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Abstract. In this paper, we take into account the opinion of involute-evolute curves which lie on fully
surfaces and by taking into account the Darboux frames of them we illustrate these curves as special
involute-evolute partner D-curves in E3. Besides, we find the relations between the normal curvatures,
the geodesic curvatures and the geodesic torsions of these curves. Finally, some consequences and
examples are given.
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1. Introduction

In differential geometry, there are many important consequences and properties of curves.
Researchers follow labours about the curves. In the light of the existing studies, authors
always introduce new curves. Involute-evolute curves are one of them. C. Huggens discovered
involutes while trying to build a more accurate clock, [1]. Later, the relations Frenet apparatus
of involute-evolute curve couple in the space E3 were given in [2]. A. Turgut examined
involute-evolute curve couple in En, [5]. Mannheim partner D- curves in Euclidean space
were studied by Kazaz and others [3].

In this study, we consider the notion of the involute-evolute curves lying on the surfaces
for a special situation. We determine the special involute-evolute partner D-curves in E3.
By using the Darboux frame of the curves we obtain the necessary and sufficient conditions
between κg , τg , κn and κ∗n for a curve to be the special involute partner D-curve . κ∗g and
τ∗g of this special involute partner D-curve are found. Finally, some special case and examples
are given.
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2. Preliminaries

In this section, we give information about Involute-evolute curves and Darboux frame. Let
α (s) be a curve on an oriented surface M . Since the curve α (s) is also in space, there exists
Frenet frame {T,N,B} at each points of the curve where T is unit tangent vector, N is principal
normal vector and B is binormal vector, respectively. The Frenet equations of the curve α (s)
is given by







T
′
= κN

N
′
= −κT+τB

B
′
= −τN

where κ and τ are curvature and torsion of the curve α (s) , respectively. Since the curve α (s)
lies on the surface M there exists another frame of the curve α (s) which is called Darboux
frame and denoted by

�

T,g,n
	

. In this frame T is the unit tangent of the curve, n is the unit
normal of the surface M and g is a unit vector given by g= n×T. Since the unit tangent T

is common in both Frenet frame and Darboux frame, the vectors N, B, g, n lie on the same
plane. So that the relations between these frames can be given as follows







T

g

n





=







1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ





 ·







T

N

B





 (1)

where ϕ is the angle between the vectors g and n. The derivative formulae of the Darboux
frame is









·
T
·
g
·
n









=







0 κg κn

−κg 0 τg

−κn −τg 0





 ·







T

g

n





 (2)

where, κg is the geodesic curvature, κn is the normal curvature and τg is the geodesic torsion
of α (s). Here and in the following, we use “dot” (·) to denote the derivative with respect to
the arc length parameter of a curve.

The relations between κg , κn, τg and κ, τ are given as follows

κg = κ cosϕ, κn = κ sinϕ, τg = τ+
dϕ

ds
. (3)

Furthermore, the geodesic curvature κg and geodesic torsion τg of the curve α (s) can be
calculated as follows

κg =

®

dα

ds
,
d2α

ds2
× n

¸

, τg =

�

dα

ds
,n×

dn

ds

�

(4)

In the differential geometry of surfaces, for a curve α (s) lying on a surface M the followings
are well-known

i) α (s) is a geodesic curve⇔ κg = 0,
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ii) α (s) is an asymptotic line⇔ κn = 0,

iii) α (s) is a principal line⇔ τg = 0, [4].

Let α and β be two curves in the Euclidean space E3. Let {T,N,B} and {T∗,N∗,B∗} be Frenet
frames of α and β , respectively. Then the curve β is called the involute of the curve α, if the
tangent vector of the curve α at the points α (s) passes through the tangent vector of the curve
β at the point β (s) and




T,T∗
�

= 0,

Also, the curve α is called the evolute of the curve β .

3. Special Involute-Evolute Partner D-Curves in E3

In this section, by considering the Darboux frame, we define involute evolute partner
D-curves and give the characterizations of these curves.

Definition 1. Let M and N be oriented surfaces in three dimensional Euclidean space E3 and

the arc length parameter curves α (s) and β (s∗) lying fully on M and N , respectively. Denote

the Darboux frames of α (s) and β (s∗) by
�

T,g,n
	

and
�

T∗,g∗,n∗
	

, respectively. If there exists

a corresponding relationship between the curves α and β such that, at the corresponding points

of the curves, the Darboux frame element T of α coincides with the Darboux frame element g∗ of

β , then α is called a special evolute D-curve of β and β is a special involute D-curve of α. Then,

the pair
�

α,β
	

is said to be a special involute evolute D-pair.

Theorem 1. Let α (s) and β (s∗) be two curves in the Euclidean space E3. If the pair
�

α,β
	

is a

special involute evolute D-pair, then

β (s) = α (s) + (c − s)T (s)

Proof. Suppose that the pair
�

α,β
	

is a special involute evolute D-pair. From definition of
special involute-evolute D-pair, we know

β (s) = α (s) +λ (s)T (s) . (5)

Differentiating both sides of the equation (5) with respect to s and use the Darboux formulas,
we obtain

T∗
�

s∗
� ds∗

ds
= T (s) +

·
λ (s)T (s) + κg (s)λ (s)g (s) + κn (s)λ (s)n (s)

Since the direction of T coincides with the direction of g∗, we get

·
λ (s) = −1 (6)

and
λ (s) = c − s (7)
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where c is constant. Thus, the equality (5) can be written as follows

β (s) = α (s) + (c − s)T (s) . (8)

Corollary 1. Let α (s) and β (s∗) be two curves in the Euclidean space E3. If the pair
�

α,β
	

is a

special involute evolute D-pair, then the distance between the curves α (s) and β (s∗) is constant.

Theorem 2. Let M and N be oriented surfaces in three dimensional Euclidean space E3 and

the arc length parameter curves α (s) and β (s∗) lying fully on M and N , respectively. β (s∗) is

special involute D-curve of α (s) if and only if the normal curvature κ∗n of β (s∗) and the geodesic

curvature κg , the normal curvature κn and the geodesic torsion τg of α (s) satisfy the following

equation

·
κn =

 

κ2
n + κ

2
g

κg

!
�

λκ∗nκg

cosθ
−τg

�

+

·
κgκn

κg

for some nonzero constants λ, where θ is the angle between the vectors n and n∗ at the corre-

sponding points of α (s) and β (s∗).

Proof. Suppose that M and N are oriented surfaces in three dimensional Euclidean space
E3 and the arc length parameter curves α (s) and β (s∗) lying fully on M and N , respectively.
Denote the Darboux frames of α (s) and β (s∗) by

�

T,g,n
	

and
�

T∗,g∗,n∗
	

, respectively. Then
by the definition we can assume that

β (s) = α (s) +λ (s)T (s) (9)

for some function λ (s). By taking derivative of (9) with respect to s and applying the Darboux
formulas (2) we have

T∗
ds∗

ds
=

�

1+
·
λ

�

T+λκgg+λκnn (10)

From (6) we get

T∗
ds∗

ds
= λκgg+λκnn. (11)

On the other hand we have
T∗ = cosθg− sinθn. (12)

Differentiating (12) with respect to s, we obtain

�

κ∗gg
∗
+ κ∗nn∗

� ds∗

ds
=
�

κg cosθ−κn sinθ
�

T+

�

τg −
·
θ

�

sinθg+

�

τg −
·
θ

�

cosθn

From the last equation and the fact that

n∗ = sinθg+ cosθn

we have
�

κ∗gg
∗
+ κ∗nsinθg+ κ∗n cosθn

� ds∗

ds
=
�

κn sinθ − κg cosθ
�

T+

�

τg −
·
θ

�

sinθg
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+

�

τg −
·
θ

�

cosθn.

Since the direction of T is coincident with g∗ we have

·
θ = τg − κ

∗
n

ds∗

ds
. (13)

From (10) and (12) we obtain
ds∗

ds
=
λκg

cosθ
= −

λκn

sinθ
(14)

and
−λκn = λκg tanθ (15)

By taking the derivative of this equation and applying (13) we get

·
κn =

 

κ2
n + κ

2
g

κg

!
�

λκ∗nκg

cosθ
−τg

�

+

·
κgκn

κg

. (16)

that is desired.
Conversely, assume that the equation (16) holds for some nonzero constants λ. Then by

using (14), (15) and (16) gives us

κ∗n

�

ds∗

ds

�3

= λ2 ·κnκg−λ
2 ·κgκn+λ

2
�

κ2
n+ κ

2
g

�

τg (17)

Let define a curve
β (s) = α (s) +λ (s)T (s)

By taking the derivative of the last equation with respect to s twice, we get

T∗
ds∗

ds
= λκgg+λκnn (18)

and

�

κ∗gg∗+κ∗nn
∗
�

�

ds∗

ds

�2

+T∗
d2s∗

ds2
=−λ

�

κ2
n + κ

2
g

�

T+
�

λ
·
κg − κg−λκnτg

�

g

+
�

λ
·
κn − κn−λκgτg

�

n (19)

respectively. Taking the cross product of (18) with (19) we have

�

κ∗gn∗−κ∗ng∗
�

�

ds∗

ds

�2

=
h

λ2
�

κg

·
κn − κn

·
κg + κ

2
gτg + κ

2
nτg

�i

T−λ2
�

κ3
n + κnκ

2
g

�

g

+λ2
�

κ3
g + κgκ

2
n

�

n. (20)
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By substituting (17) in (20) we get

�

κ∗gn∗−κ∗ng
∗
�

�

ds∗

ds

�3

= −κ∗n

�

ds∗

ds

�3

T−λ2
�

κ3
n + κnκ

2
g

�

g+λ2
�

κ3
g + κgκ

2
n

�

n. (21)

Taking the cross product of (18) with (21) we have

�

−κ∗nn∗−κ∗gg
∗
�

�

ds∗

ds

�4

= −λ3
�

κ2
n+ κ

2
g

�

T+λκnκ
∗
n

�

ds∗

ds

�3

g−λκgκ
∗
n

�

ds∗

ds

�3

n (22)

From (21) and (22) we have

−
�

κ∗
2

n +κ
∗2
g

�

�

ds∗

ds

�4

n∗ =



−κ∗nκ
∗
g

�

ds∗

ds

�4

+λ3κ∗n

�

κ2
n + κ

2
g

�2


T

+ κn

(

h

λ2κ∗g

�

κ2
n + κ

2
g

�i

�

ds∗

ds

�

+λκ∗
2

n

�

ds∗

ds

�3
)

g

− κg

(

h

λ2κ∗g

�

κ2
n + κ

2
g

�i

�

ds∗

ds

�

+λκ∗
2

n

�

ds∗

ds

�3
)

n (23)

Furthermore, from (18) and (21) we get






�

ds∗

ds

�2
= λ2

�

κ2
n+ κ

2
g

�

κ∗
2

g

�

ds∗

ds

�2
=
�

κ2
n+ κ

2
g

� (24)

respectively. Substituting (24) in (23) we obtain

−
�

κ∗
2

n +κ
∗2
g

�

�

ds∗

ds

�4

n∗ =κn

(

h

λ2κ∗g

�

κ2
n+ κ

2
g

�i

�

ds∗

ds

�

+λκ∗
2

n

�

ds∗

ds

�3
)

g

+ κg

(

h

λ2κ∗g

�

κ2
n + κ

2
g

�i

�

ds∗

ds

�

+λκ∗
2

n

�

ds∗

ds

�3
)

n. (25)

Equality (18) and (25) shows that the vectors T∗ and n∗ lie on the plane Sp
�

g,n
	

. So, at
the corresponding points of the curves, the Darboux frame element T of α coincides with the
Darboux frame element g∗ of β . Thus, the proof is completed.

Special Case 1. Let β (s∗) be an asymptotic special involute D-curve of α.

i) Consider that α (s) is an asymptotic line. Then α (s) is special evolute D-curve of β (s∗) if

and only if the geodesic curvature κg , the geodesic normal κn and the geodesic torsion τg

of α (s) satisfy the following equation,

·
κn = −τgκg .
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ii) Consider that α (s) is a principal line. Then α (s) is special evolute D-curve of β (s∗)if and

only if the geodesic curvature κg and the geodesic normal κn of α (s) satisfy the following

equation,

·
κn =

κn

·
κg

κg

.

Theorem 3. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space E3

Then the relation between the geodesic curvature κ∗g and the geodesic torsion τ∗g of β (s∗) is given

as follows

κ∗g +τ
∗
g = −

1

λ

for some nonzero constants λ, where θ is the angle between the vectors n and n∗ at the corre-

sponding points of α (s) and β (s∗).

Proof. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space E3.
Then from (9) we can write

β (s) = α (s) +λ (s)T (s)

for some constants λ. The last equation is written as follows

α (s) = β (s)−λ (s)T (s)

Since the direction of T is coincident with g∗ we have

α (s) = β (s)−λ (s)g∗ (s) (26)

By differentiating (26) with respect to s and since the direction of T is coincident with g∗ we
have

κ∗g +τ
∗
g = −

1

λ
.

Special Case 2. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space

E3.

i) If β is geodesic curve, then

τ∗g = −
1

λ
.

ii) If β is a principal line, then

κ∗g = −
1

λ
.

Theorem 4. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space E3.

Then the following relations hold:

• κ∗n =τg
ds

ds∗
− dθ

ds∗
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• κg
ds

ds∗
= −κ∗g cosθ +τ∗g sinθ

• κn
ds

ds∗
= κ∗g sinθ +τ∗g cosθ

• κ∗g =
�

κn sinθ − κgcosθ
�

ds

ds∗

Proof.

• By differentiating the equation 〈n,n∗〉= cosθ with respect to s∗ we have

�

�

−κnT−τgg
� ds

ds∗
,n∗
�

+
D

n,−κ∗nT
∗−τ∗gg

∗
E

= − sinθ
dθ

ds∗

Using the fact that the direction of T coincides with the direction of g∗ and

T∗ = cosθg− sinθn

g∗ = sinθg+ cosθn

we easily get that

κ∗n =τg

ds

ds∗
−

dθ

ds∗

Similarly other choices are testified.

Theorem 5. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space E3.

Then geodesic curvature κ∗g of β (s∗) is

κ∗g = λ
2
�

κ2
n−κ

2
g

�

�

ds

ds∗

�3
�

κg cosθ + κn sinθ
�

where θ is the angle between the vectors n and n∗ at the corresponding points of α (s) and β (s∗).

Proof. Suppose that the pair
�

α,β
	

is a special involute evolute D-pair in the Euclidean 3
space E3. From the first equation of (4) and by using the fact that T is coincident with g∗ we
have

κ∗g =

®

dβ

ds∗
,

d2β

ds∗2
×n∗

¸

= λ2
�

κ2
n−κ

2
g

�

�

ds

ds∗

�3
�

κg cosθ + κn sinθ
�

Special Case 3. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space

E3.
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i) If α is a geodesic curve, then the geodesic curvature κ∗g of β (s∗) is

κ∗g = λ
2κ3

n

�

ds

ds∗

�3

sinθ

ii) If α is an asymptotic line, then the geodesic curvature κ∗g of β (s∗) is

κ∗g = λ
2κ3

g

�

ds

ds∗

�3

cosθ

Theorem 6. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space E3.

Then geodesic curvature τ∗g of β (s∗) is

τ∗g = −λ sinθ cosθ
�

κ2
n+κ

2
g

�

�

ds

ds∗

�2

−λκnκg

�

ds

ds∗

�2

where θ is the angle between the vectors n and n∗ at the corresponding points of α (s) and β (s∗).

Proof. Suppose that the pair
�

α,β
	

is a special involute evolute D-pair in the Euclidean
space E3. From the first equation of (4) and by using the fact that T is coincident with g∗ we
have

τ∗g =

®

dβ

ds∗
,n∗×

dn∗

ds∗

¸

= −λ sinθ cosθ
�

κ2
n+κ

2
g

�

�

ds

ds∗

�2

−λκnκg

�

ds

ds∗

�2

Corollary 2. Let the pair
�

α,β
	

be a special involute evolute D-pair in the Euclidean space E3.

i) If α is a geodesic curve, then the geodesic curvature τ∗g of β (s∗) is

τ∗g = −λ sinθ cosθκ2
n

�

ds

ds∗

�2

ii) If α is an asymptotic line, then the geodesic curvature τ∗g of β (s∗) is

τ∗g = −λ sinθ cosθκ2
g

�

ds

ds∗

�2

Example 1. Let α (s) =
�

sin s, cos s, sin3 s− 3 sin s cos2 s
�

be a curve. This curve lies on the

surface z = x3 − 3x y2 (monkey saddle). The special involute D-curve of the curve α (s) can be

given below

β (s) =
�

sin s+ (c − s) cos s, cos s+ (s− c) sin s, sin3 s− 3 sin s cos2 s

+(1− s)(9 sin2 s cos s− 3 cos3 s)
�

, c ∈ R, c is a constant

For specially, c = 1 and s ∈ [0,2π], we can draw special involute evolute D-pair
�

α,β
	

using

Maple 12 as shown in Figure 1a.
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Example 2. Let α (s) =
�

s sin s, s cos s, s2
�

be a curve. This curve lies on the surface z = x2+ y2.

The special involute D-curve of the curve α (s) can be given below

β (s) =
�

s sin s+ (c − s)(sin s+ s cos s), s cos s+ (c − s)(cos s− s sin s), s2 + 2(c − s)s
�

,

c ∈ R, c is a constant

This curve lies on the surface z = −
p

x2+ y2. For specially, c = 0 and s ∈ [0, 3
2
π] we can draw

special involute evolute D-pair
�

α,β
	

using Maple 12 as shown in Figure 1b.

(a) Example 1 (b) Example 2

Figure 1: Special Involute-Evolute Partner D-curves.
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