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Abstract.  Cointegration theory provides a flexible class of statistical models that combine 
long-run (cointegrating) relationships and short-run dynamics.  This paper presents three 
likelihood ratio (LR) tests for simultaneously testing restrictions on cointegrating 
relationships and on how quickly each variable in the system reacts to the deviation from 
equilibrium implied by the cointegrating relationships.  Both the orthogonal complements of 
the cointegrating vectors and of the vectors of adjustment speeds have been used to define 
the common stochastic trends of a nonstationary system.  The restrictions implicitly placed 
on the orthogonal complements of the cointegrating vectors and of the adjustment speeds are 
identified for a class of LR tests, including those developed in this paper.  It is shown how 
these tests can be interpreted as tests for restrictions on the orthogonal complements of the 
cointegrating relationships and of their adjustment vectors, which allow one to combine and 
test for economically meaningful restrictions on cointegrating relationships and on common 
stochastic trends. 
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1.  Introduction 

Since its introduction by Granger [14,15] cointegration has become a widely 
investigated and extensively used tool in multivariate time series analysis.  Cointegrated 
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models combine short-run dynamics and long-run relationships in a framework that lends 
itself to investigating these features in economic data.  The relationship between cointegrated 
systems, their vector autoregressive (VAR) and vector moving-average representations, and 
vector error-correction models (VECM) were developed by Granger in [14,15] and by Engle 
and Granger in [7]. 

In a cointegrated system of time series, the cointegrating vectors can be interpreted as 
the long-run equilibrium relationships among the variables towards which the system will 
tend to be drawn.  Economic theories and economic models may imply long-run 
relationships among variables.  Certain ratios or spreads between nonstationary variables are 
expected to be stationary, that is, these variables are cointegrated with given cointegrating 
vectors.  For example, neoclassical growth models imply “balanced growth” among income, 
consumption, and investment (for example [29, 41]), implying that their ratios are mean-
reverting.  Other theories, rather than implying given ratios or spreads are cointegrated, may 
imply that some linear combinations of the variables are stationary, that is, the variables are 
cointegrated without specifying the cointegrating relationships (for example [25]).   

Johansen’s maximum likelihood approach to cointegrated models [19] provides an 
efficient procedure for the estimation of cointegrated systems and provides a useful 
framework in which to test restrictions of the sorts mentioned above.  For example, Johansen 
[19, 21] and Johansen and Juselius [25, 26] derive likelihood ratio tests for various structural 
hypotheses concerning the cointegrating relationships and the speed of adjustment to the 
disequilibrium implied by the cointegrating relationships (or weights); Konishi and Granger 
[30] use this approach to derive and test for separation cointegration, and Gonzalo and 
Granger [12] use this framework for estimation of and testing for their multivariate version 
of Quah’s [37] permanent and transitory (P-T) decomposition. 

Further, building on the univariate work of Beveridge and Nelson [1] and the 
multivariate generalization by Stock and Watson [42], cointegration analysis may be used to 
decompose a system of variables into permanent components (based on the variables’ 
common stochastic trends) and temporary (or cyclical) components.  Several methods have 
been proposed to separate cointegrated systems into their permanent and temporary 
components (for example, [12, 21, and 27]).  In each case, the permanent component is 
based either on the orthogonal complements of the cointegrating relationships or on the 
orthogonal complements of the disequilibrium adjustments to the cointegrating relationships.   

In this paper, new hypothesis tests are presented in Johansen’s maximum likelihood 
framework that allow one to combine restrictions on the cointegrating relationships and on 
their disequilibrium adjustments.  These tests possess closed-form solutions and do not 
require iterative methods to estimate the restricted parameters under the null hypothesis.  
Secondly, both for Johansen’s likelihood ratio tests for coefficient restrictions and for the 
new tests presented below, the restrictions implicitly placed on the orthogonal complements 
of the cointegrating relationships and on the orthogonal complements of the adjustment 
speeds are presented.  Johansen’s tests and the tests developed in this paper can be 
interpreted as tests of restrictions on the various definitions of common stochastic trends, 
since these definitions depend on the orthogonal complements either of the cointegrating 
relationships or of the disequilibrium adjustments.  Thus, one has great flexibility in 
formulating and testing hypotheses of economic interest simultaneously on the cointegrating 
relationships and on the common stochastic trends—the long-run relationships among the 
variables in the system and the variables driving the trending behavior the system, 
respectively. 
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The organization of this paper is as follows:  In section 2, the basic model and notation 
are introduced, and maximum likelihood estimation of the unrestricted model is briefly 
described.  In section 3, likelihood ratio tests for restrictions on cointegrating relationships 
and on their weights are briefly described, and three new tests in this framework are 
presented.  In section 4, the implications for the orthogonal complements of the cointegrating 
vectors and of the adjustment vectors are developed for the tests described in section 3.  It is 
shown how these tests can be used for testing restrictions on the orthogonal complements of 
cointegrating vectors and on the orthogonal complements of the disequilibrium adjustment 
vectors—thus allowing for combinations of tests on cointegrating relationships and on the 
different definitions of common stochastic trends.  Section 5 concludes, and the appendix 
contains the mathematical proofs.  

 

2.  The Unrestricted Cointegrated Model 
Let ( )I d  denote a time series that is integrated of order d, that is, d applications of the 

differencing filter, 1 L∆ = − , yield a stationary process.  Let tX  be a p×1 vector of possibly 
I(1) time series defined by the kth-order vector autoregression (VAR),  
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The long-run behavior of the system depends on the rank of the p×p matrix Π.  If the 
matrix has rank 0 (that is, Π = 0) then there are p unit roots in the system, and (3) is simply a 
traditional VAR in differences.  If Π has full rank p, then tX  is an I(0) process, that is, tX  is 
stationary in its levels.  If the rank of Π is r with 0 r p< < , then tX  is said to be cointegrated 
of order r.  This implies that there are r <p linear combinations of tX  that are stationary.  
Granger’s Representation Theorem [7] shows that if tX  is cointegrated of order r (the p×p 
matrix Π has rank r), one can write αβ ′Π = , where both α and β are p×r matrices of full 
column rank.  This and some fairly general assumptions about initial distributions allow one 
to write (1) as the vector error-correction model (VECM): 
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The matrix β contains the r cointegrating vectors, and tXβ ′  are the r stationary linear 
combinations of tX .  The matrix β can be interpreted as r equilibrium relationships among 
the variables, and the difference between the current value of the r cointegrating 
relationships, tXβ ′ , and their expected values can be interpreted as measures of 
disequilibrium from the r different long-run relationships.  The matrix α in (4) measures how 
quickly tX∆  reacts to the deviation from equilibrium implied by tXβ ′ . 

Given a p×r matrix of full column rank, A, an orthogonal complement of A, denoted 
A⊥ , is a p×(p-r) matrix of full column rank such that 0A A⊥′ = .  It is often necessary to 

calculate the orthogonal complements of β and α in order to form the p-r common I(1) 
stochastic trends of a cointegrated system; for example, Gonzalo and Granger [12] propose 

tXα⊥′  as the common stochastic trends and ( ) 1
tXβ α β α−

⊥ ⊥ ⊥ ⊥′ ′  as the permanent components 
for a cointegrated system; Johansen [21] proposes the random walks ( ) tL Xα⊥′ Γ  as a 

cointegrated system’s common stochastic trends and ( )( ) ( )1
1 tL Xβ α β α

−

⊥ ⊥ ⊥ ⊥′ ′Γ Γ  as its 
permanent components. 

Several methods have been proposed for identifying, estimating, and conducting 
inference in a cointegrated system (see [11] and [45] for explanations of several methods and 
evaluations of their properties).  This paper uses the efficient maximum likelihood 
framework of Johansen [19].  The log-likelihood function for the parameters in (4) is 
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 (5) 

Maximum likelihood estimation of the parameters in (5) involves successively 
concentrating the likelihood function until it is a function solely of β.  To do this one forms 
two sets of p×1 residual vectors, 0tR  and 1tR , by regressing, in turn, tX∆  and 1tX −  on k-1 
lags of tX∆  and the deterministic components. 

The VECM in (4) can then be written as 
 0 1 , 1, ,t t tR R t Tαβ ε′= + =  . (6) 
This equation is the basis from which one derives the hypothesis tests on the 

cointegrating vectors β, on the disequilibrium adjustment parameters α, and on their 
orthogonal complements, β⊥  and α⊥ .  The equation (6) has two unknown parameter 
matrices, α and β.  Maximizing the likelihood function is equivalent to estimating the 
parameters in (6) via reduced rank regression methods.  Since this involves the product of 
two unknown full-column rank matrices in (6), estimating these parameters requires solving 
an eigenvalue problem.   

Defining the moment matrices for the residual series, 
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for a given set of cointegrating vectors, β, one estimates the adjustment parameters, α, by 
regressing 0tR on 1tRβ ′  to get 

 ( ) ( ) 1
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The maximum likelihood estimator for the residual variance-covariance matrix is  
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As shown in [19], one may write the likelihood function, apart from a constant, as 
  ( ) ( )2

max
ˆTL β β− = Ω , (10) 

which can be expressed as a function of β̂ ,  
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As shown in [19], maximizing the likelihood function with respect to β is equivalent to 
minimizing (11), which is accomplished by solving the eigenvalue problem 

 1
11 10 00 01 0S S S Sλ −− =  (12) 

for eigenvalues 1̂
ˆ1 pλ λ> > >  and corresponding eigenvectors ( )1

ˆ ˆ ˆ, , pV v v=   normalized 

by 11
ˆ ˆ

pV S V I′ = .  Thus the maximum likelihood estimate for the cointegrating vectors β is  

 ( )1
ˆ ˆ ˆ, , rv vβ =  , (13) 

and the normalization implies that the estimate of the weights in (8) is 
 01

ˆˆ Sα β= . (14) 
Then, apart from a constant, the maximized likelihood can be written as 

 ( )2
max 00

1

ˆ1
r

T
i

i

L S λ−

=

= −∏ .  (15) 

Likelihood ratio tests of the hypothesis of r unrestricted cointegrating relationships in 
the unrestricted VAR model and for r unrestricted cointegrating relationships against the 
alternative of r+1 unrestricted cointegrating relationships—the trace and maximum 
eigenvalue tests—are derived in [19].  The asymptotic distribution of the trace and maximum 
eigenvalue tests for different deterministic components may be found in [19] and [25], and 
the tabulated critical values for various values of r and for different deterministic 
components may be found in [20, 23, 34]; small-sample adjustments to the critical values 
that are based on response surface regressions may be found in [2] and [31].  

The unrestricted orthogonal complements of β and α, β⊥  and α⊥ , can be estimated 
three ways:  One may use the eigenvectors associated with the zero eigenvalues of ββ ′  and 
αα′ [12] (given a p×r matrix of full column rank A, one can quickly construct A⊥  as the 
ordered eigenvectors corresponding to the p-r zero-eigenvalues of AA′ ), and one may 
estimate α⊥ as the eigenvectors corresponding to the p-r smallest eigenvalues that solve the 

dual of the eigenvalue problem in (12), 1
00 01 11 10 0S S S Sλ −− = , normalized such that 
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00ˆ ˆ p rS Iα α⊥ ⊥ −′ = , and by setting 10
ˆ ˆSβ α⊥ ⊥= .  Johansen [23] shows one may estimate them 

from (12) by ( )11 1, ,r pS v v+   and ( )1
00 01 1, ,r pS S v v−

+  , respectively. 

 

3.  Testing Restrictions on β and α 
Economic theory may suggest that certain ratios or spreads between variables will be 

cointegrating relationships.  For example, some neoclassical growth models with a stochastic 
productivity shock imply “balanced growth” among income, consumption, and investment 
(that is, the ratios are cointegrated), and certain one-factor models of the term structure of the 
interest rates imply that the spreads between the different interest rate maturities will be 
cointegrated.  One might also be interested in testing for the absence of certain variables in 
the system from any of the cointegrating relationships.  Complicated restrictions on β or α 
may be formulated, for example, neutrality hypotheses in Mosconi and Giannini [32] and 
separation cointegration in Konishi and Granger [30].  Based on their maximum likelihood 
framework, Johansen [19, 21] and Johansen and Juselius [25, 26] formulate a series of 
likelihood ratio tests for linear restrictions on β or α and tests for a subset of known vectors 
in β or α.  After briefly summarizing this set of five tests, three new tests for combining 
linear restrictions and known vectors will be derived.  

The tests for restrictions on the cointegrating relationships and disequilibrium 
adjustment vectors described below are asymptotically chi-squared distributed.  The finite 
sample properties of some of the tests have been studied (see, for example [18]) and are 
shown to have significant size distortions in small samples, though they generally perform 
well with larger samples.  Johansen [24] introduces a Bartlett-type correction for tests (1) 
and (2) below that depend on the size of the system, the number of cointegrating vectors, the 
lag length in the VECM, the number of deterministic terms (restricted versus unrestricted), 
the parameter values, and the sample size under the null hypothesis.  Haug [18] demonstrates 
that the Bartlett correction is successful in moving the empirical size of the test close to the 
nominal size of the test and also demonstrates that the power of the tests for restrictions on β 
depend on the speed of adjustment to the long-run equilibrium relationships in the system, 
with slower adjustment speeds leading to tests with lower power.   

The tests below are all based on the reduced rank regression representation of the 
VECM in (4),  

 0 1 , 1, ,t t tR R t Tαβ ε′= + =  , (16) 
the same equation that is the starting point for the maximum likelihood estimates of the 
parameters of the VECM.  The estimators and test statistics are all calculated in terms of the 
residual product moment matrices , , 0,1ijS i j =  and by their eigenvalues.  The parameter 
estimates under the restrictions and the maximized likelihood functions can be explicitly 
calculated; other tests not discussed here may be solved using iterative methods (see [6] and 
[22]).  Denote the unrestricted model of at most r cointegrating relationships in the VECM 
(4) as ( )H r .  For any rectangular matrix with full column rank, A, define the notation 

( ) 1A A A A −′≡ , which implies rA A A A I′ ′= = .  Five tests for restrictions on β and α from 
Johansen [19, 20] and Johansen and Juselius [25] are briefly described before turning to 
three new tests for restrictions on β and α. 
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(1) 0 :H Hβ φ=  (Johansen [19]),  (17) 
where H p×r is known and φ s×r is unknown, r≤s<p. 

This test places the same p-s  linear restrictions on all the vectors in β.  The likelihood 
ratio test of 0H  in ( )H r  is asymptotically distributed as 2χ  with r(p-s) degrees of freedom.  
One can also use this test also to determine if a subset of the p variables do not enter the 
cointegrating relationships. 

 
(2) [ ]0 : ,H Hβ θ=  (Johansen and Juselius [25]),  (18) 
where H p×s is known, and θ  p× (r-s) is unknown where Hθ φ⊥=  with H⊥  p× (p-s) known 
and φ (p-s)× (r-s) unknown. 

This test assumes s known cointegrating vectors and restricts the remaining r-s 
unknown cointegrating vectors to be orthogonal to them.  The likelihood ratio test of 0H  in 

( )H r  is asymptotically distributed as 2χ  with s(p-r) degrees of freedom. 
 

(3) 0 :H Aα ψ=  (Johansen and Juselius [25]),  (19) 
where A p×m is known and ψ m×r is unknown, m≤r<p. 

This test places the same p-m linear restrictions on all disequilibrium adjustment 
vectors in α.  This can be interpreted as a test of 0B α′ =  for B A⊥= .  The likelihood ratio 
test of 0H  in ( )H r  is asymptotically distributed as 2χ  with r(p-m) degrees of freedom.  
One may use (3) to test that some or all of the cointegrating relationships do not appear in 
the short run equation for a subset of the variables in the system, that is, that a subset of the 
variables do not error correct to some or all of the stochastic trends in the system.  

 
(4) [ ]0 : ,H Aα τ=   (Johansen [20]),  (20) 
where A p×m is known, and τ  p×(r-m) is unknown where Aτ ψ⊥=  with A⊥  p×(p-m) known 
and ψ (p-m)×(r-m) unknown.  

This test allows for m known adjustment vectors and restricts the remaining r-m 
adjustment vectors to be orthogonal to them.  The likelihood ratio test of 0H  in ( )H r  is 
asymptotically distributed as 2χ  with m(p-r) degrees of freedom. 

 
(5) 0 : ,H H Aβ φ α ψ= =  (Johansen and Juselius [25]), (21) 
where H p×s, A p×m are known and φ s×r, ψ m×r are unknown, r≤s<p and r≤m<p. 

This test combines tests (1) and (3), testing for cointegrating vectors with p-s common 
linear restrictions and adjustment vectors with p-m common linear restrictions.  The 
likelihood ratio test of 0H  in ( )H r  is asymptotically distributed as 2χ  with r(p-s)+r(p-m) 
degrees of freedom. 

 
 
 In the same framework as the tests above, three new tests for simultaneous restrictions 

on βand α are presented. 
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(6) [ ]0 : , ,H H Aβ θ α ψ= =   (22)  
where H p×s, A p×m are known; θ  p×(r-s) is unknown where Hθ φ⊥=  with H⊥  p×(p-s) 
known and φ (p-s)×(r-s) unknown; and ψ m× r is unknown, s≤r≤m<p. 

This test combines tests (2) and (3), that is, it tests the restriction that s of the 
cointegrating vectors are known—restricting the remaining r-s cointegrating vectors to be 
orthogonal to them—and that the adjustment vectors share p-m linear restrictions.  For 
example, if a system of variables includes a short-term and a long-term interest rate, (6) 
could be used to test whether the spread between the long-term and short-term interest rates 
was a cointegrating relationship and to test simultaneously whether the short-term interest 
rate failed to react to any of the cointegrating relationships in the system.   

To calculate the test statistic and the estimated cointegrating relationships and 
adjustment vectors, the reduced rank regression (16) first is split into 

 0 1 1 2 1

0

t t t t

t t

A R H R H R A
A R A

ψ ψ φ ε
ε

⊥

⊥ ⊥

′ ′ ′ ′ ′= + +
′ ′=

, (23) 

where ψ is partitioned conformably with β as [ ]1 2,ψ ψ .  In order to derive the test statistic 
and to estimate the restricted parameters under this hypothesis it is necessary to transform 
the product moment matrices, ijS .  Define two set of moment matrices: 

 ( ) 1
. 0 00 0 , , 0,1ij A ij i jS S S A A S A A S i j

⊥

−
⊥ ⊥ ⊥ ⊥′ ′= − =  (24) 

and 

 ( ) 1

. . . 1. 11. 1 . , , 0,1ij A H ij A i A A j AS S S H H S H H S i j
⊥ ⊥ ⊥ ⊥ ⊥

−
′ ′= − = . (25) 

 The restricted estimators and the likelihood ratio test statistic and its asymptotic 
distribution are summarized in the following theorems. 

 
Theorem 1.  Under the hypothesis [ ]0 : , ,H H Aβ θ α ψ= =  where H p×s, A p×m are 
known; θ p×(r-s) is unknown where Hθ φ⊥=  with H⊥  p×(p-s) known and φ (p-s) × (r-s) 
unknown; and ψ m×r is unknown, s≤r≤m<p; the maximum likelihood estimators are found 
by the following steps:   

Solve the eigenvalue problem 

 
( ) 1

11. . 10. . 00. . 01. . 0A H A H A H A HH S H H S A A S A A S Hλ
⊥ ⊥ ⊥ ⊥

−

⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =  (26) 

for eigenvalues 11 0p sλ λ −≥ ≥ ≥ ≥ 

  and corresponding eigenvectors ( )1, , p sV v v −=  
 , 

normalized so that 11. .A H p sV H S H V I
⊥⊥ ⊥ −′ ′ =  ; and solve the eigenvalue problem 

 
( ) 1

11. 10. 00. 01. 0A A A AH S H H S A A S A A S Hρ
⊥ ⊥ ⊥ ⊥

−
′ ′ ′ ′− =  (27) 

for eigenvalues 11 0sρ ρ≥ ≥ ≥ ≥ 

 .  
Then the restricted estimators are 

( )1, , r sv vφ −=  
   (28) 

1 2
ˆ ˆ ˆ ˆ ˆ, , ,H H Hβ β β θ φ⊥

     = = =        (29) 

2 01. .
ˆˆ A HA S Hψ φ

⊥ ⊥′=   (30) 
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( )( ) 1

1 01. 2 11. 11.
ˆˆ ˆA A AA S H H S H H S Hψ ψ φ
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−

⊥′ ′ ′ ′= −  (31) 

[ ] ( ) ( )( )
( )
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1 2 01. 1 01. . 2 2 11. 1 1 11. 1

1
01. . 2
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A A H A A

A H

A A A A A A S S S S
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α ψ ψ β β β β β β

β

⊥ ⊥ ⊥ ⊥

⊥

−−

−

 ′ ′ ′ ′= = −
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 (32) 

and the maximized likelihood function, apart from a constant, is 

 
( ) ( )2/

max 00
1 1

1 1
r s s

T
i i

i i

L S λ ρ
−

−

= =

= − −∏ ∏

 . (33) 

The proof of Theorem 1 is in the Appendix. 
  
Theorem 2.    The likelihood ratio test statistic of the hypothesis [ ]0 : , ,H H Aβ θ α ψ= =  
verses ( )H r  is expressed as: 

 
( )( ) ( ) ( ) ( )0

1 1 1

ˆ| ln 1 ln 1 ln 1
r s s r

i i j
i i j

LR H H r T λ ρ λ
−

= = =

 
= − + − − − 

 
∑ ∑ ∑



,
 (34) 

where { }
1,î i r

λ
=

 are from the unrestricted maximized likelihood in (15), and is 

asymptotically distributed as 2χ  with r(p-m)+s(p-r) degrees of freedom. 
The proof of Theorem 2 is in the Appendix. 
 

(7) [ ]0 : , ,H H Aβ φ α τ= =  
where H p×s, A p×m are known; φ s×r is unknown; and τ p×(r-m) is unknown where 

Aτ ψ⊥=  with A⊥  p×(p-m) known and ψ(p-m)×(r-m) unknown, m≤r≤s<p. 
This test combines Johansen’s tests (1) and (4), that is, it tests the restriction that the 

cointegrating vectors share p-s linear restrictions and m of the adjustment vectors are 
assumed known (with the remaining r-m orthogonal to them).  This test would be used, for 
example, to determine if some variable in the system did not enter any of the cointegrating 
relationships or if two variables entered the cointegrating relationships as the spread between 
them, and to test simultaneously that some of the cointegrating vectors only appear in the 
equation for one of the variables.   

The first step in calculating the test statistic and restricted coefficient estimates is to 
split the reduced rank regression into variation independent parts 

 0 1 1

0 2 1

t t t

t t t

A R H R A
A R H R A

ϕ ε
ψϕ ε⊥ ⊥

′ ′ ′ ′= +
′ ′ ′ ′= +

, (35) 

where φ is partitioned conformably with α as [ ]1 2,φ φ .  In order to derive the test statistics and 
to estimate the restricted parameters under this hypothesis it is again necessary to define a 
new set of residual vectors and transform the product moment matrices, ijS .  Fixing 2φ  and 
φ, define the residual vector 

 0 2 1kt t tR A R H Rψφ⊥′ ′ ′= − . (36) 
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One can then define the notation 1 1
1

1 T

k t kt
t

S R R
T =

′= ∑  and so on, and define the set of 

product moment matrices: 
 1

. , , 0,1ij k ij ik kk kjS S S S S i j−= − = . (37) 
 The restricted estimators and the likelihood ratio test statistic and its asymptotic 

distribution are summarized in the following theorems. 
 

Theorem 3.  Under the hypothesis [ ]0 : , ,H H Aβ φ α τ= =  where H p×s, A p×m are 
known; φ s×r is unknown; and τ  p×(r-m) is unknown where Aτ ψ⊥=  with A⊥  p×(p-m) 
known and ψ (p-m)×(r-m) unknown, m≤r≤s<p; the maximum likelihood estimators are found 
by the following steps: 

Solve the eigenvalue problem  
 ( ) 1

11 10 00 01 0H S H H S A A S A A S Hλ −
⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =  (38) 

for eigenvalues 11 0sλ λ≥ ≥ ≥ ≥ 

  and corresponding eigenvectors ( )1, , sV v v=  
 , 

normalized so that 11 sV H S HV I′ ′ =  ; and solve the eigenvalue problem 

 ( ) 1
11. 10. 00. 01. 0k k k kH S H H S A A S A A Sρ −′ ′ ′ ′− =  (39) 

for eigenvalues 1 11 0m m sρ ρ ρ ρ+≥ ≥ ≥ > = = =   

  . 
Then the restricted estimators are 

( )2 1
ˆ , , r mv vφ −=  

    (40) 

2 2
ˆ ˆHβ φ=   (41) 

01 2̂ˆ A S Hψ φ⊥′=   (42) 

( ) 1
1 11. 10.
ˆ

k kH S H H S Aφ −′ ′=   (43) 

( ) 1
1 2 11. 10. 2

ˆ ˆ ˆ ˆ, ,k kH H S H H S A Hβ β β φ−   ′ ′= =     (44)  

[ ] ( ) 1
01 2

ˆˆ ˆˆ, , ,A A A A A A A A Sα τ ψ β−
⊥ ⊥ ⊥ ⊥ ⊥

 ′ ′ = = =    , (45) 

where 1
. , , 0,1ij k ij ik kk kjS S S S S i j−= − =  is calculated from (37) evaluated at 2̂ ˆ,φ ψ .  

The maximized likelihood function, apart from a constant, is 

 ( ) ( )00. 002
max

1 1

1 1
r m m

kT
i i

i i

A S A A S A
L

A A A A
λ ρ

−
⊥ ⊥−

= =⊥ ⊥

′ ′
= − −

′ ′ ∏ ∏

 . (46) 

The proof of Theorem 3 is in the Appendix. 
 

Theorem 4.  The likelihood ratio test statistic of the hypothesis 
[ ]0 : , ,H H Aβ φ α τ= = verses ( )H r  is expressed as: 
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( )( )

( ) ( ) ( )

0

00. 00

00
1 1 1

|

ln ...

ˆln ln 1 ln 1 ln 1

k

r m m r

i i j
i i j

LR H H r

A S A A S A
T

A A A A

S λ ρ λ

⊥ ⊥

⊥ ⊥

−

= = =

=

 ′ ′  −  ′ ′   


+ − + − − − 


∑ ∑ ∑



,

 (47) 

where { }
1,î i r

λ
=

 are from the unrestricted maximized likelihood in (15), and is asymptotically 

distributed as 2χ  with m(p-r)+r(p-s)degrees of freedom. 
The proof of Theorem 4 is in the Appendix. 
 
 
Next, a hypothesis test on αβ ′Π =  of the form 1 2Π = Π + Π is presented in which 

1 AH ′Π =  is known.  This test, which combines tests (2) and (4), implies one is testing that 
both a subset of the cointegrating vectors and the associated adjustment vectors are known.  
It might seem too optimistic or restrictive to believe one might not only know certain 
cointegrating vectors but also know the adjustments to them.  A test of this sort, however, 
might be useful as the end of a general-to-simple strategy for testing structural hypotheses or 
for testing very specific theoretical implications.  More usefully, one might estimate the 
cointegrating relationships and adjustment vectors from a subset of a system of variables and 
then desire to test whether these estimated relationships hold in the full system of variables. 

  
(8) [ ] [ ]0 : , , ,H H Aβ θ α τ= =    
where both ,H A  are known p×s matrices with s<r, and the unknown parameter matrices are 
orthogonal to ,H A :  Hθ φ⊥= , Aτ ψ⊥=  with H⊥ , A⊥  p×(p-s) known and φ, ψ (p-s)×(r-s) 
unknown.  This implies AH AH A Hτθ ψφ⊥ ⊥′ ′ ′ ′ ′Π = + = + . 

Define the vector of residuals  
 0 1kt t tR R AH R′= − . (48) 

The reduced rank regression (16) is split into 

 
1 1

kt t

kt t t

A R A
A R H R A

ε

ψ φ ε⊥ ⊥

′ ′=

′ ′ ′ ′= +
. (49) 

In order to derive the test statistics and to estimate the restricted parameters under this 
hypothesis it is again necessary to define a new set of residual vectors and transform the 

product moment matrices, 
1

1 , 1,
T

ik it kt
t

S R R i k
T =

′= =∑  and so on, and also define the product 

moment matrices, ( ) 1
. , 1,ij A ij ik kk kjS S S A A S A A S i k−′ ′= − = .   

The restricted estimators and the likelihood ratio test statistic and its asymptotic 
distribution are summarized in the following theorem. 

 
Theorem 5.  Under the hypothesis [ ] [ ]0 : , , ,H H Aβ θ α τ= =  where ,H A  are known p×s 
matrices; θ  and τ  are unknown p×(r-s) matrices such that Hθ φ⊥=  and Aτ ψ⊥=  with H⊥  
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and A⊥  p×(p-s) known and φ, ψ (p-s)×(r-s) unknown; the maximum likelihood estimators 
are found by the following steps: 

Solve the eigenvalue problem 
 ( ) 1

11. 1 . . 1. 0A k A kk A k AH S H H S A A S A A S Hλ −
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′− =  (50) 

for eigenvalues 1 11 0s r s r p sλ λ λ λ− − + −≥ ≥ ≥ ≥ = = =   

   and corresponding eigenvectors 

( )1, , p sV v v −=  
 , normalized so that 11.A p rV H S H V I⊥ ⊥ −′ ′ =  . 

Then the restricted estimators are 
 ( )1

ˆ , , r sv vφ −=  
  (51) 

  1 2
ˆ ˆ ˆ ˆ, , ,H H Hβ β β θ φ⊥

     = = =       (52) 

 1.
ˆˆ k AA S Hψ φ⊥ ⊥′= , (53) 

 [ ] ( ) 1
1. 2

ˆ, , , k AA A A A A A A A Sα τ ψ β−
⊥ ⊥ ⊥ ⊥ ⊥

 ′ ′ = = =     (54) 

and the maximized likelihood function, apart from a constant, is 

 ( )2
max

1

1
r s

T
kk i

i

L S λ
−

−

=

= −∏  . (55) 

The proof of Theorem 5 is in the Appendix. 
 

Theorem 6.  The likelihood ratio test statistic of the hypothesis [ ] [ ]0 : , , ,H H Aβ θ α τ= =  
verses ( )H r  is expressed as: 

 ( )( ) ( ) ( )0 00
1 1

ˆ| ln ln ln 1 ln 1
r s r

kk i j
i j

LR H H r T S S λ λ
−

= =

 
= − + − − − 

 
∑ ∑ , (56) 

where { }
1,î i r

λ
=

 are from the unrestricted maximized likelihood in (15), and is asymptotically 

distributed as 2χ  with 2ps-s
2
 degrees of freedom. 

The proof of Theorem 6 is in the Appendix. 

 

4.  Testing Restrictions on α
⊥

 and β
⊥

 

Separating an economic time series into permanent (long run) components and cyclical 
(short run, temporary, transitory) components has been used in many contexts in economics.  
Methods proposed include decomposing the series into a deterministic trend component and 
a stationary cyclical component.  Muth [33] uses the long-run forecast of a geometric 
distributed lag, that is, the permanent component is the long-run forecast after the dynamics 
(modeled as a distributed lag) have run their course.  Beveridge and Nelson [1] use the Wold 
[47] decomposition to generalize this to ARIMA models, defining the permanent component 
to be a multiple of the random walk component of the series.  This method, too, implies that 
the permanent component of the series in period t is the long-run forecast of the time series 
made in period t.  Watson [44] uses unobserved components ARIMA models based on 
Watson and Engle’s [46] methods.  Quah [37] develops a permanent-transitory (P-T) 
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decomposition to derive lower bounds for the relative size of the permanent component of a 
series and showed that restricting it to be a random walk maximizes the size of the lower 
bound. 

Sims [40] introduced vector autoregressions to empirical economics as a flexible 
multivariate dynamic framework to which the Beveridge-Nelson [1] decomposition can be 
extended (see [42]).  In cointegrated systems, several methods have been proposed to 
decompose the individual time series into their permanent and cyclical components.  The 
importance of multivariate information sets for this sort of analysis is argued in Cochrane 
[3].  Stock and Watson [42], Johansen [20], and Granger and Gonzalo [12] split a system of 
p cointegrated time series into p-r common stochastic trends (where r is the number of 
cointegrating relationships), linear combinations of which form the permanent components 
of the individual time series.  The cyclical components are some combination of the 
cointegrating relationships, plus, if the common stochastic trends are assumed to be random 
walks, other stationary components.  See [36] for a discussion of the relationship among 
these definitions and with the notion of common features by Vahid and Engle [43] and Engle 
and Kozicki [8]. 

The orthogonal complements of β and α are used to construct the common stochastic 
trends and the permanent components of a cointegrated model.  Kasa [27] proposes tXβ⊥′  as 

the p-r common stochastic trends and ( ) 1
tXβ β β β−

⊥ ⊥ ⊥ ⊥′ ′  as the permanent components of the 
individual variables in the system.  Gonzalo and Granger [12] propose tXα⊥′  as the common 

stochastic trends in the system and ( ) 1
tXβ α β α−

⊥ ⊥ ⊥ ⊥′ ′  as the permanent components; 
Johansen [22] proposes the random walks ( ) tL Xα⊥′ Γ  as the common stochastic trends and 

random walks ( )( ) ( )1
1 tL Xβ α β α

−

⊥ ⊥ ⊥ ⊥′ ′Γ Γ  as the permanent components.   
There is no econometric reason why one definition of a common stochastic trend and 

permanent component is necessarily any better than another; one needs economic 
justifications to choose among them.  One interpretation of the cointegrating relationships, β, 
derived from Johansen’s methodology is that they are the r maximally canonically correlated 
linear combinations of tX∆  and 1tX − .  So, Kasa’s common stochastic trends would be the p-
r minimally canonically correlated linear combinations; there, however, is no strong 
economic justification for choosing these linear combinations as the common stochastic 
trends.  The Gonzalo and Granger formulation has the advantage that the cointegrating 
relationships and transitory components have no long-run effect on the common stochastic 
trends and permanent components.  In the Johansen version, the common stochastic trends 
and permanent components are random walks (like the univariate Beveridge-Nelson 
decomposition), and the permanent components of the variables can be seen as the long-run 
forecasts of the variables once the dynamics have worked out themselves.  In the Johansen 
definition, however, unlike the Gonzalo and Granger method, the cointegrating relationships 
and transitory components can have a permanent effect on the common stochastic trends and 
the permanent components. 

Recall that β and α are p×r matrices of full column rank, that is, the columns of β and α 
lie in r-dimensional subspaces of p

 .  The likelihood ratio tests in section 3 for restrictions 
on the cointegrating vectors and on their disequilibrium adjustment vectors were of two 
general types:  The first imposes linear relationships on all the vectors, and the second 
assumes that a subset of the vectors are known.  Johansen [20] shows that since one actually 
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estimates the space spanned by the cointegrating vectors, ( )sp β , restrictions on 
cointegrating vectors are restrictions on the space they span.  The restriction that the r 
vectors in β share p-s linear restrictions, that is, Hβ φ=  where H is a known p×s matrix of 
full column rank and φ is an unknown s×r matrix, can be represented geometrically as 

( ) ( )sp sp Hβ ⊂ .  This implies the columns of β are restricted to lie in a given s-dimensional 
subspace of p

  [19].  The restriction that m of the cointegrating relationships are known, 
that is, [ ],hβ φ=  where h contains the known p×m relationships and hφ ϑ⊥=  p×(r-m) is 
unknown, can be represented geometrically as ( ) ( )sp h sp β⊂  [20].  This implies that the 
known vectors lie in an m-dimensional subspace of the space spanned by the vectors in β.  
These two restrictions can be written ( ) ( ) ( )sp h sp sp Hβ⊂ ⊂ . 

Restrictions placed on cointegrating vectors or on their adjustment vectors imply that 
restrictions are imposed on the space spanned by their orthogonal complements as well [20].  
The restriction that ( ) ( )sp sp Hβ ⊂  implies ( ) ( )sp H sp β⊥ ⊥⊂ , where the orthogonal 
complements β⊥  and H⊥  are p×(p-r) and p×(p-s) matrices, respectively, of full column 
rank.  This means that a subset of p-s of the p-r vectors in β⊥  are known, namely those 
contained in H⊥ .  Thus, the test Hβ φ=  implies a test on its orthogonal complement of the 
form [ ],Hβ θ⊥ ⊥=  for which θ is an unknown p×(s-r) matrix of rank s-r. 

Similarly, ( ) ( )sp h sp β⊂  implies ( ) ( )sp sp hβ⊥ ⊥⊂ , where h⊥  is a p×(p-m) matrix of 
full column rank; that is, the vectors in β⊥  share the (p-m) linear restrictions implied by h⊥ .  
Thus, a test of the form [ ],hβ φ=  implies a test on its orthogonal complement of the form 

hβ θ⊥ ⊥=  for which θ is an unknown (p-m)×(p-r) matrix of rank p-r. 
With minor modifications to the tests in section 3, we may more explicitly state the 

implications for the orthogonal complements and reformulate them as tests on the orthogonal 
complements, that is, use the tests in section 3 as tests on the orthogonal complements. 

 
Theorem 7.  For (1) 0 :H Hβ φ=  where H p×s is known and φ s×r is unknown, r≤s<p one 
may choose  

 ,H Hβ φ⊥ ⊥ ⊥ =    (57) 

where ( ) 1H H H H −′≡ .  Further, one can test the hypothesis  

 ,G Gβ θ⊥ ⊥ =     (58) 
where G p×q is known and θ (p-q)×( p-q-r) is unknown by transforming this problem into 

0H  above setting H G⊥=  and s=p-q.  That is, one may test the hypothesis that certain β⊥  
are known and the remaining elements of β⊥  are orthogonal to the known vectors. 

 
To check that β⊥  is indeed an orthogonal complement of β, one must verify that 

( )0 p r rβ β − ×⊥′ =   

( )

( )
( )

00
, 0

0
p s r

p r r
s r rs

H H
H H H

IH H
φφ

β β φ φ
φ φφ φ

− ×

− ×
− ×

⊥
⊥ ⊥ ⊥

⊥⊥

′  ′   ′  = = = = =     ′′ ′     
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Theorem 8.  For (2) 0 : ,H H Hβ φ⊥ =    where H p×s is known and φ (p-s)×(r-s) is 
unknown, one may choose  

 [ ]Hβ φ⊥ ⊥ ⊥= . (59) 
Thus, we can test the hypothesis  

 Gβ θ⊥ = , (60) 
where G is a known p×q matrix and θ is an unknown q×(p-r) matrix by transforming this 
problem into 0H  above setting H G⊥=  and s=p-q. That is, one may test the hypothesis that 
the vectors in β⊥  share the same p-s linear restrictions.  

 
Again, to check that β⊥  is indeed an orthogonal complement of β, one must verify 
that ( )0 p r rβ β − ×⊥′ = : 

( ) ( ), , 0, 0 .p s p r rH H H H H H H Iβ β φ φ φ φ φ φ φ φ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − − ×
 ′ ′ ′ ′ ′ ′ ′ ′ ′   = = = =       

 
 
Proofs of the above and following theorems are in the Appendix. 
 
One can apply the ideas from the two examples above to tests (3) through (8) in 

section 3.  The results are summarized below. 
  

Theorem 9.  For (3) 0 :H Aα ψ=  where A p×m is known and ψ m×r is unknown, r≤m≤p, 
one may choose  

 ,A Aα ψ⊥ ⊥ ⊥ =   , (61) 

where ( ) 1A A A A −′≡ .  Further, one can test the hypothesis 

 ,B Bα ξ⊥ ⊥ =    (62) 
where B p×n is known and ξ (p-n)×(p-n-r) is unknown by transforming this problem into 0H  
above setting A B⊥=  and m=p-n.  That is, one may test the hypothesis that certain α⊥  are 
known and the remaining vectors in α⊥  are orthogonal to the known vectors. 

 
Theorem 10.  For (4) 0 : ,H A Aα ψ⊥ =    where A p×m is known and ψ (p-m)×r is unknown, 
one may choose  
 Aα ψ⊥ ⊥ ⊥= . (63) 
Further, one can test the hypothesis 
 Bα ξ⊥ =   (64) 
where B is a known p×n matrix and ξ is an unknown n×(p-r) matrix by transforming this 
problem into 0H  above setting A B⊥=  and m=p-n.  That is, one may test the hypothesis that 
the vectors in α⊥  share the same p-m linear restrictions.  
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This test is equivalent to the hypothesis test 4bH  in [12], which uses the dual of the 
eigenvalue problem for (4) used in Theorem 10. 

 
The following four theorems allow one to combine restrictions on the orthogonal 

complements of the cointegrating vectors and of their disequilibrium adjustment vectors. 
 

Theorem 11.  For (5) 0 : ,H H Aβ φ α ψ= =  where H p×s, A p×m are known and φ s×r, ψ 
m×r are unknown, r≤s<p and r≤m<p, one may choose 
 , , ,H H A Aβ φ α ψ⊥ ⊥ ⊥ ⊥ ⊥ ⊥  = =    . (65) 
Thus, we can test the hypothesis  
 , , ,G G B Bβ θ α ξ⊥ ⊥ ⊥ ⊥   = =       (66) 
where G p×q and B p×n are known matrices and θ (p-q)×(p-q-r) and ξ (p-n)×(p-n-r) are 
unknown matrices by transforming this problem into 0H  above setting H G⊥= , A B⊥= , 
s=p-q, and m=p-n.  This test allows one simultaneously to test for known β⊥  vectors and for 
known α⊥  vectors. 

 
Theorem 12.  For (6) 0 : , ,H H A Aβ φ α ψ⊥ = =    where H p×s, A p×m are known and φ 
s×r, ψ (p-m)×(m-r) are unknown, m≤r≤s<p, one may choose 
 ,H Hβ φ⊥ ⊥ ⊥ =   , Aα ψ⊥ ⊥ ⊥= . (67) 
Thus, we can test the hypothesis  
 ,G Gβ θ⊥ ⊥ =   , Bα ξ⊥ =   (68) 
where G p×q and B p×n are known matrices and θ (p-q)×(p-q-r) and ξ n×(p-r) are unknown 
matrices by transforming this problem into 0H  above setting H G⊥= , A B⊥= , s=p-q, and 
m=p-n.  This test allows one simultaneously to test for known β⊥  vectors and to place 
common linear restrictions on α⊥ . 

 
Theorem 13.  For (7) 0 : , ,H H H Aβ φ α ψ⊥ = =   where H p×s, A p×m are known and φ 
(p-s)×(r-s), ψ m×r are unknown, s≤r≤m<p, one may choose  
 [ ]Hβ φ⊥ ⊥ ⊥= , ,A Aα ψ⊥ ⊥ ⊥ =     (69) 
Thus, we can test the hypothesis  
 Gβ θ⊥ = , ,B Bα ξ⊥ ⊥ =     (70) 
where G p×q and B p×n are known matrices and θ q×(p-r) and ξ (p-n)×(p-n-r) are unknown 
matrices, by transforming this problem into 0H  above setting H G⊥= , A B⊥= , s=p-q, and 
m=p-n.  This test allows one simultaneously to test for common linear restrictions on the β⊥  
vectors and for known α⊥  vectors. 

 
Theorem 14.  For (8) 0 : , , ,H H H A Aβ φ α ψ⊥ ⊥  = =     where H p×s, A p×s are known 

and φ,ψ (p-s)×(r-s) are unknown, s≤r<p, one may choose  
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 [ ]Hβ φ⊥ ⊥ ⊥= , Aα ψ⊥ ⊥ ⊥=   (71)
  
Thus, we can test the hypothesis  
 Gβ θ⊥ = , Bα ξ⊥ =   (72) 
where G p×q and B p×n are known matrices and θ,ξ q×(p-r) are unknown matrices, by 
transforming this problem into 0H  above setting H G⊥= , A B⊥= , s=p-q.  This test allows 
one simultaneously to test for common linear restrictions on the β⊥  vectors and to place 
common linear restrictions on the α⊥  vectors.  

 
These theorems allow one, in addition, to combine the tests on the cointegrating 

vectors and adjustment vectors with those on the respective orthogonal complements.  For 
example, one could use Theorem 13 to test that the cointegrating vectors share certain linear 
restrictions (say, ratios or spreads, or that some subset of variables do not enter the 
cointegrating relationships) and that some subset of the common stochastic trends are 
known: 0 : , ,H H B Bβ φ α ξ⊥ ⊥ = =   .  The tests (1) through (8) can be recast as tests of the 
hypotheses that are displayed below: 

 
 Test (1) Hβ φ=

 
,G Gβ θ⊥ ⊥ =  

 
  

 Test (2) ,H Hβ φ⊥ =  
 

Gβ θ⊥ =
 

  
 Test (3) Aα ψ=  ,B Bα ξ⊥ ⊥ =      
 Test (4) ,A Aα ψ⊥ =    Bα ξ⊥ =    
 

Test (5) 
H
A

β φ
α ψ

=
=

 
,

H

B B

β φ

α ξ⊥ ⊥

=

 =  
 

,G G

A

β θ

α ψ
⊥ ⊥ =  
=

 
,

,

G G

B B

β θ

α ξ

⊥ ⊥

⊥ ⊥

 =  
 =  

 

 
Test (6) 

,H H

A

β φ

α ψ
⊥ =  

=
 

,

,

H H

B B

β φ

α ξ

⊥

⊥ ⊥

 =  
 =  

 
G

A
β θ
α ψ

⊥ =
=

 
,

G

B B

β θ

α ξ
⊥

⊥ ⊥

=

 =  
 

 
Test (7) 

,

H

A A

β φ

α ψ⊥

=

 =  
 

H
B

β φ
α ξ⊥

=
=

 
,

,

G G

A A

β θ

α ψ

⊥ ⊥

⊥

 =  
 =  

 
,G G

B

β θ

α ξ
⊥ ⊥

⊥

 =  
=

 

 
Test (8) 

,

,

H H

A A

β φ

α ψ

⊥

⊥

 =  
 =  

 
,H H

B

β φ

α ξ
⊥

⊥

 =  
=

 
,

G

A A

β θ

α ψ
⊥

⊥

=

 =  
 

G
B

β θ
α ξ

⊥

⊥

=
=

 

where , , , ,G H B A θ φ ζ ψ⊥ ⊥ ⊥ ⊥= = = =  and vice versa. 
 

5.  Conclusion 
This paper has two aims.  The first is to develop three new hypothesis tests for 

combining structural hypotheses on cointegrating relationships and on their disequilibrium 
adjustment vectors in Johansen’s [19] multivariate maximum likelihood cointegration 
framework.  These tests possess closed-form solutions for parameter estimates under the null 
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hypothesis.  The second is to demonstrate the implications that the tests for restrictions on 
the cointegration vectors and disequilibrium adjustment vectors have for the orthogonal 
complements of these quantities, and how these tests can be formulated as tests on the 
orthogonal complements.  This is useful since the various specifications of multivariate 
common stochastic trends and permanent components are derived from these orthogonal 
complements.  Thus, one may combine tests for restrictions on the long-run relationships 
represented by cointegrating relationships, the adjustments to them, and the common 
stochastic trends of a system of variables. 
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Appendix 
 

Proof of Theorem 1.  0 : , ,H H H Aβ φ α ψ⊥ = =   where H p×s, A p×m are known and φ (p-
s)×(r-s), ψ m×r are unknown, r≤m<p. 
The reduced rank regression from (6) is  
 0 1 1 2 1 ˆt t t tR A H R A H Rψ ψ φ ε⊥′ ′ ′= + + , (73) 
where ψ is partitioned conformably with β as [ ]1 2,ψ ψ , and is split into 
 0 1 1 2 1 ˆt t t tA R H R H R Aψ ψ φ ε⊥′ ′ ′ ′ ′= + +  (74) 
and 
 0 ˆt tA R A ε⊥ ⊥′ ′= . (75) 
This allows one to factor the likelihood function into a marginal part based on (75) and a 
factor based on (74) conditional on (75): 
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 0 1 1 2 1 0 ˆ ˆt t t t t tA R H R H R A R A Aψ ψ φ ω ε ω ε⊥ ⊥ ⊥′ ′ ′ ′ ′ ′ ′= + + + −  (76) 
where  
 ( ) 11

AA A A A A A Aω
⊥ ⊥ ⊥

−−
⊥ ⊥ ⊥′ ′= Ω Ω = Ω Ω . (77) 

The parameters in the two equations are variation independent with independent errors, and 
the maximized likelihood will be the product of the maxima of the two factors.   
The maximum of the likelihood function for the factor corresponding to the marginal 

distribution of 0tA R⊥′  is, apart from a constant, 2
max

ˆ
A AT

ML
A A

⊥ ⊥−

⊥ ⊥

Ω
=

′
.  The denominator is 

estimated by ( ) 00
ˆ ˆ

A A A A A S A
⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′Ω = Ω =  thus,  

 002
max

T
M

A S A
L

A A
⊥ ⊥−

⊥ ⊥

′
=

′
 (78) 

Analysis of the factor of the likelihood function that corresponds to the distribution of 0tA R′  
conditional on 0tA R⊥′  and 1tR  is found by reduced rank regression.  It is equivalent to 
maximizing the concentrated conditional factor as function of the unknown parameter matrix 
φ.  First, one estimates ω by fixing 1ψ , 2ψ , and φ and regressing 

0 1 1 2 1t t tA R H R H Rψ ψ φ ⊥′ ′ ′ ′− −  on 0tA R⊥′ .  This yields 

 ( ) ( )( ) 1
1 2 00 1 10 2 10 00ˆ , , A S A H S A H S A A S Aω ψ ψ φ ψ ψ φ −

⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′ ′ ′= − − . (79) 

This allows one to correct for 0tA R⊥′  in (75) by forming new residual vectors 

 ( ) 1
. 0 00 0 , 0,1it A it i tR R S A A S A A R i

⊥

−
⊥ ⊥ ⊥ ⊥′ ′= − =  (80) 

and product moment matrices 

 
( )

. . .
1

1
0 00 0

1

, , 0,1

T

ij A it A jt A
t

ij i j

S R R
T

S S A A S A A S i j

⊥ ⊥ ⊥
=

−
⊥ ⊥ ⊥ ⊥

′=

′ ′= − =

∑
. (81) 

Thus we can write the conditional regression equation (76) as 
 0 . 1 1 . 2 1 . ˆ ˆ ˆt A t A t A t tA R H R H R A Aψ ψ φ ε ω ε

⊥ ⊥ ⊥⊥ ⊥′ ′ ′ ′ ′ ′= + + − . (82) 
To successively concentrate the conditional likelihood until it is solely a function of φ, one 
fixes 2ψ  and φ and then estimates 1ψ  by regressing 0 . 2 1 .t A t AA R H Rψ

⊥ ⊥ ⊥
′ ′−  on 1 .t AH R

⊥
′  to get 

 ( )( ) 1

1 01. 2 11. 11.ˆ A A AA S H H S H H S Hψ ψ φ
⊥ ⊥ ⊥

−

⊥′ ′ ′ ′= − . (83) 

One then corrects .it AR
⊥

 for 1 .t AH R
⊥

′ by forming new residuals 

 ( ) 1

. . . 1. 11. 1 . , 0,1it A H it A i A A t AR R S H H S H H R i
⊥ ⊥ ⊥ ⊥ ⊥

−
′ ′= − =  (84) 

and product moment matrices 

 

( )

. . . . . .
1

1

. 1. 11. 1 .

1

, , 0,1

T

ij A H it A H jt A H
t

ij A i A A j A

S R R
T

S S H H S H H S i j

⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

=

−

′=

′ ′= − =

∑
. (85) 

Thus one can rewrite (82) as 
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 0 . . 2 1 . . ˆt A H t A H tA R H R uψ φ

⊥ ⊥⊥′ ′ ′= + , (86) 
for which 
 ˆ ˆ ˆˆt t tu A Aε ω ε⊥′ ′= − . (87) 
Fixing φ, one estimates 2ψ  by regressing 0 . .t A HA R

⊥
′  on 1 . .t A HH Rϕ

⊥⊥′ ′ .  This gives 

 ( ) 1

2 01. . 11. .ˆ A H A HA S H H S Hψ φ φ φ
⊥ ⊥

−

⊥ ⊥ ⊥′ ′ ′=  (88) 
and 

 ( ) 1

0 . . 01. . 11. . 1 . .ˆt t A H A H A H t A Hu A R A S H H S H H Rφ φ ϕ φ
⊥ ⊥ ⊥ ⊥

−

⊥ ⊥ ⊥ ⊥′ ′ ′ ′ ′ ′= − . (89) 
The factor of the maximized likelihood corresponding to the conditional distribution is, apart 
from a constant,  

 
.2

max

ˆ
AA AT

CL
A A

⊥−
Ω

=
′

 (90) 

where 

 
( )

1
.

1

AA A AA AA A A A A

A A A A A A A A
⊥ ⊥ ⊥ ⊥ ⊥

−

−
⊥ ⊥ ⊥ ⊥

Ω = Ω − Ω Ω Ω

′ ′ ′ ′ ′ ′= Ω − Ω Ω Ω
. (91) 

The maximum likelihood estimate of the conditional variance matrix is 

 

( )

.
1

1

00. . 01. . 11. . 10. .

1ˆ ˆ ˆ
T

AA A t t
t

A H A H A H A H

u u
T

A S A A S H H S H H S Aφ φ φ φ

⊥

⊥ ⊥ ⊥ ⊥

=

−

⊥ ⊥ ⊥ ⊥

′Ω =

′ ′ ′ ′ ′ ′= −

∑
 (92) 

which gives the maximized conditional likelihood  

 

( )

( )

2

max

1

00. . 01. . 11. . 10. .

T

C

A H A H A H A H

L

A S A A S H H S H H S A

A A

φ

φ φ φ φ
⊥ ⊥ ⊥ ⊥

−

−

⊥ ⊥ ⊥ ⊥

=

′ ′ ′ ′ ′ ′−

′

. (93) 

The maximized likelihood function is the product between the maximized conditional factor 
and maximized marginal factor, for which the only unknown parameters are contained in φ; 
one then has (and noting that ( ) 1A A A A −′≡  implies A A A A′ ′= ) 

             

( )

( )

2

max

00

1

00. . 01. . 11. . 10. .

...

T

A H A H A H A H

L

A S A
A A A A

A S A A S H H S H H S A

φ

φ φ φ φ
⊥ ⊥ ⊥ ⊥

−

⊥ ⊥

⊥ ⊥

−

⊥ ⊥ ⊥ ⊥

=

′
×

′ ′

′ ′ ′ ′ ′ ′−

. (94) 

From the matrix relationship for nonsingular A and B,  

 1 1A C
A B C A C B A CB C

C B
− −′ ′= − = −

′
 (95) 
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it follows that 1 1B
B C A C A CB C

A
− −′ ′− = − , and thus one can rewrite (94) as 

 

( )

( )

00 00. .2

max

1

11. . 10. . 00. . 01. .

11. .

...A HT

A H A H A H A H

A H

A S A A S A
L

A A A A

H S H H S A A S A A S H

H S H

φ

φ φ φ φ

φ φ

⊥

⊥ ⊥ ⊥ ⊥

⊥

⊥ ⊥−

⊥ ⊥

−

⊥ ⊥ ⊥ ⊥

⊥ ⊥

′ ′
= ×

′ ′

′ ′ ′ ′ ′ ′−

′ ′

. (96) 

 

The variance-covariance matrix is then estimated by 
ˆ ˆ

ˆ
ˆ ˆ

AA AA

A A A A

A A A A⊥

⊥ ⊥ ⊥

⊥ ⊥

 Ω Ω ′
    Ω =     Ω Ω 

, 

where the estimators of A A⊥ ⊥
Ω , 1

AA A Aω
⊥ ⊥ ⊥

−= Ω Ω , and 1
.AA A AA AA A A A A⊥ ⊥ ⊥ ⊥ ⊥

−Ω = Ω − Ω Ω Ω  are used 

to recover ˆ
A A⊥ ⊥

Ω , ˆ ˆˆAA A Aω
⊥ ⊥ ⊥

Ω = Ω , ˆ ˆ
A A AA⊥ ⊥

′Ω = Ω , and .
ˆ ˆ ˆˆAA AA A A Aω

⊥ ⊥
Ω = Ω + Ω . 

Maximizing the likelihood function is equivalent to minimizing the last factor of (96) with 
respect to φ.  Following from Johansen and Juselius [25], here, one solves the eigenvalue 
problem 

 ( ) 1

11. . 10. . 00. . 01. . 0A H A H A H A HH S H H S A A S A A S Hλ
⊥ ⊥ ⊥ ⊥

−

⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =  (97) 

for eigenvalues 11 0p sλ λ −≥ ≥ ≥ ≥ 

  and eigenvectors ( )1, , p sV v v −=  
  normalized so that 

11. .A H p sV H S H V I
⊥⊥ ⊥ −′ ′ =  .  Then ( )1

ˆ , , r sv vφ −=  
 , from which one then can recover the 

parameters (29) to (32), and the maximized likelihood function, apart from a constant, is 

 ( )00 00. .2
max

1

1
r s

A HT
i

i

A S A A S A
L

A A A A
λ⊥

−
⊥ ⊥−

=⊥ ⊥

′ ′
= −

′ ′ ∏  . (98) 

Rewriting 

  

( )

( )

1

00. . 00. 01. 11. 10.

1

00. 11. 10. 00. 01.

11.

A H A A A A

A A A A A

A

A S A A S A A S H H S H H S A

A S A H S H H S A A S A A S H

H S H

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥

−

−

′ ′ ′ ′ ′= −

′ ′ ′ ′ ′−
=

′

 (99) 

and noting  

 
( )

( )
1

11. 10. 00. 01.

111.

1
sA A A A

i
iA

H S H H S A A S A A S H

H S H
ρ

⊥ ⊥ ⊥ ⊥

⊥

−

=

′ ′ ′ ′−
= −

′ ∏  ,  (100) 

where 11 0sρ ρ≥ ≥ ≥ ≥ 

  solves the eigenvalue problem  

 ( ) 1

11. 10. 00. 01. 0A A A AH S H H S A A S A A S Hρ
⊥ ⊥ ⊥ ⊥

−
′ ′ ′ ′− = , (101) 

yields 
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 ( )00. . 00.
1

1
s

A H A i
i

A S A A S A ρ
⊥ ⊥

=

′ ′= −∏   (102) 

This gives the maximized likelihood function, apart from a constant,  

 ( ) ( )00 00.2/
max

1 1

1 1
r s s

AT
i i

i i

A S A A S A
L

A A A A
λ ρ⊥

−
⊥ ⊥−

= =⊥ ⊥

′ ′
= − −

′ ′ ∏ ∏

 . (103) 

If C is a p×p matrix of full rank and [ ],X A A⊥= , where A and A⊥ are full column rank p×r 
and p×(p-r) matrices respectively, one may use the properties of determinants to write 
C X CX X X′ ′= .  And since  

 
0

0
A A A A A A

X X A A A A
A A A A A A

⊥
⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

′ ′ ′
′ ′ ′= = =

′ ′ ′
 (104) 

 ( ) 1A CA A CA
X CX A CA A CA A CA A CA A CA

A CA A CA
−⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥

′ ′
′ ′ ′ ′ ′ ′= = −

′ ′
 (105) 

we have  

 
( ) 1A CA A CA A CA A CA A CA

C
A A A A

−
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

′ ′ ′ ′ ′−
=

′ ′
. (106) 

Substituting 00S C=  and recalling ( ) 1
00. 00 00 00 00AS S S A A S A A S

⊥

−
⊥ ⊥ ⊥ ⊥′ ′= −   

we have  00 00.
00

AA S A A S A
S

A A A A
⊥⊥ ⊥

⊥ ⊥

′ ′
=

′ ′
. (107) 

Therefore, apart from a constant, the maximized likelihood is  

 ( ) ( )2/
max 00

1 1

1 1
r s s

T
i i

i i

L S λ ρ
−

−

= =

= − −∏ ∏

 .   (108) 

 
Proof of Theorem 2.  The likelihood ratio test for 0H  in H(r) is  

 ( )( ) ( )( ) ( )( )0 02lnLR H H r L H r L H= − .  (109) 
The constant terms in both cancel, and one can write from (15) and (108),  

 ( )( ) ( ) ( ) ( )0 00 00
1 1 1

ˆln ln 1 ln 1 ln ln 1
r s s r

i i i
i i i

LR H H r T S Sλ ρ λ
−

= = =

 
= + − + − − − − 

 
∑ ∑ ∑

 , (110) 

which yields the likelihood ratio test statistic 

 ( )( ) ( ) ( ) ( )0
1 1 1

ˆln 1 ln 1 ln 1
r s s r

i i i
i i i

LR H H r T λ ρ λ
−

= = =

 
= − + − − − 

 
∑ ∑ ∑

 . (111) 

The calculation for the limiting distribution and degrees of freedom for these tests are based 
on [20, 21] and on [23, Lemma 7.1].  The former set shows that the limiting distribution of 
the likelihood ratio tests for restrictions on β and α given r cointegrating relationships is 2χ .  
The latter shows that for a×b and c×b matrices of full column rank, X and Y, the tangent 
space of XY ′  has dimension (a+c-b)b.  The number of parameters in the unrestricted 

αβ ′Π =  is (using, p=a, b=r, and c=p), 2pr-r2.  In the restricted model the number of free 

parameters in 1 2A H A Hψ ψ φ ⊥′ ′ ′Π = +  is ms+(m+(p-s)-(r-s))(r-s) =mr+pr-ps+sr-r2.  The 
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difference between the unrestricted and restricted free parameters, r(p-m)+s(p-r), are the 
degrees of freedom.  So, the likelihood ratio test is asymptotically distributed as 2χ  with 
r(p-m)+s(p-r) degrees of freedom.  
 
Proof of Theorem 3. 0 : , ,H H A Aβ φ α ψ⊥ = =     where H p×s, A p×m are known and φ s×r, 
ψ (p-m)×(r-m) are unknown, r≤s<p. 
The reduced rank regression is then 
 0 1 1 2 1 ˆt t t tR A H R A H Rφ ψφ ε⊥′ ′ ′ ′= + + , (112) 
where φ is partitioned conformably with α as 11 0sρ ρ≥ ≥ ≥ ≥ 

 , and is split into 
 0 1 1 ˆt t tA R H R Aφ ε′ ′ ′ ′= +  (113) 
and 
 0 2 1 ˆt t tA R H R Aψφ ε⊥ ⊥′ ′ ′ ′= + . (114) 
This allows one to factor the likelihood function into a marginal part based on (114) and a 
factor based on the (113) conditional on (114): 
 ( )0 1 1 0 2 1 ˆ ˆt t t t t tA R H R A R H R A Aφ ω ψφ ε ω ε⊥ ⊥′ ′ ′ ′ ′ ′ ′ ′= + − + −  (115) 
where  
 ( ) 11

AA A A A A A Aω
⊥ ⊥ ⊥

−−
⊥ ⊥ ⊥′ ′= Ω Ω = Ω Ω . 

The parameters in (115) are variation independent of (114) with independent errors. 
 
 
To maximize the likelihood for the marginal distribution, first one fixes 

( ) ( ) 1
1 2 0 1 1ˆ , , k k kkA S H S Sω ϕ ϕ ψ ϕ −′ ′ ′= −  in (114) and estimates ψ by regression, giving 

 ( ) 1
01 2 2 11 2ˆ A S H H S Hψ φ φ φ −

⊥′ ′ ′=  (116) 
and  
 ( ) 1

0 01 2 2 11 2 2 1t̂ t tA A R A S H H S H H Rε φ φ φ φ−
⊥ ⊥ ⊥′ ′ ′ ′ ′ ′ ′= −  (117) 

which gives the maximum likelihood estimator for A A A A
⊥ ⊥ ⊥ ⊥′Ω = Ω ,  

 ( ) 1
00 01 2 2 11 2 2 10

ˆ
A A A S A A S H H S H H S Aφ φ φ φ

⊥ ⊥

−
⊥ ⊥ ⊥ ⊥′ ′ ′ ′ ′ ′Ω = − . (118) 

The contribution of the marginal distribution, apart from a constant, is  

 
( ) 1

00 01 2 2 11 2 2 102
max

T
M

A S A A S H H S H H S A
L

A A

φ φ φ φ−
⊥ ⊥ ⊥ ⊥−

⊥ ⊥

′ ′ ′ ′ ′ ′−
=

′
 (119) 

 
( ) 1

2 11 2 2 10 00 01 200

2 11 2

H S H H S A A S A A S HA S A
A A H S H

φ φ φ φ

φ φ

−
⊥ ⊥ ⊥ ⊥⊥ ⊥

⊥ ⊥

′ ′ ′ ′ ′ ′−′
=

′ ′ ′
. (120) 

One maximizes the factor of the marginal contribution by minimizing the second factor in 
(120) with respect to the unknown parameter matrix ( ) ( ) 1

1 2 0 1 1ˆ , , k k kkA S H S Sω ϕ ϕ ψ ϕ −′ ′ ′= − .  
This is done by solving the eigenvalue problem  
 ( ) 1

11 10 00 01 0H S H H S A A S A A S Hλ −
⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =  (121) 
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for eigenvalues 11 0sλ λ≥ ≥ ≥ ≥ 

  and corresponding eigenvectors ( )1, , sV v v=  
 , 

normalized so that 11 sV H S HV I′ ′ =  .  This implies the maximand of the marginal distribution 
of the likelihood function is ( )2 1

ˆ , , r mv vφ −=  
 , from which one then can recover the 

parameters (40) to (42), and the maximized contribution is 

 ( )002
max

1

1
r m

T
M i

i

A S A
L

A A
λ

−
⊥ ⊥−

=⊥ ⊥

′
= −

′ ∏  . (122) 

 
To calculate the conditional distribution, given 1φ , 2̂φ , and ψ̂ , one regresses 0 1 1t tA R H Rφ′ ′ ′−  
on 0 2 1

ˆˆkt t tR A R H Rψφ⊥′ ′ ′= −  to estimate  

 ( ) ( ) 1
1 2 0 1 1

ˆˆ ˆ, , k k kkA S H S Sω φ φ ψ φ −
⊥′ ′ ′= − , (123) 

where 1 1
1

1 T

k t kt
t

S R R
T =

′= ∑  and so on.  This allows one to correct for ω in (115) by forming new 

residual vectors  
 1

. , 0,1,it k it ik kk ktR R S S R i k−= − =  (124) 
and product moment matrices 

 . . .
1

1

1

, , 0,1,

T

ij k it k jt k
t

ij ik kk kj

S R R
T
S S S S i j k

=

−

′=

= − =

∑ . (125) 

One can then write (115) as 
 0 . 1 1 . ˆt k t k tA R H R uφ′ ′ ′= + , (126) 
where ˆ ˆ ˆˆt t tu A Aε ω ε⊥′ ′= −  and, as suggested by Johansen [20], estimate 1φ  by regression 
which yields 
 ( ) 1

1 11. 10.
ˆ

k kH S H H S Aφ −′ ′= . (127) 
The factor of the maximized likelihood corresponding to the conditional distribution is, apart 
from a constant,  

 
.2

max

ˆ
AA AT

CL
A A

⊥−
Ω

=
′

  (128) 

where 

 
( )

1
.

1

AA A AA AA A A A A

A A A A A A A A
⊥ ⊥ ⊥ ⊥ ⊥

−

−
⊥ ⊥ ⊥ ⊥

Ω = Ω − Ω Ω Ω

′ ′ ′ ′ ′ ′= Ω − Ω Ω Ω
. (129) 

The maximum likelihood estimate of the conditional variance matrix is 

 
( )

.
1

1
00. 01. 11. 10.

1ˆ ˆ ˆ
T

AA A t t
t

k k k k

u u
T

A S A A S H H S H H S A

⊥
=

−

′Ω =

′ ′ ′ ′= −

∑
 (130) 

which gives, apart from a constant, the maximized likelihood for the conditional distribution 
as 
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( ) 1

00. 01. 11. 10.2
max

k k k kT
C

A S A A S H H S H H S A
L

A A

−

−
′ ′ ′ ′−

=
′

 (131) 

 
( ) 1

00. 11. 10. 00. 01.

11.

k k k k k

k

A S A H S H H S A A S A A S H

A A H S H

−′ ′ ′ ′ ′−
=

′ ′
 (132) 

 ( )00.

1

1
m

k
i

i

A S A
A A

ρ
=

′
= −

′ ∏  , (133) 

where 1 11 ... 0m m sρ ρ ρ ρ+≥ ≥ ≥ > = = =   

  solve the eigenvalue problem 

 ( ) 1
11. 10. 00. 01. 0k k k kH S H H S A A S A A S Hρ −′ ′ ′ ′− = . (134) 

 
The variance-covariance matrix is then estimated by 

 
ˆ ˆ

ˆ
ˆ ˆ

AA AA

A A A A

A A A A⊥

⊥ ⊥ ⊥

⊥ ⊥

 Ω Ω ′    Ω =     Ω Ω 
, (135) 

where the estimators of A A⊥ ⊥
Ω , 1

AA A Aω
⊥ ⊥ ⊥

−= Ω Ω , and 1
.AA A AA AA A A A A⊥ ⊥ ⊥ ⊥ ⊥

−Ω = Ω − Ω Ω Ω  are used 

to recover ˆ
A A⊥ ⊥

Ω , ˆ ˆˆAA A Aω
⊥ ⊥ ⊥

Ω = Ω , ˆ ˆ
A A AA⊥ ⊥

′Ω = Ω , and .
ˆ ˆ ˆˆAA AA A A Aω

⊥ ⊥
Ω = Ω + Ω . 

Finally, the maximized likelihood is 

 ( ) ( )00 00.2
max

1 1

1 1
r m m

kT
i i

i i

A S A A S A
L

A A A A
λ ρ

−
⊥ ⊥−

= =⊥ ⊥

′ ′
= − −

′ ′ ∏ ∏

 .  (136) 

 
 
Proof of Theorem 4.  The likelihood ratio test for 0H  in H(r) is   

 ( )( ) ( ) ( )( )( )0 02lnLR H H r L H L H r= − .  (137) 
The constant terms in both cancel, and one can write the likelihood ratio test statistic from 
(15) and (136),  

  

( )( )

( ) ( ) ( )

0

00. 00
00

1 1 1

|

ln ln ...

ˆln 1 ln 1 ln 1

k

r m m r

i i j
i i j

LR H H r

A S A A S A
T S

A A A A

λ ρ λ

⊥ ⊥

⊥ ⊥

−

= = =

=

 ′ ′  −  ′ ′   


+ − + − − − 


∑ ∑ ∑



.

  (138) 

The number of free parameters in the unrestricted model for r cointegrating relationships, 
from Theorem 2, is 2pr-r

2
.  In the restricted model, 1 2A H A Hφ ψφ⊥′ ′ ′ ′Π = +  (see [23, Lemma 

7.1]) has ms+(p-m+s-(r-m))(r-m) free parameters.  The degrees of freedom for the likelihood 
ratio tests is the difference in free parameters between the unrestricted and restricted models, 
m(p-r)+r(p-s).  So, the likelihood ratio test is asymptotically distributed as 2χ  with 
m(p-r)+r(p-s) degrees of freedom.  
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Proof of Theorem 5.  Under the hypothesis 0 : , , ,H H H A Aβ φ α ψ⊥ ⊥  = =     where ,H A  

are known p×s matrices and φ and ψ (p-s)×(r-s) are unknown, s≤r<p. 
The reduced rank regression given 0H  can be expressed as 
 0 1 1t t t tR AH R A H Rψφ ε⊥ ⊥′ ′ ′= + +  (139) 
After defining 0 1kt t tR R AH R′= − , for which there are no unknown parameters, one rewrites 
(139) as  
 1kt t tR A H Rψφ ε⊥ ⊥′ ′= +  (140) 
and premultiplies (140), in turn, by A′  and A⊥′  to get 
 kt tA R A ε′ ′=  (141) 
and 
 1 1kt t tA R H R Aψ φ ε⊥ ⊥′ ′ ′ ′= + . (142) 
This allows one to factor the likelihood function into a marginal part based on (141) and a 
factor based on (142) conditional on (141): 
 1 ˆ ˆkt t kt t tA R H R A R A Aψφ ω ε ω ε⊥ ⊥ ⊥′ ′ ′ ′ ′ ′= + + − , (143) 

where ( ) 11
A A AA A A A Aω

⊥

−−
⊥′ ′= Ω Ω = Ω Ω .  The parameters in (143) are variation independent of 

(141) with independent errors. 
To calculate the conditional factor, one fixes φ  and ψ and regresses 1kt tA R H Rψφ⊥ ⊥′ ′ ′−  on 

ktA Rω ′  to estimate 

 ( ) ( )( ) 1
1, kk k kkA S A H S A A S Aω φ ψ ψφ −

⊥ ⊥′ ′ ′ ′= −  (144) 
This allows one to correct for ω in (143) by forming new residual vectors 
 ( ) 1

. , 1,it A it ik kk ktR R S A A S A A R i k−′ ′= − =  (145) 
and product moment matrices 

 
( )

. . .
1

1

1

, , 1,

T

ij A it A jt A
t

ij ik kk kj

S R R
T

S S A A S A A S i j k
=

−

′=

′ ′= − =

∑
. (146) 

This allows one to write (143) as 
 . 1 . ˆkt A t A tA R H R uψφ⊥ ⊥′ ′ ′= + , (147) 
where ˆ ˆ ˆˆt t tu A Aε ω ε⊥′ ′= − .  Fixing φ , one estimates ψ by regressing .kt AA R⊥′  on 1 .t AH Rφ ⊥′ ′ , 
which yields 
 ( ) ( ) 1

1. 11.ˆ k A AA S H H S Hψ φ φ φ φ
−

⊥ ⊥ ⊥ ⊥′ ′ ′= . (148) 
The factor of the maximized likelihood corresponding to the conditional distribution is, apart 
from a constant,  

 
.2

max

ˆ
A A AT

CL
A A

⊥ ⊥−

⊥ ⊥

Ω
=

′
,  (149) 

where 
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( )

1
.

1

A A A A A A A AA AA

A A A A A A A A
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

−

−
⊥ ⊥ ⊥ ⊥

Ω = Ω − Ω Ω Ω

′ ′ ′ ′= Ω − Ω Ω Ω
. (150) 

The maximum likelihood estimate of the conditional variance matrix is 

 

( )

.
1

1
. 1. 11. 1 .

1ˆ ˆ ˆ
T

A A A t t
t

kk A k A A k A

u u
T

A S A A S H H S H H S Aφ φ φ φ

⊥ ⊥
=

−

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

′Ω =

′ ′ ′ ′ ′ ′= −

∑
, 

which gives, apart from a constant, the maximized likelihood for the conditional factor as 

 
( ) 1

. 1. 11. 1 .
2

max

kk A k A A k A
T

C

A S A A S H H S H H S A
L

A A

φ φ φ φ
−

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
−

⊥ ⊥

′ ′ ′ ′ ′ ′−
=

′
 (151) 

 
( ) 1

. 11. 1 . . 1.

11.

kk A A k A kk A k A

A

A S A H S H H S A A S A A S H

A A H S H

φ φ φ φ

φ φ

−
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

′ ′ ′ ′ ′ ′ ′−
=

′ ′ ′
. (152) 

The conditional likelihood is maximized by minimizing (152) with respect to φ , which is 
done by solving the eigenvalue problem 
 ( ) 1

11. 1 . . 1. 0A k A kk A k AH S H H S A A S A A S Hλ −
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′− =  (153) 

for 1 11 0s r s r p sλ λ λ λ− − + −≥ ≥ ≥ ≥ = = =   

   and for eigenvectors ( )1, , p sV v v −=  
 , 

normalized so that 11.A p rV H S H V I⊥ ⊥ −′ ′ =  .  The maximand of the likelihood function is 

( )1
ˆ , , r sv vφ −=  

 , from which one then can recover the parameters (52) to (54), and the 
maximized likelihood function for the conditional piece, apart from a constant, is 

 ( ).2
max

1

1
r s

kk AT
C i

i

A S A
L

A A
λ

−
⊥ ⊥−

=⊥ ⊥

′
= −

′ ∏  . (154) 

The maximum of the factor corresponding to the likelihood function for the marginal piece 

based on (141) is, apart from a constant, 2
max

ˆ
AAT

ML
A A

−
Ω

=
′

.  The denominator is estimated by  

( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ ˆAA k k kkA A A A A A A R R A A S A
T T T

εε′ ′ ′ ′ ′ ′ ′Ω = Ω = Ω = = = , and thus 

 2
max

kkT
M

A S A
L

A A
− ′

=
′

. (155) 

The variance-covariance matrix is then estimated by  

 [ ] [ ]
ˆ ˆ

ˆ
ˆ ˆ

AA AA

A A A A

A A A A⊥

⊥ ⊥ ⊥

⊥ ⊥

 Ω Ω ′ Ω =
 Ω Ω 

, (156) 

where the estimators of AAΩ , 1
A A AAω

⊥

−= Ω Ω , and 1
.A A A A A A A AA AA⊥ ⊥ ⊥ ⊥ ⊥ ⊥

−Ω = Ω − Ω Ω Ω  are used to 

recover ˆ
AAΩ , ˆ ˆˆA A AAω

⊥
Ω = Ω , ˆ ˆ

AA A A⊥ ⊥
′Ω = Ω , and .

ˆ ˆ ˆˆA A A A A AAω
⊥ ⊥ ⊥ ⊥ ⊥

Ω = Ω + Ω .  
The product of (154) and (155) yield, apart from a constant, the maximized likelihood  
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 ( ).2
max

1

1
r s

kk kk AT
i

i

A S A A S A
L

A A A A
λ

−
⊥ ⊥−

=⊥ ⊥

′ ′
= −

′ ′ ∏  . (157) 

By the same arguments used in (104) to (107), one can show that 

 .kk kk A
kk

A S A A S A
S

A A A A
⊥ ⊥

⊥ ⊥

′ ′
=

′ ′
 (158) 

so that the maximized likelihood function is 

 ( )2
max

1

1
r s

T
kk i

i

L S λ
−

−

=

= −∏  .  (159) 

 
Proof Theorem 6.  The likelihood ratio test for 0H  in H(r) is  

 ( )( ) ( ) ( )( )( )0 02lnLR H H r L H L H r= − .  (160) 
The constant terms in both cancel, and one can write the likelihood ratio test statistic from 
(15) and (159),  

 ( )( ) ( ) ( )0 00
1 1

ˆ| ln ln ln 1 ln 1
r s r

kk i j
i j

LR H H r T S S λ λ
−

= =

 
= − + − − − 

 
∑ ∑ . (161) 

The number of free parameters in the unrestricted model for r cointegrating relationships, 
from Theorem 2, is 2pr- r

2
.  In the restricted model, AH A Hψφ⊥′ ′ ′Π = +  (from [23, Lemma 

7.1]) has ((p-s)+(p-s)-(r-s))(r-s) free parameters.  The degrees of freedom for the likelihood 
ratio tests is the difference in free parameters between the unrestricted and restricted models, 
s(2p-s).  So, the likelihood ratio test is asymptotically distributed as 2χ  with 2ps-s

2
 degrees 

of freedom.  
  
Proof of Theorem 7.  0 :H Hβ φ=  where H p×s is known and φ s×r is unknown, r≤s<p.  
That one may choose ,H Hβ φ⊥ ⊥ ⊥ =    as the orthogonal complement of β was shown is 
section 4. 
Consider 
 ,G Gβ θ⊥ ⊥ =     (162) 

where G p×q is known and θ (p-q)×(p-r) is unknown.  ,G Gβ θ⊥ ⊥ =    implies 

( ) ( )sp G sp β⊥⊂ , which implies ( ) ( )sp sp Gβ ⊥⊂ .  Setting H G⊥= , a p×(p-q) matrix, 
implies ( ) ( )sp sp Hβ ⊂ , which shows this is a test of the form Hβ φ=  where φ is (p-q)×r.  

Noting 
0

,
p q

G H
G G H

IG H
φφ

β β θ φ
θ φθ φ⊥ ⊥

−⊥

′   ′′  = = =     ′′ ′   
 is zero when θ φ⊥=  (that is, φ θ⊥= ) 

and setting s=q-p shows this is test (1) in section 3.  
   
Proof of Theorem 8. 0 : ,H H Hβ φ⊥ =    where H p×s is known and φ (p-s)×(s-r) is 
unknown.  That one may choose Hβ φ⊥ ⊥ ⊥=  was shown in section 4.  Consider 
 Gβ θ⊥ =  (163) 
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where G is a known p×q matrix and θ is an unknown q×(p-r) matrix;  Gβ θ⊥ =  implies 

( ) ( )sp sp Gβ⊥ ⊂ , which implies ( ) ( )sp G sp β⊥ ⊂ .  Setting the H G⊥= , a p×(p-q) matrix, 
implies ( ) ( )sp H sp β⊂ , which shows this is a test of the form [ ],Hβ ζ=  where ζ  is r-(p-

q). Noting [ ] [ ] [ ] ( ), , 0, 0 ,p r p qG H G H G G Gβ β θ ζ θ θ ζ φ θ ζ θ ζ− × −⊥ ⊥ ⊥′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ = = = =    is zero 

when ( ) 1G G Gζ φ−
⊥ ⊥ ⊥ ⊥′=  and setting s=q-p shows this is test (1) in section 3.  

 
The other theorems in section 4 are combinations of the above theorems using α and β. 
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