling any time series.
This also serves to reveal that most of the major shifts are due to non-economic forces, espe-
cially wars and their aftermaths. Next, the students are required to calculate the differences
of Ur,t , namely ∆Ur,t = Ur,t − Ur,t−1 and plot the resulting series as in fig. 4. Again, everyone
is asked to discuss the hugely different “look” of the graph, especially its low persistence, con-
stant mean of zero, and how it relates to fig. 1, including the possibility that changes in the
reliability and coverage of the data sources may partly explain the apparent variance shift, as
well as better economic policy. ∆Ur,t is clearly not stationary, despite differencing, another
key lesson.

3.1. Theory and Evidence

A further feature of our approach is to relate distributional assumptions to model formula-
tion. The basic example is conditioning in a bivariate normal distribution, which is one model
for linear regression. In turn that leads naturally to the interpretation of linear models and
their assumptions, and hence to model design, modeling, and how to judge a model. Here,
the key concepts are a well-specified model (matching the sample distribution), congruence
(also matching the substantive context), exogeneity (valid conditioning), and encompassing
(explaining the gestalt of results obtained by other models of the same phenomena). These
are deliberately introduced early on when only a few features need to be matched, as they will
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Figure 2: General Comments about Unemployment Rate.

be important when models become larger and more complicated, usually requiring computer-
based automatic selection.

In fact, it is difficult to formulate simple theoretical models of unemployment with any
ability to fit the long non-stationary sample of data in fig. 1. Consequently, to start down the
road of linking theory and evidence in a univariate model, we postulate a “golden-growth”
explanation for deviations of unemployment from its historical mean, so assume that Ur,t is
non-integrated yet non-stationary. The measure of the steady-state equilibrium determinant
is given by:

dt = RL,t −∆pt −∆gt (1)

where RL,t is the long bond rate: precise definitions of the data are provided in [19], who
also develops a model based on (1). When the real cost of capital

�
RL,t −∆pt

�
exceeds the

real growth rate ∆gt , then dt > 0 so the economy will slow and Ur,t will rise; and conversely
when dt < 0, so Ur,t will converge to its historical mean for dt = 0. Of course all the variables
in (1) are jointly determined with Ur,t in any equilibrium, so the resulting “explanation” is
conditional, but allows a simple yet viable model to be developed, with the possibility of later
extension to a multivariate setting.

As ever, we first look at the graphs of each series as in fig. 5 a, and discuss their properties,
then consider dt in relation to Ur,t in panel b (where the series are adjusted for means and
ranges to maximize the visual correlation).

4. Regression concepts

Once regression theory has been explained, it is easily illustrated by a scatter plot, as in fig.
6a. Adding a single line allows one to explain the slope and intercept graphically. By further
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Figure 3: All Comments about Unemployment Rate.

adding the projections from the data to the line, least squares can be understood visually as
the line that minimizes the squared deviations: see fig. 6b. Such graphs now reveal that the
Ur,t on dt relation is fine in the tails, but “erratic” in the middle. Having established the basics
of regression, a more penetrating analysis moves on to the five key concepts that underpin
linear regression interpreted as conditioning in a bivariate normal distribution:

• exogeneity of the regressor;

• IID errors;

• normality;

• linear functional form;

• parameter constancy.

Failure on any of these induces model mis-specification, and likelihood ratio, or equivalent,
tests of the corresponding assumptions can be introduced. At each stage, we relate the maths
derivations as needed for understanding the graphs–but always using the same basic prin-
ciples: data graphs suggest a putative DGP and hence a model of its distribution function,
leading to the likelihood function. Maximize that likelihood as a function of the postulated
parameters, obtaining an appropriate statistic from the score equation, and derive its distri-
bution. Finally, apply the resulting method to the data, interpret the results and evaluate the
findings to check how well the evidence matches the assumed DGP. The same approach is just
applied seriatim to ever more complicated cases.
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Figure 4: Changes in the Unemployment Rate.

4.1. Regression as “non-parametric”

To “demistify” regression analysis as just line fitting, use the “pen” in OxMetrics to have
each students write his/her name on a graph, then run a regression through it: see fig. 6c. The
pixels are mapped to world coordinates (which can be explained using the graphics editor), so
become “data” in the (Ur,t , dt) space, and hence one can estimate a regression for that subset.
Consequently, projections can even be added to the signature regression. Most students are
intrigued by this capability, and many gain important insights, as well as being amused. Next,
show how to join up the original data points to create “Phillips’ loops” [see 33], tracing out
the dynamics as in fig. 6d. This serves to highlight the absence of the time dimension from
the analysis so far, and is a convenient lead into taking account of serial dependence in data.

Many routes are possible at this point–one could further clarify the underlying concepts,
or models, or methods of evaluation. We illustrate several sequential regressions graphically
as that leads to recursive methods for investigating parameter constancy: see fig. 7. Alter-
natively, OxMetrics graphs provide an opportunity to introduce the basics of LATEXby naming
variables, as shown in the graphs here, or by writing formulae on the figures. Even minimal
LATEXskills will prove invaluable later as estimated models can be output that way, and pasted
directly into papers and reports (as used below).

4.2. Distributions

Graphics also ease the visualization of distributions. Plotting the histograms of Ur,t and
∆Ur,t with their interpolated densities yields fig. 8. Such figures can be used to explain non-
parametric/kernel approaches to density estimation, or simply described as a “smoothed”
histogram. More importantly, one can emphasize the very different features of the density
graphs for the level of Ur,t and its change. The former is like a uniform distribution–many
values are roughly equally likely. The distribution for ∆Ur,t is closer to a normal with some
outliers. Thus, differencing alters distributional shapes. This can be explained as the uncondi-
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Figure 5: Graphs of RL,t −∆pt and ∆gt ; Ur,t and dt .

tional distribution of Ur,t versus its distribution conditional on the previous value, so panel b is
plotting the distribution of the deviation of Ur,t from Ur,t−1.

4.3. Time Series and Randomness

That last step also serves to introduce the key concept of non-randomness. Regression
subsumes correlation, which has by now been formally described, so can be used to explain
correlograms as correlations between successively longer lagged values: fig. 9 illustrates. The
plots reveal that Ur,t has many high autocorrelations–indeed the successive autocorrelations
almost lie on a downward linear trend–whereas ∆Ur,t has almost no autocorrelation at any
lag. Thus, changes in Ur,t are “surprise-like”: again this comparison highlights the huge
difference between unconditional and conditional behaviour. In turn, we can exploit the
different behaviour of Ur,t and ∆Ur,t to introduce dynamics, by plotting Ur,t against its own
lag Ur,t−1 then graphically adding the regression, as in fig. 10a (and panel b for ∆Ur,t).

4.4. Well-specified Models

Now one can explain well-specified models as needing all the properties of the variables in
a model to match simultaneously–in terms of dynamics, breaks, distributions, linear relations,
etc.– otherwise there will be systematic departures from any claimed properties. Tests of
each null hypothesis are then discussed, albeit using Lagrange multiplier approximate F-tests
rather than likelihood ratio, namely:

• Far for kth-order serial correlation as in [10] and [32];

• Fhet for heteroskedasticity as in [37];



D. Hendry and B. Nielsen / Eur. J. Pure Appl. Math, 3 (2010), 347-369 356

Ur,t × dt 

−0.2 −0.1 0.0 0.1 0.2

0.00

0.05

0.10

0.15 aUr,t × dt Ur,t × dt 

−0.2 −0.1 0.0 0.1 0.2

0.00

0.05

0.10

0.15 bUr,t × dt 

Ur,t × dt 

−0.2 −0.1 0.0 0.1 0.2

0.00

0.05

0.10

0.15 c

.

.

Ur,t × dt Ur,t × dt 

−0.2 −0.1 0.0 0.1 0.2

0.00

0.05

0.10

0.15 dUr,t × dt 

Figure 6: Scatter Plots and Regressions of Ur,t on dt .

• Freset for functional form following [35]);

• Farch for kth-order autoregressive conditional heteroskedasticity, from [? ];

• FChow for parameter constancy over k periods as in [2]; and

• χ2
nd(2) for normality (a chi-square test: see [5]).

Below ∗ and ∗∗ denote significant at 5% and 1% respectively.
Having established the basics, the scene is set for formal estimation of a regression.

5. Model estimation

Estimating the static or long-run (later interpreted as “cointegrated”) relation Ur,t = β0 +
β1dt + et yields: bUr,t = 0.050

(0.003)
+ 0.345

(0.052)
dt (2)

R2 = 0.26 bσ = 0.0315 FGUM(1,126) = 44.64∗∗

Here, R2 is the squared multiple correlation, bσ is the residual standard deviation, and co-
efficient standard errors are shown in parentheses. The test FGUM is for significance of the
general unrestricted model, that is the joint significance of all regressors (dt) apart from the
intercept. The estimates suggest that unemployment rises/falls as the real long-run interest
rate is above/below the real growth rate (i.e., dt ≶ 0). All the assumptions are easily tested,
yielding Far(2,124) = 180.4∗∗; Farch = 229.9∗∗; Freset(1,125) = 0.33; Fhet(2,123) = 2.62;
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Figure 7: Regressions for Ur,t on dt for each Tenth of the Data.

χ2
nd(2) = 15.0∗∗. These tests show that the model is poorly specified. Figure 11 records the

fitted and actual values, their cross-plot, the residuals scaled by bσ, and their histogram and
density with N[0,1] for comparison, visually confirming the formal tests. Once again, it is
clear that the model is badly mis-specified, but it is not clear which assumptions are invalid.
However, we have now successfully applied the key concepts to residuals.

5.1. Simple Dynamic Models

Another univariate model worth illustrating is that of Ur,t on Ur,t−1, namely Ur,t = γ0 +
γ1Ur,t−1 + εt . This form was implicit in fig. 10–and can also be related to the earlier graphs
for ∆Ur,t : bUr,t = 0.006

(0.003)
+ 0.887

(0.040)
Ur,t−1 (3)

R2 = 0.79 bσ = 0.017 FGUM(1,126) = 485.7∗∗
χ2

nd(2) = 33.0∗∗ Far(2,124) = 3.8∗ Farch(2,124) = 0.55

Fhet(2,123) = 0.42 Freset(1,125) = 0.01

Most of the mis-specification tests are considerably improved, but the model in (3) is still
mis-specified, with an obvious outlier in 1920, as fig. 12(b) shows. The long-run solution in
(3) is 0.006/(1− 0.887) or 5.3% unemployment–which is close to the intercept in (2)–and
although one cannot in fact reject the hypothesis of a unit root, that provides an opportunity
to explain the rudiments of stochastic trends, possibly illustrated by Monte Carlo simulation
of the null distribution. However, this is crunch time: having postulated our models of the
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Figure 8: Distribution of the Unemployment Rate Ur,t and its Change ∆Ur,t .

DGP, we find strong rejection on several tests of specification, so something has gone wrong.
Multiple testing concepts must be clarified: each test is derived under its separate null, but
assuming all other aspects are well specified. Consequently, any other mis-specification re-
jections contradict the assumptions behind such derivations: once any test rejects, none of
the others is trustworthy as the assumptions underlying their calculation are also invalidated.
Moreover, simply “correcting” any one problem–such as serial correlation–need not help, as
the source may be something else altogether, such as parameter non-constancy over time. A
more viable approach is clearly needed–leading to general-to-simple...

6. More General Models

It is time to introduce a dynamic model which also has regressors, nesting both (3) and
(2), namely Ur,t = β0+ β1dt + β2Ur,t−1+ β3dt−1+υt . Estimation delivers:

bUr,t = 0.007
(0.002)

+ 0.24
(0.03)

dt + 0.86
(0.04)

Ur,t−1− 0.10
(0.03)

dt−1 (4)

R2 = 0.88 bσ = 0.013 FGUM(3,123) = 308.2∗∗ Far(2,121) = 2.5

χ2
nd(2) = 7.2∗ Farch(1,121) = 3.1 Fhet(6,116) = 4.2∗∗ Freset(1,122) = 4.2∗

Although (4) is not completely well-specified, it is again much better, and certainly dominates
both earlier models, as F-tests based on the “progress” option in OxMetrics reveal. While
illustrating progressive research, the exercise also reveals the inefficiency of commencing with
overly simple models, as nothing precluded commencing from (4). Assuming cointegration
has been explained, one can show that a unit root can be rejected in (4) (tur =−3.9∗∗ on the
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Figure 9: Correlograms for the Unemployment Rate Ur,t and its Change ∆Ur,t .

PcGive unit-root test: see [1, 9]), so Ur and d are “cointegrated” (or co-breaking, as in [25]).
Next, the long-run solution can be derived by taking the expected value of the error as zero,
and setting the levels to constants such that:�

1− β2
�

U∗r = β0+
�
β1+ β3
�

d∗,

so:

U∗r =
β0

1− β2
+
β1+ β3

1− β2
d∗,

which yields U∗r = 0.052+ 1.02d∗ for the estimates in (4). The coefficient of d at unity is
much larger than that of 0.35 in (2), and suggests a one-for-one reaction in the long run.

6.1. Extensions

There is as much to discuss as ones desires at this stage. For example, there are few out-
liers, but there are some negative fitted values (suggesting a logit formulation, which may also
attenuate the residual heteroscedasticity). Challenge students to formulate alternative expla-
nations, and test their proposals against the evidence–and see if they can encompass (4), by
explaining its performance from their model. One can also check model constancy by formal
recursive methods, building on the earlier graphical approach. Figure 14 records the outcome
for (4): despite the apparently “wandering” estimates, the constancy tests–which are scaled
by their 1% critical values–do not reject. It is surprising that such a simple representation as
(4) can describe the four distinct epochs of unemployment about equally accurately.

7. Model Selection

Having shown the dangers of simple approaches, general-to-specific model selection needs
to be explained. In a general dynamic model, one cannot know in advance which variables will
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Figure 10: Unemployment Rate Ur,t and its Change Regressed on Their Own First Lag.

matter: some will, but some will not, so selection is required. Indeed, any test followed by a
decision entails selection, so in empirical research, selection is ubiquitous, however unwilling
practitioners are to admit its existence. “Model uncertainty” is pandemic–every aspect of an
empirical model is uncertain, from the existence of any such relation in reality, the viability of
any “corroborating” theory, and the measurements of the variables, as well as the choice of the
specification and every assumption needed in the formulation, such as exogeneity, constancy,
linearity, independence etc. One must confront such issues openly if graduating students are
to be competent practitioners.

It is feasible to sketch the theory of model selection in the simplest case. We use the idea
of choosing between two decisions, namely keeping or eliminating a variable, where there
are two states of nature, namely the variable is in fact relevant or irrelevant in that setting.
The mistakes are “retain an irrelevant variable” and “exclude a relevant variable”, akin to
probabilities of type I and II errors. Consider the perfectly orthogonal, correctly specified
regression model:

yt = β1z1,t + β2z2,t + εt (5)

where all variables have zero means, E[z1,tz2,t] = 0, the βi are constant, and εt ∼ IN
�

0,σ2
ε

�
.

Denote the t2-statistics testing H0: β j = 0 by t2
j , and let cα be the desired critical value

for retaining a variable in (5) when t2
j ≥ c2

α. When either (or both) β j = 0 in (5), the
probability of falsely rejecting the null is determined by the choice of cα–conventionally set
from α = 0.05. There is a 5% chance of incorrectly retaining one of the variables on t2, but
a negligible probability (0.0025) of retaining both. When one (or both) β j ̸= 0, the power

of the t2-statistic to reject the null depends on the non-centrality β2
j /V
�bβ j

� ≃ Tβ2
j σ

2
z j
/σ2
ε

where E[z2
j,t] = σ

2
z j

: this can be evaluated by simulation. Thus, all the factors affecting the
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Figure 11: Graphical Output from Ur on d.

outcome of selection are now in place.

7.1. Understanding Model Selection

The interesting case, however, is generalizing to:

yt =
N∑

i=1

βizi,t + εt (6)

where N is large (say 40). Order the N sample t2-statistics as t2
(N) ≥ t2

(N+1) ≥ · · · ≥ t2
(1),

then the cut-off between included and excluded variables is given by t2
(n) ≥ c2

α > t2
(n−1), so

n are retained and N − n eliminated. Thus, variables with larger t2 values are retained on
average, and all others are eliminated. Importantly, only one decision is needed to select
the model even for N = 1000 when there are 21000 = 10301 possible models. Consequently,
“repeated testing” does not occur, although path searches during model reduction may give
the impression of “repeated testing”. Moreover, when N is large, one can set the average false
retention rate at one irrelevant variable by setting α = 1/N , so αN = 1, at a possible cost in
lower correct retention.

Of course, there is sampling uncertainty, as the t2
j are statistics with distributions, and on

any draw, those close to c2
α could randomly lie on either side–for both relevant and irrelevant

variables. It is important to explain the key role of such marginal decisions: empirical t2-
values close to the critical value c2

α are the danger zone, as some are likely to arise by chance
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Figure 12: Ur,t on Ur,t−1 Graphical Output.

for irrelevant variables, even when α is as small as 0.001. Fortunately, it is relatively easy
to explain how to bias correct the resulting estimates for sample selection, and why doing so
drives estimates where t2

j just exceeds c2
α close to zero [see e.g. 24].

Students have now covered the basic theory of Autometrics [see 4], and, despite their
inexperience, can start to handle realistically complicated models using automatic methods,
which has led to a marked improvement in the quality of their empirical work. Nevertheless,
a final advance merits discussion, namely handling more variables than observations in the
canonical case of impulse-indicator saturation.

7.2. Impulse-indicator Saturation

The basic idea is to “saturate” a regression by adding T indicator variables to the candi-
date regressor set. Adding all T indicators simultaneously to any equation would generate
a perfect fit, from which nothing is learned. Instead, exploiting their orthogonality, add half
the indicators, record the significant ones, and remove them: this step is just “dummying out”
T/2 observations as in [36]. Now add the other half, and select again, and finally combine
the results from the two models and select as usual. A feasible algorithm is discussed in [23]
for a simple location-scale model where x i ∼ IID

�
µ,σ2

x

�
, and is extended to dynamic pro-

cesses by [31]. Their theorem shows that after saturation, eµ is unbiased, and αT indicators
are retained by chance on average, so for α = 0.01 and T = 100, then 1 indicator will be
retained by chance under the null even though there are more variables than observations.
Thus, the procedure is highly efficient under the null that there are no breaks, outliers or data
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Figure 13: General Ur,t Model Graphical Output.

contamination.
Autometrics uses a more sophisticated algorithm than just split halves, [see 4], but the

selection process is easily illustrated live in the classroom. Here we start with 2 lags of both
Ur,t and dt and set α = 0.0025 as T = 126. Selection locates 8 significant outliers (1879,
1880, 1884, 1908, 1921, 1922, 1930, and 1939: the 19th century indicators may be due to
data errors), and yields (not reporting the indicators):‡bUr,t = 0.004

(0.0015)
+ 0.15

(0.02)
dt + 1.29

(0.06)
Ur,t−1− 0.09

(0.02)
dt−1− 0.39

(0.06)
Ur,t−2 (7)

R2 = 0.95 bσ = 0.008 Far(2,111) = 1.59

χ2
nd(2) = 7.98∗ Farch(1,1249) = 0.09 Fhet(14,103) = 1.03 Freset(2,111) = 1.41

The long-run solution from (7) is U∗r = 0.05+ 0.62d∗ so has a coefficient of d that is smaller
than in (4). However, no diagnostic test is significant other than normality, and the model is
congruent, other than the excess of zero residuals visible in the residual density.

7.3. Monte Carlo of Model Selection

How to evaluate how well such general-to-specific model selection works? Everyone in
the class generates a different artificial sample from the same DGP, which they design as a

‡Three more indicators for 1887, 1910 and 1938 are retained at α= 0.01, with a similar equation.
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Figure 14: Ur,t Model Recursive Output.

group, then they all apply Autometrics to their own sample. Pool the class results and relate
the outcomes to the above theoretical “delete/keep” calculations–then repeat at looser/tighter
selection criteria, with and without impulse-indicator saturation to see that the theory matches
the practice, and works.

7.4. Evaluating the Selection

At an advanced level, exogeneity issues can be explored, based on impulse-indicator satu-
ration applied to the marginal model for the supposedly exogenous variable [see 30]. Here,
that would be dt , so develop a model of it using only lagged variables and indicators: Au-
tometrics takes under a minute from formulation to completion at (say) α = 0.0025, as for
(7).

dt = 0.55
(0.05)

dt−1 − 0.16
(0.03)

I1915 − 0.13
(0.03)

I1917 + 0.24
(0.03)

I1921

+ 0.12
(0.03)

I1926 + 0.10
(0.03)

I1931 − 0.14
(0.03)

I1940 − 0.09
(0.03)

I1975 (8)

bσ = 0.028 Far(2,116) = 1.32 Farch(1,124) = 0.19

χ2
nd(2) = 2.20 Fhet(2,116) = 4.72∗ Freset(2,116) = 4.52∗

Only the indicator for I1921 is in common, and the remainder are not, so must all co-break
with (7). All the dates correspond to recognizable historical events, albeit that other important
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Figure 15: Graphical Description of Final Model of Ur,t .

dates are nor found. Even that for 1921 (one of most eventful years for the UK) is 0.056 in
(7) as against 0.24 in (8), so does not suggest that a break in the latter is communicated to
the former, which would violate exogeneity. Adding the indicators from (8) to (7), however,
delivers F(6,107) = 4.28∗∗ so strongly rejects exogeneity, even beyond the 0.0025 level used
in selection. The main “culprit” is 1975 (which was omitted from (7) by Autometrics as it
induced failure in several diagnostic tests), but interestingly, the long-run solution is now
U∗r = 0.042+ 1.02d∗ so is back to the original. None of the indicators from (7) is significant
if added to (8).

8. Forecasting

First, one must establish how to forecast. Given the unemployment equation above, for
1-step forecasts, Ur,T , dT are known, the past indicators are now zero, but dT+1 needs to be
forecast if (7) is to be used for bUr,T+1. Thus, a system is needed, and is easily understood in
the 2-stages of forecasting dt+1 from (8):bdT+1 = 0.55

(0.05)
dT (9)

and use that in:bUr,T+1 = 0.004
(0.0015)

+ 0.15
(0.02)

bdT+1+ 1.29
(0.06)

Ur,t − 0.09
(0.02)

dT − 0.39
(0.06)

Ur,T−1 (10)
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Brighter students rapidly notice that the net effect of d on the forecast outcome is essentially
zero as substituting (9) into (10) yields 0.55× 0.15− 0.09 = −0.0075. Thus, the forecast
model is no better than an autoregression in Ur,t . Indeed simply selecting that autoregression
delivers (indicators not reported):bUr,t = 1.29

(0.06)
Ur,t−1 − 0.34

(0.06)
Ur,t−2

with bσ = 0.0096. This is the first signpost that “forecasting is different”. That “vanishing trick”
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Figure 16: Dynamic Forecasts of Ur,t and dt over 1980�2001.

would have been harder to spot when the model was expressed in equilibrium-correction form
to embody the long-run relation e = Ur − 0.05− d as a variable:

∆bUr,t = 0.37
(0.05)

∆Ur,t−1 + 0.17
(0.02)

∆dt − 0.07
(0.02)

et−1

Since multiple breaks have already been encountered, it is easy to explain the real problem
confronting economic forecasting, namely breaks. Simply extrapolating an in-sample esti-
mated model (or a small group of models pooled in some way) into the future is a risky
strategy in processes where location shifts occur. Here, the key shift would be in the equi-
librium mean of 5% unemployment, and that has not apparently occurred over the sample,
despite the many “local mean shifts” visible in figure 2. To make the exercise interesting, we
go back to 1979 and the election of Mrs. Thatcher, and dynamically forecast Ur and d over
the remainder of the sample as shown in figure 16 (top row) with ±2bσ error fans.
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The forecast failure over the first few years in Ur is clear, associated with the failure to
forecast the jump in d, following her major policy changes. Going forward two years and
repeating the exercise (bottom row) now yields respectable forecasts.

9. Conclusion

Computer-based teaching of econometrics enhances the students’ skills, so they can progress
from binary events in a Bernoulli model with independent draws to model selection in non-
stationary data in a year-long course which closely integrates theory and empirical modeling.
Even in that short time, they can learn to build sensible empirical models of non-stationary
data, aided by automatic modeling. We believe Clive would have approved.
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