EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 4, 2012, 554-566 ISSN 1307-5543 – www.ejpam.com

ρ -Closed Sets in Topological Spaces

C. Devamanoharan^{1,*}, S.Pious Missier¹ and S. Jafari²

Abstract. In this paper, we introduce and study new classes of sets called ρ -closed sets and ρ_s -closed sets, ρ -open sets and ρ_s -open sets. Moreover, we present two new types of continuities called ρ -continuity and ρ_s -continuity and investigate some of their fundamental properties.

2010 Mathematics Subject Classifications: 54A05, 54C08

Key Words and Phrases: ρ -closed, ρ_s -closed, ρ -open, ρ_s -open, ρ -continuity and ρ_s -continuity

1. Introduction

The study of generalized closed sets in a topological space was initiated by Levine in [7] and the concept of $T_{1/2}$ spaces was introduced. In 1996, H.Maki, J. Umehara and T. Noiri [9] introduced the class of pregeneralized closed sets and used them to obtain properties of pre- $T_{1/2}$ spaces. The modified forms of generalized closed sets and generalized continuity were studied by K. Balachandran, P. Sundaram and H. Maki [2]. In 2008, S. Jafari, T. Noiri, N. Rajesh and M.L. Thivagar [5] introduced the concept of \tilde{g} -closed sets and their properties. In this paper, we introduce new classes of sets called ρ -closed sets for topological spaces.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ) , Cl(A), Int(A) and D[A] denote the closure, the interior and the derived set of A, respectively. We recall some known definitions needed in this paper.

Definition 1. Let (X, τ) be a topological space. A subset A of the space X is said to be

Email addresses: kanchidev@gmail.com (C.Devamanoharan), spmissier@yahoo.com (S. Missier), jafari@stofanet.dk (S.Jafari)

¹ Post Graduate and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi 628 008, Tamil Nadu, India.

² College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark.

^{*}Corresponding author.

- 1. Preopen [8] if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.
- 2. Semi-open [6] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$.
- 3. α -open [10] if $A \subseteq int(cl(int(A)))$ and α -closed if $cl(int(cl(A))) \subseteq A$.
- 4. Semi preopen [1] if $A \subseteq cl(int(cl(A)))$ and semi preclosed if $int(cl(int(A))) \subseteq A$.
- 5. regular open [13] if A = int(cl(A)) and regular closed if A = cl(int(A)).
- 6. π -open [17] if it is the finite union of regular open sets.

Definition 2 ([8]). Let (X, τ) be a topological space and $A \subseteq X$.

- 1. The Pre-interior of A, denoted by pint(A), is the union of all preopen subsets of A.
- 2. The Pre-closure of A, denoted by Pcl(A), is the intersection of all Preclosed sets containing A.

Lemma 1 ([1]). For any subset A of X, the following relations hold.

- 1. $Scl(A) = A \cup int(cl(A))$.
- 2. $\alpha cl(A) = A \cup cl(int(cl(A)))$.
- 3. $Pcl(A) = A \cup cl(int(A))$.
- 4. $Spcl(A) = A \cup int(cl(int(A)))$.

Definition 3. Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be

- 1. generalized closed (briely g-closed) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 2. generalized preclosed (briely gp-closed) [11] if $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 3. generalized preregular closed (briely gpr-closed) [4] if $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 4. pregeneralized closed (briely pg-closed) [9] if $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is preopen in X.
- 5. g^* -preclosed (briely g^* p-closed) [15] if $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- 6. generalized semi-preclosed (briely gsp-closed) [3] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 7. pre semi closed [16] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- 8. πgp -closed [12] if $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in X.

- 9. \hat{g} -closed [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- 10. *g-closed [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X.
- 11. #g- semi closed (briely #gs-closed) [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X.
- 12. \tilde{g} -closed set [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open in X.

The complements of the above mentioned sets are called their respective open sets.

Definition 4. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be g-continuous [2] if $f^{-1}(V)$ is g-closed in (X,τ) for every closed set V of (Y,σ) .

3. Basic Properties of ρ -Closed Sets

We introduce the following definition.

Definition 5. A subset A of a space (X, τ) is said to be ρ -closed in (X, τ) if $Pcl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is \tilde{g} -open in (X, τ) .

Theorem 1. Every open and preclosed subset of (X, τ) is ρ -closed.

Proof. Let *A* be an open and Preclosed subset of (X, τ) . Let $A \subseteq U$ and *U* be \tilde{g} -open in *X*. Then $Pcl(A) = A = Int(A) \subseteq Int(U)$. Hence *A* is ρ -closed.

The converse of the above theorem need not be true as it is seen from the following example.

Example 1. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c, a\}, X\}$. Then the set $A = \{a, b\}$ is ρ -closed but it is neither open set nor preclosed set in (X, τ) .

Theorem 2. Every ρ -closed set is gp-closed.

Proof. Let *A* be any ρ -closed set in *X*. Let $A \subseteq U$ and *U* be open in *X*. Every open set is \tilde{g} -open and thus *A* is ρ -closed. Therefore $Pcl(A) \subseteq Int(U) = U$. Hence *A* is gp-closed.

The converse of the above theorem need not be true as it is seen from the following example.

Example 2. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $A = \{a\}$ is gp-closed but not ρ -closed in (X, τ) .

Theorem 3. Every ρ -closed set is gpr-closed.

Proof. Let A be any ρ -closed set. Let $A \subseteq U$ and U be regular open. Observe that every regular open set is open and every open set is \tilde{g} -open and therefore A is ρ -closed. It follows that $Pcl(A) \subseteq Int(U) = U$. Hence A is gpr-closed.

The converse of the above theorem need not be true as it is seen from the following example.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the set $A = \{a, b\}$ is gpr-closed but not ρ -closed in (X, τ) .

Theorem 4. Every ρ -closed set is gsp-closed.

Proof. Let A be any ρ -closed set. Let $A \subseteq U$ and U be open. Since every open set is \tilde{g} -open and thus A is ρ -closed . Therefore $Pcl(A) \subseteq Int(U) = U$ and so $Spcl(A) \subseteq U$. Hence A is gsp-closed.

The converse of this theorem need not be true as it is seen from the following example.

Example 4. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then the set $A = \{a, b\}$ is gsp- closed but not ρ -closed in (X, τ) .

Theorem 5. Every ρ -closed set is πgp -closed.

Proof. Let A be any ρ -closed set. Let $A \subseteq U$ and U be π -open. Since every π -open set is open and every open set is \tilde{g} -open and therefore A is ρ -closed. This means that $Pcl(A) \subseteq Int(U) = U$. Hence A is πgp -closed.

The converse of the above theorem need not be true as it is seen from the following example.

Example 5. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then the set $A = \{a, b\}$ is πgp -closed but not ρ -closed in (X, τ) .

Remark 1. ρ -closedness and preclosedness are independent concepts as we illustrate by means of the following examples.

Example 6.

- 1. As in Example 1, the set $A = \{a, b\}$ is ρ -closed but not preclosed in (X, τ) .
- 2. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, c, \}, \{a, b, d\}, \{a, b, c, d\}, X\}$. Then the set $A = \{a\}$ is preclosed but not ρ -closed in (X, τ) .

Remark 2. ρ -closed sets are independent concepts of semi-closed sets and semi-preclosed sets as we illustrate by means of the following example.

Example 7. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}, X\}$. Then the set $A = \{a, b, c\}$ is ρ -closed but neither semi-closed nor semi-preclosed. The set $B = \{c, d\}$ is both semi-closed and semi-preclosed but not ρ -closed.

Remark 3. ρ -closedness and presemiclosedness are independent concepts as we illustrate by means of the following examples.

Example 8.

- 1. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{c, a\}, X\}$. Then the set $A = \{c\}$ is presemiclosed but not ρ -closed in (X, τ) .
- 2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, X\}$. Then the set $A = \{b, c\}$ is ρ -closed but not presemi*closed in* (X, τ) .

Remark 4. ρ -closedness and g-closedness are independent concepts as we illustrate by means of the following examples.

Example 9.

- 1. Let (X, κ) be a digital topology. Then the set $A = \{4\}$ is closed in (X, κ) and thus g-closed. But the set A is not ρ -closed in (X, κ) , because there is a \tilde{g} -open set $U = \{1, 2, 3, 4\}$ containing $\{4\}$, is not open in (X, κ) such that $pcl(A) = \{4\} \nsubseteq int(U) = \{1, 2, 3\}$.
- 2. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e, \}, X\}$. Then the set $A = \{a, c, d\}$ is ρ -closed but not g-closed in (X, τ) .

Remark 5. ρ -closedness and pg-closedness are independent concepts as we illustrate by means of the following example.

Example 10. Let $X = \{a, b, c, d\} = Y$ and $\tau = \{\phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$. Then the set $A = \{c\}$ is pg-closed but not ρ -closed in (X, τ) and the set $B = \{a, b, c\}$ is ρ -closed but not pg-closed in (X, τ) .

Remark 6. ρ -closedness and g^*p -closedness are independent concepts as we illustrate by means of the following example.

Example 11. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{b\}, \{d, e\}, \{b, d, e\}, \{a, c, d, e\}, X\}$. Then the set $A = \{a, b, d, e\}$ is ρ -closed but not g^*p -closed and the set $B = \{d\}$ is g^*p -closed but not ρ -closed in (X, τ) .

Remark 7. ρ -closedness and α -closedness are independent concepts as we illustrate by means of the following examples.

Example 12.

- 1. As in Example 9(1), the set $A = \{4\}$ is α -closed but not ρ -closed in (X, κ) .
- 2. $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, \{b, c\}, Y\}$. Then the set $A = \{c, a\}$ is ρ -closed but not α -closed in (X, τ) .

Definition 6. A subset A of (X, τ) is said to be ρ_s -closed in (X, τ) if $Pcl(A) \subseteq Int(cl(U))$ Whenever $A \subseteq U$ and U is \tilde{g} -open in (X, τ) .

Theorem 6. Every ρ -closed set is ρ_s -closed set.

Proof. Let *A* be any ρ -closed set. Let $A \subseteq U$ and *U* be \tilde{g} -open in *X*. Since *A* is ρ -closed, $Pcl(A) \subseteq Int(U) \subseteq Int(cl(U))$. Hence *A* is ρ_s -closed.

The converse of the above theorem need not be true as it is seen from the following example.

Example 13. As in Example 2, the set $A = \{a, c\}$ is ρ_s -closed but not ρ -closed in (X, τ) .

Remark 8. From the above discussions and known results should be accompanied by a reference we have the following implications $A \to B$ ($A \leftrightarrow B$) represents A implies B but not conversely (A and B are independent of each other). See Figure 1.

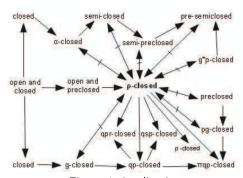


Figure 1: Implications.

4. Properties of ρ -Closed Sets

Definition 7. The intersection of all \tilde{g} -open subsets of (X, τ) containing A is called \tilde{g} -kernel of A and denoted by \tilde{g} -ker(A).

Theorem 7. If a subset A of (X, τ) is ρ -closed then $Pcl(A) \subseteq \tilde{g}-ker(A)$.

Proof. Suppose that A is ρ -closed. Then $Pcl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is \tilde{g} -open. Let $x \in Pcl(A)$ and suppose $x \notin \tilde{g}-ker(A)$. Then there is a \tilde{g} -open set U containing A such that $x \notin U$. But U is a \tilde{g} -open set containing A. It follows that $x \notin Pcl(A)$ and this is a contradiction.

The converse of the above theorem need not be true as it is seen from the following example.

Example 14. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{c\}, \{e\}, \{a, b\}, \{c, e\}, \{a, b, c\}, \{a, b, e\}, \{a, b, c, e\}, X\}$. Then the set $A = \{a\}$ satisfies $Pcl(A) \subseteq \tilde{g} - ker(A)$. But A is not ρ -closed (X, τ) .

Remark 9. The union (intersection) of two ρ -closed sets need not be ρ -closed.

Example 15. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$.

- 1. Let $A = \{a, b\}$ and $B = \{a, c\}$. Here A and B are ρ -closed sets. But $A \cup B = \{a, b, c\}$ is not ρ -closed.
- 2. Let $A = \{a, c\}$ and $B = \{c, d\}$. Here A and B are ρ -closed sets. But $A \cap B = \{c\}$ is not ρ -closed.

Theorem 8. If a set A is ρ -closed, then Pcl(A) - A contains no nonempty closed set.

Proof. Let $F \subseteq Pcl(A) - A$ be a nonempty closed set. Then $F \subseteq Pcl(A)$ and $A \subseteq X - F$. Since X - F is \tilde{g} -open, then A is ρ -closed. Therefore $Pcl(A) \subseteq Int(X - F) = X - cl(F)$, $Cl(F) \subseteq X - Pcl(A)$. And so $F \subseteq X - Pcl(A)$, $F \subseteq Pcl(A) \cap (X - Pcl(A)) = \{\emptyset\}$. Hence Pcl(A) - A contains no nonempty closed set.

The converse of the above theorem need not be true as it is seen from the following example.

Example 16. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Let $A = \{a\}$. Then Pcl(A) - A contains no nonempty closed set. But A is not ρ -closed in (X, τ) .

Theorem 9. If a set A is ρ -closed, then Pcl(A) - A contains no nonempty \tilde{g} -closed set.

Proof. Let F be a nonempty \tilde{g} -closed set such that $F \subseteq Pcl(A) - A$. Then $F \subseteq Pcl(A)$ and $A \subseteq X - F$. We have $Pcl(A) \subseteq Int(X - F)$, $Pcl(A) \subseteq X - cl(F)$, $cl(F) \subseteq X - Pcl(A)$. Therefore $F \subseteq Pcl(A) \cap (X - Pcl(A)) = \{\emptyset\}$. Hence Pcl(A) - A contains no nonempty \tilde{g} -closed set.

The converse of the above theorem need not be true as it is seen from the following example.

Example 17. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Let $A = \{a\}$. Then Pcl(A) - A contains no nonempty \tilde{g} -closed set. But A is not ρ -closed in (X, τ) .

Theorem 10. If A is ρ -closed and $A \subseteq B \subseteq Pcl(A)$, then B is ρ -closed.

Proof. Let *U* be a \tilde{g} -open set of *X* such that $B \subseteq U$. Then $A \subseteq U$ and since *A* is ρ -closed, we have $Pcl(A) \subseteq Int(U)$. Now $Pcl(B) \subseteq Pcl(Pcl(A)) = Pcl(A) \subseteq Int(U)$. Hence *B* is ρ -closed.

Theorem 11. If a subset A of (X, τ) is \tilde{g} - open and ρ -closed, then A is preclosed in (X, τ) .

Proof. If a subset A of (X, τ) is \tilde{g} -open and ρ -closed. Then $Pcl(A) \subseteq Int(A) \subseteq A$. Hence A is Preclosed is (X, τ) .

Lemma 2 ([4]). *If A is regular open and gpr-closed, then A is preclosed.*

Theorem 12. A regular open set of (X, τ) is gpr-closed if and only if A is ρ -closed in (X, τ) .

Proof. Let $A \subseteq U$ and U be \tilde{g} -open in (X, τ) . Since A is regular open and gpr-closed, A is preclosed by Lemma 2. Since every regular open is open, therefore A is open and preclosed. Hence by Theorem 1, A is ρ -closed. By Theorem 3, the converse is obvious.

Theorem 13. Let A be ρ -closed in (X, τ) then A is preclosed if and only if Pcl(A) - A is \tilde{g} -closed.

Proof. **Necessity.** Let *A* be preclosed. Then Pcl(A) = A. Hence $Pcl(A) - A = \{\emptyset\}$ which is \tilde{g} -closed.

Sufficiency. Suppose Pcl(A) - A is \tilde{g} -closed. Since A is ρ -closed and by Theorem 9, $Pcl(A) - A = \{\emptyset\}$. Then Pcl(A) = A. This means that A is preclosed.

Theorem 14. An open set A of (X, τ) is gp-closed if and only if A is ρ -closed.

Proof. Let A be an open and gp-closed set. Let $A \subseteq U$ and U be \tilde{g} -open in X. Since A is open, $A = Int(A) \subseteq Int(U)$. Observe that Int(U) is open and thus A is gp-closed. Hence $Pcl(A) \subseteq Int(U)$ and A is an ρ -closed set. Conversely, By Theorem 2, every ρ -closed set is gp-closed.

Theorem 15. If a subset A of (X, τ) is open and regular closed then A is ρ -closed.

Proof. Let *A* be an open and regular closed set. Since regular closed set is preclosed. Then *A* is open and preclosed. By Theorem 1, *A* is ρ -closed.

Lemma 3 ($\lceil 5 \rceil$). Every \tilde{g} -closed set is preclosed.

Theorem 16. If a subset A of (X, τ) is open and \tilde{g} -closed, then A is ρ -closed.

Proof. Let *A* be open and \tilde{g} -closed. Then by Lemma 3, *A* is open and preclosed. Hence by Theorem 1, A is ρ -closed.

Theorem 17. In a topological space X, for each $x \in X$, $\{x\}$ is \tilde{g} -closed or its complement $X - \{x\}$ is ρ -closed in (X, τ) .

Proof. Suppose that $\{x\}$ is not \tilde{g} closed in (X,τ) . Then $X - \{x\}$ is not \tilde{g} -open and the only \tilde{g} -open set containing $X - \{x\}$ is X. Therefore $Pcl(X - \{x\}) \subseteq X$ and Int(X) = X and $Pcl(X - \{x\}) \subseteq Int(X)$. Hence $X - \{x\}$ is ρ -closed in (X,τ) .

Definition 8.

- 1. The union of all ρ -open sets, each contained in a set A in a topological space X is called the ρ -interior of A and is denoted by ρ int(A).
- 2. The intersection of all ρ -closed sets each containing a set A in topological space X is called the ρ -closure of A and is denoted by ρ cl(A).

Lemma 4. If a subset A of (X, τ) is ρ -closed then $A = \rho - cl(A)$.

The converse of the above lemma need not be true as it is seen from the following example.

Example 18. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, X\}$. If we consider $A = \{c\}$ then $A = \rho - cl(A)$ But A is not ρ -closed in (X, τ) .

Definition 9.

- 1. Let (X, τ) be a topological space, $A \subseteq X$ and $x \in X$. Then x is said to be a pre-limit point of A if every preopen set containing x contains a point of A different from x.
- 2. Let (X, τ) be a topological space and $A \subseteq X$. The set of all prelimit points of A is said to be a pre-derived set of A and is denoted by $D_p[A]$.

Theorem 18. If $D[A] \subseteq D_p[A]$ for each subset A of a space (X, τ) , then the union of two ρ -closed sets is ρ -closed.

Proof. Let A and B be ρ -closed subsets of X and U be a \tilde{g} -open set such that $A \cup B \subseteq U$. Then $Pcl(A) \subseteq Int(U)$ and $Pcl(B) \subseteq Int(U)$. For each subset A of X we have $D_p[A] \subseteq D[A]$. Thus cl(A) = Pcl(A) and cl(B) = Pcl(B). Therefore $cl(A \cup B) = cl(A) \cup cl(B) = Pcl(A) \cup Pcl(B) \subseteq Int(U)$. But $Pcl(A \cup B) \subseteq cl(A \cup B)$. So $Pcl(A \cup B) \subseteq Int(U)$ and hence $A \cup B$ is ρ -closed.

Theorem 19. A subset A of (X, τ) is both open and ρ -closed, then A is regular open.

Proof. Suppose *A* is open and ρ -closed. Then *A* is \tilde{g} -open and ρ -closed. By Theorem 16, *A* is preclosed. Hence pcl(A) = A. Since *A* is open, cl(A) = A. Therefore int(A) = int(cl(A)) implies A = int(cl(A)) and hence *A* is regular open.

The converse of the above theorem need not be true as it is seen from the following example.

Example 19. As in Example 8(1), the set $A = \{a\}$ is regular open but not ρ -closed in (X, τ) .

It should be noticed that in a locally indiscrete space openness and ρ -closedness are equivalent. Moreover, it is well-known that if (X, τ) is locally indiscrete and T0, then (X, τ) must be discrete.

Definition 10. A space X is called a $p\tilde{g}$ -space if the intersection of a preclosed set with a \tilde{g} -closed set is \tilde{g} -closed.

Example 20. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then (X, τ) is a $p\tilde{g}$ -space. But, let $\tau = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, X\}$ then (X, τ) is not a $p\tilde{g}$ -space.

Theorem 20. For a subset A of a $p\tilde{g}$ -space (X, τ) the following are equivalent.

1. A is ρ -closed.

- 2. $Cl(\{x\}) \cap A \neq \phi$ for each $x \in Pcl(A)$.
- 3. Pcl(A) A contains no nonempty \tilde{g} -closed sets.

Proof.

- **1** ⇒ **2**: Let *A* be ρ -closed and $x \in Pcl(A)$. If $cl(\{x\}) \cap A = \phi$, then $A \subseteq X cl(\{x\})$. Since $cl(\{x\})$ is closed, $X cl(\{x\})$ is open and so \tilde{g} -open and thus *A* is ρ -closed. $Pcl(A) \subseteq Int(X cl(\{x\}))$, $x \notin Pcl(A)$ which is a contradiction. Therefore $cl(\{x\}) \cap A \neq \phi$.
- **2** ⇒ **3**: Let $cl(\{x\}) \cap A \neq \phi$ for each $x \in Pcl(A)$ and $K \subseteq Pcl(A) A$ be a non empty \S -closed set, then $K \subseteq Pcl(A)$ and $A \subseteq X K$. If there exist an $x \in K$ then by (2) $cl(\{x\}) \cap A \neq \phi$. $cl(\{x\}) \cap A \subseteq K \cap A \subseteq (Pcl(A) A) \cap A$ which is a contradiction. Hence Pcl(A) A contains no nonempty \S -closed sets.
- **3** ⇒ **1:** Let Pcl(A) A contains no nonempty \tilde{g} -closed set and $A \subseteq U$ and U be \tilde{g} open in X. If $Pcl(A) \nsubseteq Int(U)$, then $Pcl(A) \cap (Int(U))^c \neq \phi$. Since the space is a $p\tilde{g}$ -space, $Pcl(A)] \cap (Int(U))^c$ is a nonempty \tilde{g} -closed subset of Pcl(A) A which is a contradiction. Hence A is ρ -closed.

5. ρ -Open Sets and ρ_s -Open Sets

Definition 11.

- 1. A subset A of (X, τ) is said to be ρ -open in (X, τ) if its complement X A is ρ -closed in (X, τ) .
- 2. A subset A of (X, τ) is said to be ρ_s -open in (X, τ) if its complement X A is ρ_s -closed in (X, τ) .

Theorem 21. Let (X, τ) be a topological space and $A \subseteq X$.

- 1. A is an ρ -open set if and only if $cl(K) \subseteq pint(A)$ whenever $K \subseteq A$ and K is \tilde{g} -closed.
- 2. A is an ρ_s -open set if and only if $cl(int(K)) \subseteq pint(A)$ whenever $K \subseteq A$ and K is \tilde{g} -closed.
- 3. If A is ρ -open, then A is ρ_s -open.

Proof.

1. **Necessity.** Let A be an ρ -open set in (X, τ) . Let $K \subseteq A$ and K be \tilde{g} -closed. Then X - A is ρ -closed and it is contained in the \tilde{g} -open set X - K. Therefore $Pcl(X - A) \subseteq Int(X - K)$, $X - pint(A) \subseteq X - cl(K)$, Hence $cl(K) \subseteq pint(A)$.

Sufficiency. If K is \tilde{g} -closed set such that $cl(K) \subseteq pint(A)$ whenever $K \subseteq A$. It follows that $X - A \subseteq X - K$ and $X - pint(A) \subseteq X - cl(K)$. Therefore $Pcl(X - A) \subseteq Int(X - K)$. Hence X - A is ρ -closed and A becomes an ρ -open set.

- 2. **Necessity:** Let A be an ρ_s -open set in (X, τ) . Let $K \subseteq A$ and K be \tilde{g} -closed. Then X A is ρ_s -closed and is contained in the \tilde{g} -open set X K. Therefore $Pcl(X A) \subseteq Int(cl(X K))$ and so $X pint(A) \subseteq int(X int(K)) = X cl(int(K))$. Hence $cl(int(K) \subseteq pint(A))$. **Sufficiency:** If K is \tilde{g} -closed set such that $cl(int(K)) \subseteq pint(A)$ whenever $K \subseteq A$, it follows that $X A \subseteq X K$, $X pint(A) \subseteq X cl(int(K))$ and $Pcl(X A) \subseteq X cl(int(K)) = Int(cl(X K))$. Hence X A is ρ_s -closed and A becomes an ρ_s -open set.
- 3. Let *A* be an ρ -open. Let also $K \subseteq A$ and *K* be \tilde{g} -closed. Since *A* is ρ -open we have $cl(K) \subseteq pint(A)$. Therefore $cl(int(K) \subseteq pint(A))$. Hence by 2, *A* is ρ_s -open.

Theorem 22. *If* $pint(A) \subseteq B \subseteq A$ *and* A *is* ρ -open then B *is* ρ -open.

Proof. If $pint(A) \subseteq B \subseteq A$, then $X - A \subseteq X - B \subseteq X - pint(A)$ that is $X - A \subseteq X - B \subseteq Pcl(X - A)$. Observe that X - A is ρ -closed and by Theorem 10 X - B is ρ -closed and hence B is ρ -open.

Theorem 23. If $A \subseteq K$ is ρ -closed then Pcl(A) - A is ρ -open.

Proof. Let *A* be an ρ -closed. Then by Theorem 9, Pcl(A) - A contains no nonempty \tilde{g} -closed set. Therefore $\phi = K \subseteq Pcl(A) - A$ and $\phi = K$ is \tilde{g} -closed. Clearly $cl(K) \subseteq pint(Pcl(A) - A)$. Hence by Theorem 21, Pcl(A) - A is ρ -open.

6. ρ -Continuity and ρ_s -Continuity

Let $f:(X,\tau)\to (Y,\sigma)$ be a function from a topological space (X,τ) into a topological space (Y,σ) .

Definition 12.

- 1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be ρ -continuous (resp. ρ_s -continuous) if $f^{-1}(V)$ is ρ -closed (resp. ρ_s -closed) in (X,τ) for every closed set V of (Y,σ) .
- 2. A function $f:(X,\tau) \to (Y,\sigma)$ is said to be ρ -irresolute (resp. ρ_s -irresolute) if $f^{-1}(V)$ is ρ -closed (resp. ρ_s -closed) in (X,τ) for every ρ -closed (resp. ρ_s -closed) set V of (Y,σ) .

Example 21.

- 1. Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{c\}, \{b, c\}, X\}$. Define $f: (X, \tau) \to (X, \sigma)$ by f(a) = f(b) = b and f(c) = a, then f is ρ -continuous.
- 2. Let $X = \{a, b, c\}$, $\tau = \{\phi, \{c\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, X\}$. Define $f: (X, \tau) \to (X, \sigma)$ by f(a) = c, f(b) = b and f(c) = a. Then the inverse image of every ρ -closed set is ρ -closed under f. Hence f is ρ -irresolute.

REFERENCES 565

The composition of two ρ -continuous functions need not be ρ -continuous as it is shown by the following example.

Example 22. Let $X = \{a, b, c\}$, $\tau = \{\phi, \{b\}, X\}$, $\sigma = \{\phi, \{a, b\}, X\}$ and $\eta = \{\phi, \{a\}, \{a, b\}, X\}$. Define $f: (X, \tau) \to (X, \sigma)$ by f(a) = c, f(b) = a, f(c) = b and define $g: (X, \sigma) \to (X, \eta)$ by g(a) = c, g(b) = a and g(c) = b. Then f and g are ρ -continuous but $g \circ f$ is not ρ -continuous. Since $\{c\}$ is closed in (X, η) $(g \circ f)^{-1}(\{c\}) = f^{-1}(g^{-1}(\{c\})) = f^{-1}(\{a\}) = \{b\}$ which is not ρ -closed in (X, τ) .

Theorem 24. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two functions. Then

- 1. $g \circ f$ is ρ -continuous if g is continuous and f is ρ -continuous.
- 2. $g \circ f$ is ρ -irresolute if g is ρ -irresolute and f is ρ -irresolute.
- 3. $g \circ f$ is ρ -continuous if g is ρ -continuous and f is ρ -irresolute.

Proof.

- 1. Let V be closed in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . As f is ρ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is ρ -closed in (X, τ) . Hence $g \circ f$ is ρ -continuous.
- 2. Let V be ρ -closed in (Z, η) . Since g is ρ -irresolute, $g^{-1}(V)$ is ρ -closed in (Y, σ) . As f is ρ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is ρ -closed in (X, τ) Therefore $g \circ f$ is ρ -irresolute.
- 3. Let V be closed in (Z, η) . since g is ρ -continuous, $g^{-1}(V)$ is ρ -closed in (Y, σ) . As f is ρ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is ρ -closed in (X, τ) . Therefore $g \circ f$ is ρ -continuous.

7. References

ACKNOWLEDGEMENTS The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful.

References

- [1] D.Andrijevic. Semi- preopen sets, Mat. Vesnik, 38 (1), 24-32. 1986.
- [2] K. Balachandran, P. Sundaram and H. Maki. On generalized continuous maps in topological spaces, Mem Fac. Sci. Kochi Univ.ser. A. Math 12. 5-13. 1991.
- [3] J. Dontchev. On generalizing semi-preopen sets, Mem.Fac.sci. Kochi Univ.Ser.A.Maths 16, 35-48. 1995.

REFERENCES 566

[4] Y. Gnanambal. Generalized Pre-regular closed sets in topological spaces, Indian J. Pure Appl. Maths., 28 (3), 351-360. 1997.

- [5] S. Jafari, T. Noiri, N. Rajesh and M.L. Thivagar. Another generalization of closed sets, Kochi J.Math, 3, 25-38. 2008.
- [6] N. Levine. Semi-open sets, semi-continuity in topological spaces, Amer Math, Monthly, 70, 36-41. 1963.
- [7] N. Levine. Generalized closed sets in topology, Rend circ. Math Palermo, 19 (2). 89-96. 1970.
- [8] A.S. Mashour, M.E. Abd El- Monsef and S.N. El-Deep. On Precontinuous and weak pre continuous mappings, Proc, Math, Phys. Soc. Egypt., 53, 47-53. 1982.
- [9] H. Maki, J. Umehara and T. Noiri. Every topological space in Pre- T1/2, Mem.Fac.Sci, Kochi Univ Ser.A.Maths. (17). 33-42. 1996.
- [10] O. Njastad. On some classes of nearly open sets, Pacific J. Math. 15, 961-970. 1965.
- [11] T.Noiri, H.Maki and J.Umehara. Generalized preclosed functions, Mem.Fac.Sci. Kochi.Univ.Ser A.Maths., 19.13-20. 1998.
- [12] J.H. Park. On π gp-closed sets in topological spaces, Indian J.Pure Appl. Math (to appear).
- [13] M.H.Stone. Application of the Theory Boolean rings to general topology, Trans.Amer.Math.Soc.,41, 375-381. 1937.
- [14] M.K.R.S Veerakumar. ĝ -closed sets in topological spaces. Bull Allahabad. Soc.18, 99-112. 2003.
- [15] M.K.R.S Veerakumar. g*-preclosed sets,Acta Ciencia Indica(mathematics) Meerut, XXVIII (M) (1). 51-60. 2002.
- [16] M.K.R.S Veerakumar. Pre-semi-closed, Indian J. Math, 44(2). 165-181. 2002.
- [17] V.Zaitov. On certain classes of topological spaces and their bicompactification, Dokl Akad Nauk SSSR. 178: 778-9. 1968.