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Abstract. Model misspecification is a major challenge faced by all statistical modeling techniques.

Real world multivariate data in high dimensions frequently exhibit higher kurtosis and heavier tails,

asymmetry, or both. In this paper, we extend Akaike’s AIC-type model selection criteria in two ways.

We use a more encompassing notion of information complexity (ICOM P) of Bozdogan for multivariate

regression to allow certain types of model misspecification to be detected using the newly proposed

criterion so as to protect the researchers against model misspecification. We do this by employing the

“sandwich”or “robust”covariance matrix F̂−1R̂F̂−1, which is computed with the sample kurtosis and

skewness. Thus, even if the data modeled do not meet the standard Gaussian assumptions, an appro-

priate model can still be found. Theoretical results are then applied to multivariate regression models

in subset selection of the best predictors in the presence of model misspecification by using the novel

genetic algorithm (GA), with our extended ICOM P as the fitness function.

We demonstrate the power of the confluence of these techniques on both simulated and real-world

datasets. Our simulations are very challenging, combining multicolinearity, unnecessary variables, and

redundant variables with asymmetrical or leptokurtic behavior. We also demonstrate our model selec-

tion prowess on the well-known body fat data. Our findings suggest that when data are overly peaked

or skewed - both characteristics often seen in real data, ICOM P based on the sandwich covariance

matrix should be used to drive model selection.
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1. Introduction

Model misspecification is a major, if it is not the dominant, source of error in the

quantification of most scientific analysis - Chatfield, 1995.
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In this research article, we simultaneously address several issues that affect many sta-

tistical modeling procedures. Specifically, this paper deals with the context of multivariate

regression (MVR).

Statistical models are typically merely approximations to reality; additionally, for a set of

observations, we typically don’t know the true data generating process. Therefore, a wrong

or misspecified model has a high probability of being fit to observed data. In many real-life ap-

plications of strategic decision making, large numbers of variables need to be simultaneously

considered to build an operating model and for real-time data-mining. Application examples

would include

• Behavioral and social sciences,

• Biometrics,

• Econometrics,

• Environmental sciences, and

• Financial modeling.

Further, it is often the case that several response variables are studied simultaneously given a

set of predictor variables. In such cases it is often desirable to:

• determine which subsets of the predictors are most useful for forecasting each response

variable in the system,

• interpret simultaneously a large number of regression coefficients, since this can become

unwieldy even for a moderately-sized data, and

• achieve parsimony of unknown parameters, allowing both better estimation and clearer

interpretation of the parameters.

Our objectives are twofold. The first is to develop a computationally feasible intelligent data

mining and knowledge discovery technique that addresses the potentially daunting statistical

and combinatorial problems of MVR modeling under model misspecification. Secondly, we

provide new research tools that guide model fit and evaluation for high dimensional data,

regardless of whether or not the probability model is misspecified. We employ a three-way

hybrid:

• Our approach integrates novel statistical modeling procedures based on a misspecification-

robust form of the information complexity (ICOM P) criterion [5, 4, 6, 7] as the fitness

function;

• Multivariate regression models that allow for non-Gaussian random errors, and

• The genetic algorithm (GA) as our optimizer to select the best subset of predictors or

variables.

To this end, we developed an easy-to-use command- and GUI- driven interactive computa-

tional toolbox. With this MATLAB® toolbox, we illustrate our new approach on both real and

simulated data sets, showing the versatility of these techniques.

The rest of the paper is organized as follows. Section 2 provides the requisite background

on multivariate regression (MVR) modeling, which is then followed by Section 3 regarding

information complexity and AIC-type criteria for model selection. Here, we define ICOM P

under the correct and misspecified models and extend it to structural complexity using the re-

sults of [44], based on the Hessian and outer-product forms of the Fisher information matrix,
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respectively. The basic idea is that one can use the difference between ICOM P(misspecified

model) and ICOM P(correctly specified model) as an indication of possible departures from

the distributional form of the model. This brings out the most important weakness of Akaike-

type criteria for model selection: these procedures depend crucially on the assumption that

the specified family of models includes the true model. We also propose a penalty-bias func-

tion under the distributional misspecification. In Section 4, we provide the explicit expression

of ICOM P for the correctly specified as well as for misspecified multivariate regression model

and we derive the bias of the penalty for the misspecified multivariate regression model under

normality. This form is useful in obtaining the amount of bias, based on maximum-likelihood

estimation when distributional (or other) assumptions are not satisfied. The resulting penalty-

bias function turns out to be a function of skewness and kurtosis coefficients. Next, in Section

5 we provide details of the genetic algorithm (GA) and robust covariance estimators (Section

6). Finally, results with both simulated and real datasets are shown in Section 7, followed

by concluding remarks. In Appendices 1 through 3, we repeat the analytical matrix calculus

derivations of the model covariance matrix for multivariate regression under misspecification,

based on the work of [27], for the benefit of the readers. Much of this work was done in

collaboration with the first author while he was a Senior Scientist at Tilburg University, in

Tilburg, the Netherlands during May of 1999. In Appendix 1, we show the derivation of the

outer-product form of the Fisher information matrix. In Appendix 2, we show the derivation

of the sandwich model covariance matrix which is a new result in closed-form which does not

exist in the literature within the context of a misspecified MVR model. The opened up form

of the misspecification resistant ICOM P is obtained and shown, and Appendix 3 derives the

penalty bias for multivariate regression.

2. Multivariate Gaussian Regression (MVR) Model

In the usual well known multivariate regression problem, we have a matrix of responses

Y ∈ Rn×p; n observations of p measurements on some physical process. The researcher also

has k variables that have some theoretical relationship to Y : X ∈ Rn×q, of course, we usually

include a constant term as an intercept for the hyperplane generated by the relationship,

so q = k + 1. The predictive relationship between X and Y has both a deterministic and a

stochastic component, such that the model is

Y = X B+ E, (1)

in which B ∈ Rq×p is a matrix of coefficients relating each column of X to each column of Y ,

and E ∈ Rn×p is a matrix of error terms. The usual assumption in multivariate regression is

that the error terms are uncorrelated, homoskedastic Gaussian white noise, or

E ∼ Np(0,Σ⊗ In), (2)

where the entire covariance matrix of the random error matrix E is given by

Cov (E) = Σ⊗ In. (3)
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This is an (np× np) matrix, where ⊗ denotes the direct or Kronecker product. Stated another

way, we require

Y ∼ Np(X B,Σ⊗ In), (4)

where

E (Y ) = X B, and Cov(Y ) = Σ⊗ In. (5)

Under the assumption of Gaussianity, the log likelihood of the multivariate regression model

is given by

log L(θ | Y ) = −np

2
log(2π)− n

2
log |Σ| − 1

2
tr[(Y − X B)Σ−1 (Y − X B)′]. (6)

We obtain quasi maximum-likelihood estimators of B and Σ by maximizing the log-likelihood

function in (6). From [28, page 321], the first differential of the log-likelihood is

d log L(θ | Y ) = −n

2
trΣ−1 dΣ+

1

2
tr[(Y − X B)Σ−1(dΣ)Σ−1(Y − X B)′]

+ tr X (d B)Σ−1(Y − X B)′

=
1

2
tr(Σ−1(Y − X B)′(Y − X B)Σ−1 − nΣ−1)dΣ

+ trΣ−1(Y − X B)′X d B, (7)

leading to the first-order conditions

Σ−1(Y − X B)′(Y − X B)Σ−1 = nΣ−1, and X ′(Y − X B)Σ−1 = 0, (8)

and hence to the quasi maximum-likelihood estimators of B and Σ given by

B̂ = (X ′X )−1X ′Y, (9)

and

Σ̂ =
1

n
(Y − X B̂)′(Y − X B̂) =

1

n
Ê′ Ê =

1

n
Y ′MY , (10)

where M = I − X (X ′X )−1X ′ is an idempotent matrix.

To derive the information complexity (ICOM P) criteria, we modify the results of [28, page 321],

and obtain the estimated inverse Fisher information matrix (IFIM) given by

ÔCov(vec(B̂), vech(Σ̂))≡ F̂−1 =

�
Σ̂⊗ (X ′X )−1 0

0′ 2

n
D+p (Σ̂⊗ Σ̂)D+p ′

�
, (11)

where D+p = (D
′
pDp)

−1Dp is the Moore-Penrose inverse of the duplication matrix, Dp. Dp is a

unique p2× 1

2
p(p+1)matrix that transforms, for symmetric Σ, vech(Σ) into

−→
Σ . For example,

for p = 2, −→
Σ = (σ11,σ21,σ12,σ22)

′, and vech(Σ) = (σ11,σ21,σ22)
′,
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where the supradiagonal element σ12 has been removed. Thus, for symmetric Σ, vech(Σ)

only contains the distinct elements of Σ. That is,

Dp vech(Σ) =
−→
Σ , (Σ = Σ′).

For an excellent treatment of Dp, see [26].

The IFIM provides the asymptotic variance of the ML estimator when the model is correctly

specified. Its trace and determinant provide scalar measures of the asymptotic variance, and

they play a key role in the construction of information complexity. It is also very useful, as it

provides standard errors for the regression coefficients on the diagonals.

The method of least squares is generally used to estimate the coefficients in regression

models. In many applications, the results of a least-squares fit are often unacceptable when the

model is misspecified, or when the model is wrong. In most statistical modeling problems, we

almost always fit a wrong model to the observed data. This can introduce bias into the model

due to model misspecification. There are a number of ways a researcher can misspecify a

regression model. Some of these are discussed in [15, page 100]. In the context of regression,

one of the most abused assumptions is that of normality. The most common causes of model

misspecification include:

• multicollinearity,

• autocorrelation,

• heteroskedasticity,

• incorrect functional form.

Characteristics related to this last bullet point that are easy to visualize include:

• Leptokurtosis - high peak; more variation; higher probability in tails

• Platykurtosis - flatter; less variation; lower probability in tails

• Skewness - asymmetric; higher probability in one tail, lower probability in other.

Examples can be seen in Figures 1, 2, and 3, generated by the multivariate power exponential

distribution given in Section 7.1. In the right pane of all three plots, the heavy black dotted

contours are from the Gaussian distribution, for comparison. Characteristics in the first and

last figures are most common in real multivariate data. Unfortunately, in the literature the
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common answer to nonnormality, has been the utilization of Box-Cox transformations of [3],

which does not seem to work consistently well, in the context of both univariate and multi-

variate regression models.

Of course, when performing regression analysis, it is not usually the case that all variables

in X have significant predictive power over Y . Choosing an optimal subset model has long

been a vexing problem. Typical methods for selecting a subset regression model include:

• Forward stepwise analysis

• Backward stepwise analysis

• Partial sums-of-squares and sequential F-tests

• consideration of reduced rank regression models.

In practice, these methods may not work well in the presence of multicollinearity or model

misspecification. Additionally, the hypothesis tests all require somewhat arbitrary selection

of significance levels. Finally, it seems doubtful that the stepwise methods can accurately

control for Type I Errors across all tests performed. One solution is to use some criterion

to perform complete enumeration of all possible subsets of the predictors. As the number

of predictors, q, grows, however, this quickly becomes infeasible. For example, consider

a simple case of multiple regression with k = 9 predictors and the constant term, so that
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q = 10. There are 210 − 1 = 1023 possible nontrivial subsets of the predictors. This is

clearly too many models to humanly consider, and yet this is a relatively small problem. Con-

sider a dataset we have from a large fractional factorial experiment with q = 56; there are

256 − 1 = 72,057,594,037,927,936 possible subset models. This is far too many for even a

computer to automatically evaluate in a timely manner. Little headway has been made in

finding the best subset MVR model from a global perspective.

In our results, we demonstrate the value of the genetic algorithm (Section 5), driven by

information criteria as a fitness function. We substitute the GA as a computationally feasible

and efficient approach for complete combinatorial subset analysis. For the subset regression

model, we use the notation X ∗ ∈ Rn×q∗ , where q∗ is the number of variables not excluded

from the model, such that q∗ ∈ �1,q
�

.

3. ICOM P: A New Information Measure of Complexity for Model Selection

Perhaps the most basic information criteria is the Kullback-Liebler divergence (KL), first

introduced by [24] (also called KL distance, or KL information). This information divergence

measures the difference between two probability distributions. If we have some data for which

we know the true distribution f , we can use the KL divergence to determine whether f1 or f2
more accurately represents the true data generating process (dgp). f1 and f2 could be different

distributions, or the same distribution as f with different parameters. When a true model is

known, as in simulation studies, we can compute the KL divergence for all competing models,

with the assumption that the distance for the true model will be the closest to 0.

3.1. ICOM P for Correctly Specified Models

Assuming that the model is correctly specified, or the true model is in the model set con-

sidered, Akaike [1] introduced his well-known Akaike’s Information Criteria (AIC). Acknowl-

edging the fact that any statistical model is merely an approximate representation of the true

dgp, information criteria attempt to guide model selection according to Occam’s Razor. One

restatement of Occam’s Razor is:

“Of all possible solutions to a problem, the simplest solution is probably the best, ceteris paribus”.

This principle of parsimony requires that as model complexity increases, the fit of the model

must increase at least as much; otherwise, the additional complexity is not worth the cost.

Virtually all information criteria penalize a bad fitting model with negative twice the maxi-

mized log likelihood, as an asymptotic estimate of the KL information. The difference, then, is

in the penalty for model complexity. The simplest information criteria are AIC and SBC [37],

shown below.

AIC = −2 log L(θ̂ | y) + 2m (12)

SBC = −2 log L(θ̂ | y) + log(n)m (13)
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In both cases, m is the number of parameters estimated in the model. When using any in-

formation criterion to perform model selection, we choose the model corresponding to the

lowest score as providing the best balance between good fit and parsimony. It can sometimes

be difficult to attach significance (not statistically) to differences in information criteria scores

when attempting to select a most appropriate model. To resolve this, we may compute rel-

ative weights which can be interpreted as the probability that a given model is the most

appropriate. The weights are computed as in (14),

Wi =
e−

ICi−min(IC)

2

∑L

i=1 e−
ICi−min(IC)

2

, (14)

where i indexes the L models evaluated.

In contrast to AIC and SBC , ICOM P, originally introduced by [4], is a logical extension of

AIC and SBC which is based on the structural complexity of an element or set of random

vectors via the generalization of the information-based covariance complexity index of [42].

In ICOM P, lack-of-fit is still penalized by twice the negative of the maximized log likelihood,

while a combination of lack-of-parsimony and profusion-of-complexity are simultaneously

penalized by a scalar complexity measure, C , of the model covariance matrix. In general,

ICOM P is defined by

ICOM P = −2 log L(θ̂ | y) + 2C(ÔCov(θ̂)), (15)

where ÔCov(θ̂) indicates the estimated model covariance matrix. Each term in (15) approx-

imates one KL distance. There are several forms and justifications of ICOM P, two of which

are detailed here in what follows.

3.1.1. ICOM P as an Approximation to the Sum of Two KL Distances

For the following, we need the first order maximal entropic complexity of [4] as a generaliza-

tion of the model covariance complexity of [42], given by

C1(ÔCov(θ̂)) =
s

2
log

tr(ÔCov(θ̂))

s
− 1

2
log |ÔCov(θ̂ )|, s = rank(ÔCov(θ̂ )). (16)

The greatest simplicity, that is zero complexity, is achieved when the model covariance matrix

is proportional to the identity matrix, implying that the parameters are orthogonal and can be

estimated with equal precision.

Proposition 1. For a multivariate normal linear or nonlinear structural model we define the

general form of ICOM P as

ICOM P = −2 log L(θ̂M ) + 2C1(F̂−1), (17)

where F̂−1 is the estimated inverse Fisher information matrix of the model.
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Proof. Suppose we consider a general statistical model of the form given by

y = m(θ) + ǫ, (18)

where:

• y = (y1, y2, . . . , yn) is an n× 1 random vector of response values in Rn;

• θ is a parameter vector in Rk;

• m(θ) is a systematic component of the model in Rn, which depends on the parameter

vector θ , and its deterministic structure depends on the specific model considered; and

• ǫ is an n× 1 random error vector with

E (ǫ) = 0, and E
�
ǫǫ′
�
= Σ(ǫ). (19)

Following [9], we denote θ ∗ to be the parameter vector of the true operating model, and θ to

be any other value of the vector of parameters. Let f (y | θ) denote the joint density function

of y given θ , and let f (y | θ ∗) indicate the true model. Further, let K L(θ ∗ | θ) denote the KL

distance between the true model. Then, since yi, i = 1,2, . . . , n are independent, we have:

K L(θ ∗,θ) =
∫

R
n

f (y | θ ∗) log

�
f (y | θ ∗)
f (y | θ)

�
d y

=

n∑

i=1

∫
fi(yi | θ ∗) log

�
fi(yi | θ ∗)

�
d yi

−
n∑

i=1

∫
fi(yi | θ ∗) log

�
fi(yi | θ)

�
d yi, (20)

where fi , i = 1,2, . . . , n are the marginal densities of the yi . Note that the first term in (20) is

the usual negative entropy H(θ ∗;θ ∗) = H(θ ∗), which is constant for a given fi(yi | θ ∗). The

second term is equal to:

−
n∑

i=1

E
�
log fi(yi | θ)

�
, (21)

which can be unbiasedly estimated by

−
n∑

i=1

log fi(yi | θ) = − log L(θ | y). (22)

Of course, log L(θ | y) is the log likelihood of the observations evaluated at θ . In practice, we

would estimate the parameter vector for a model M , typically using the MLE θ̂M , and so use

the maximized log likelihood

−
n∑

i=1

log fi(yi | θ̂M ) = − log L(θ̂M | y). (23)

This gives us an estimate of the first KL distance, which is reminiscent of the derivation of AIC .
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On the other hand, a model M gives rise to an asymptotic covariance matrix:

Cov(θ̂M ) = Σ(θ̂M ) (24)

for the MLE θ̂M . That is,

θ̂M ∼ N(θ ∗,Σ(θ̂M ) =F−1). (25)

Now invoking the C1(·) (16) complexity on Σ(θ̂M ) can be seen as the KL distance between

the joint density and the product of marginal densities for a normal random vector with

covariance matrix Σ(θ̂M ), maximized over all orthonormal transformations of that normal

random vector [see 6]. Hence, using the estimated covariance matrix, we define ICOM P as

the sum of two Kullback-Liebler distances given by:

ICOM P(F̂−1) = −2

n∑

i=1

log fi(yi | θ̂M ) + 2C1(Σ̂(θ̂M ))

= −2 log L(θ̂M | y) + 2C1(F̂−1). (26)

Some observations:

• The first component of ICOM P(F̂−1) in (26) measures the lack of fit of the model, and

the second component measures the complexity of the estimated IFIM, which gives a

scalar measure of the celebrated Cramér-Rao lower bound matrix (CRLB), taking into ac-

count the accuracy of the estimated parameters and implicitly adjusting for the number

of free parameters included in the model.

• It is an intrinsic measure of uncertainty, and, furthermore, it is a quality metric of the

estimation procedure. For more on this, and for some immediate physical motivation,

we refer the readers to the interesting book by [14]. Also, see, [12] and [32, 33, 34].

• ICOM P(F̂−1) contrasts the trace and the determinant of the IFIM, and this amounts

to a comparison of the geometric and arithmetic means of the eigenvalues of the IFIM,

i.e.:

ICOM P(F̂−1)− 2 log L(θ̂M | y) + 2 log
λa

λg

. (27)

This looks like CAIC of [5], M DL of [35], and SBC of [37], with the exception that

log n is replaced with log
λa

λg

.

3.1.2. ICOM P as an Estimate of Posterior Expected Utility

Following the results from [9], we make the following proposition.

Proposition 2. ICOM P as a Bayesian criterion close to maximizing a posterior expected utility

(PEU) is given by

ICOM PPEU = −2 log L(θ̂M | y) +m+ 2C1(F̂−1). (28)
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Proof. Consider

• Let L(θM | y) be the likelihood function of the parameter vector for a given vector y of

observations.

• Let fPrior(θ | M) denote the prior density function of θ on the model M ; fPost(θ | y) is

the corresponding posterior density.

• Let F (θM ) denote the Fisher information matrix for the n observations corresponding

to model M , and let m be the dimension of M .

Following [30], we consider the KL distance between the posterior and the prior densities for

model M given by

K L( fPost(θ | y), fPrior(θ | M))

=

∫

ΘM

fPost(θ | y) log fPost(θ | y)dθ −
∫

ΘM

fPost(θ | y) log fPrior(θ | M)dθ

= H( fPost(θ | y))−
∫

ΘM

fPost(θ | y) log fPrior(θ | M)dθ . (29)

Further following Poskitt’s arguments, under regularity conditions which guarantee the asymp-

totic normality of the posterior distribution, that is, when

fPost(θ | y) ∼= N(θ̂ ,Σ(θ̂) = F̂−1), (30)

it can be shown that

K L( fPost(θ | y), fPrior (θ | M)) = −
m

2
log(2π)− m

2
− 1

2
log |F̂−1| − log fPrior(θ | M). (31)

One can argue, as did Poskitt, that a utility U1 can be defined as log U1 = the KL distance

given by (31). In Bayesian design of experiments, following the suggestion of [25], several

authors have considered the Kullback-Liebler divergence as a utility function. For more on

this, see [10]. In our case, we propose to multiply the utility U1 by a utility U2 equal to

U2 = exp
�
−a× C1(F̂−1)

�
. (32)

If we have a = 1, our utility is U = U1 × U2, and the log of that utility equals:

log(U) = −m

2
log(2π)− m

2
− 1

2
log |F̂−1| − log fPrior(θ | M)− C1(F̂−1), (33)

which is the difference of KL distances. Note that our utility U2 is slightly different from that

used by Poskitt. His utility U2 uses only the trace term in the expression of the complexity,

and does not contrast the determinant with the trace. The trace involves only the diagonal

elements, analogous to variances, while the determinant involves also the off-diagonal ele-

ments, analogous to covariances. Our utility amounts to a comparison of the geometric and
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arithmetic means of the eigenvalues of IFIM already shown in (27).

If we apply Poskitt’s Corollary 2.2 (maximizing posterior expected utility), or the Laplace

expansion results of [21], it follows that, under some regularity conditions, if the parameter

vector θ lies in model M , the posterior expected utility can be approximated by

log(PEU)∼= log f (y | θ̂M ) +
m

2
log(2π) +

1

2
log |F̂−1|+ log(U) + log fPrior(θ̂M | M), (34)

up to order O( 1

n
) and up to some terms which do not depend on the model M . Replacing

log(U) in this equation by its value in (33), some terms cancel out. We thus obtain a criterion,

to be maximized to choose a model:

log f (y | θ̂M )−
m

2
− C1(F̂−1) + log f (M), (35)

but maximizing this is equivalent to minimizing ICOM PPEU(F̂−1), given by

ICOM PPEU(F̂−1) =−2 log L(θ̂M | y) +m+ 2C1(F̂−1) + log f (M). (36)

Finally, assuming that f (M) is constant for all models in (36), we have

ICOM PPEU(F̂−1) = −2 log L(θ̂M | y) +m+ 2C1(F̂−1). (37)

Note that when we defined the utility

U2 = exp
�
−a× C1(F̂−1)

�
, (38)

we considered the constant multiplier a to be 1 in obtaining the result shown above. In-

deed other choices of a are possible and equally justifiable, giving rise to different penalty

functionals. For example, a choice of a = log n would yield

ICOM PPEU_LN(F̂−1) = −2 log L(θ̂M | y) +m+ log(n)C1(F̂−1), (39)

which clearly enforces a stricter penalty. One can choose yet other forms of the utility U2 and

its exponent to obtain several consistent forms of ICOM P, which are justifiable, to penalize

overparametrization of the models under consideration. For more on ICOM P we refer the

readers to [8].

3.2. ICOM P for Misspecified Models

In order to protect the researcher against this model misspecification, we generalize ICOM P

to the case of a misspecified model and introduce ICOM PM ISP(ÔCov(θ̂)), which can drive

effective model selection even when the Gaussian assumption is invalid for the given

dataset. First we define the two forms of the Fisher information matrix which are useful
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to check misspecification of a model. We define the Hessian form of the Fisher information

matrix as

F = −E

�
∂ 2 log L(θ)

∂ θ∂ θ ′

�
(40)

and the outer-product form as

R = E

�
∂ log L(θ)

∂ θ
· ∂ log L(θ)

∂ θ ′

�
, (41)

where the expectations are taken with respect to the true but unknown distribution. Following

[13], [17, page 237], [18, page 270], [19, page 391], [45], and others, suppose that the fitted

model is incorrectly specified. Let g(y | θ ∗) be the true model. Without knowing, suppose we

fit f (y | θ) to a random sample y1, . . . , yn of n observations. Under mild conditions, the log

likelihood of the fitted model

log L(θ) =

n∑

i=1

log f (yi | θ) (42)

is maximized at the MLE θ̂ , and as n−→∞ the average maximized log likelihood function

log L(θ̂ | y) = 1

n

n∑

i=1

log f (yi | θ̂ )−→
∫

f (y | θ ∗g ) log g(y)d y, (43)

where θ ∗g is the value of θ that minimizes the KL information

K L =

∫
log

�
g(y | θ ∗)
f (y | θ)

�
g(y | θ ∗)d y, (44)

with respect to θ . Thus θ ∗g is the “least bad” value of θ given the misspecified model. Taking

the partial derivative of (43) w.r.t θ , we have

0=

∫
∂ log f (y | θ)

∂ θ
g(y)d y, (45)

with θ̂ obtained from the finite-sample version of the previous equation given by

0=
1

n

n∑

i=1

∂ log f (yi | θ̂)
∂ θ

. (46)

Now expansion of this about θ ∗g yields

θ̂
.
= θ ∗g +


−1

n

n∑

i=1

∂ 2 log f (yi | θ ∗g )
∂ θ∂ θ ′



−1
1

n

n∑

i=1

∂ log f (yi | θ ∗g )
∂ θ


 . (47)
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Which provides us with

1

n

n∑

i=1

∂ 2 log f (yi | θ ∗g )
∂ θ∂ θ ′

p−→
(

E

 
∂ 2 log f (y | θ ∗g )
∂ θ∂ θ ′

!)
= −F (θ ∗g ), (48)

the inner-product form of the FIM, and

1

n

n∑

i=1

∂ log f (yi | θ ∗g )
∂ θ

p−→
¨

E

�
∂ log f (y | θ ∗g )

∂ θ

�
·
�
∂ log f (y | θ ∗g )

∂ θ

�«
=R(θ ∗g ) (49)

the outer-product form of the FIM. These two forms are useful to check for model misspecifi-

cation. This gives us the following result, with the derivation in the appendix.

Theorem 1. Based on an iid sample, y1, . . . , yn, and assuming regularity conditions of the log

likelihood function hold, we have

θ̂ ∼ N(θ ∗g ,F−1RF−1), or
p

n(θ̂ − θ ∗g )∼ N(0,F−1RF−1). (50)

Note that this tells us explicitly

Cov(θ ∗g)Misspec =F−1RF−1, (51)

which is called the sandwich or robust covariance matrix, since it is a correct variance matrix

whether or not the assumed or fitted model is correct. Of course, in practice the true model

and parameters are unknown, so we estimate this with

ÔCov(θ̂) = F̂−1R̂F̂−1. (52)

If the model is correct, we must have F̂−1R̂ = I , so

ÔCov(θ̂) = F̂−1R̂F̂−1 = IF̂−1 = F̂−1.

Thus, in the case of a correctly specified model, ÔCov(θ̂) = F̂−1. However, when the model is

misspecified, this is not the case. Under misspecification, several forms of ICOM P previously

defined are given as follows.

ICOM P(ÔCov(θ̂))M ISP = −2 log L(θ̂ | y) + 2C1(F̂−1R̂F̂−1). (53)

ICOM P(ÔCov(θ̂))M ISP_PEU = −2 log L(θ̂ | y) + tr(F̂−1R̂) + 2C1(F̂−1R̂F̂−1). (54)

ICOM P(ÔCov(θ̂))M ISP_PEU_LN = −2 log L(θ̂ | y) + tr(F̂−1R̂) + log(n)C1(F̂−1R̂F̂−1). (55)

In the next section, we will see how m got transformed into tr(F̂−1R̂) in the latter two.

Result 1. If

ICOM P 6= ICOM PM ISP

we say the model is misspecified, or equivalently

C1(ÔCov(θ̂ )) 6= C1(F̂−1).
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3.3. Bias of the Penalty

When we assume that the true distribution does not belong to the specified parametric

family of pdfs, that is, if the parameter vector θ of the distribution is unknown and is estimated

by maximizing the likelihood, then it is not any longer true that the average of the maximized

log likelihood converges to the expected value of the parameterized log likelihood. That is,

1

n
log L(θ̂ | y) = 1

n

n∑

i=1

log f (yi | θ̂ )9 Ey

�
log f (y | θ̂ )

�
. (56)

In this case, the asymptotic bias, b, between these two terms is given by

b = EG

 
1

n

n∑

i=1

log f (yi | θ̂ )−
∫

R

log f (y | θ̂)dG(y)

!
=

1

n
tr(F−1R)+O(n−2), (57)

where the expectation is taken over the true distribution G =
∏n

i=1 G(yi) [22]. We note that

tr(F−1R) is the well known Lagrange-multiplier test statistic. See, for example, [40, 20, 38].

Since we typically have MLE’s and not true parameter values, we have to estimate the bias

using

bb = 1

n
tr(F̂−1R̂). (58)

Thus, we have: Generalized Akaike’s information criterion, GAIC , defined by

GAIC = −2

n∑

i=1

log f (yi | θ̂) + 2 tr(F̂−1R̂)

= −2 log L(θ̂ | y) + 2 tr(F̂−1R̂). (59)

In the literature of model selection, GAIC is also known as Takeuchi’s [40] information crite-

rion (T IC), or AICT .

When the model is correctly specified the asymptotic bias reduces to:

b =
1

n
tr(F−1R) +O(n−2)

=
1

n
tr(Im) +O(n−2)

=
1

n
m+O(n−2),

which gives AIC as a special case of GAIC given by

AIC = −2 log L(θ̂ | y) + 2m,

where m is the the number of estimated parameters within the model. We note that the bias

in AIC is fixed and has no variability. Other higher order bias correction in model selection
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criteria is possible, and their asymptotic properties are well explained in [23, p. 176]. When

the true model is not in the model set considered, which is often the case in practice, AIC

will have difficulties identifying the best fitting model, as it does not penalize the presence of

skewness and kurtosis.

We do not claim that the ICOM P criterion derived in this paper captures all forms of

model misspecification. We only pay attention to the case where the probabilistic distribu-

tional form of the fitted model departs from normality within the multivariate regression

framework.

In reviewing the literature, we note that Sawa’s [see 36] BIC (should not be confused

with SBC which is also sometimes referred to as BIC) also adjusts penalization according

to misspecification, but there is no relationship between ICOM P and BIC , except perhaps

that the underlying formulation of the two criteria are both based on the KL information.

Sawa’s penalty term is not an entropic function of the complexity of the estimated sandwich

covariance matrix of the model. As shown above, the ICOM P criterion can be seen as an

approximation to the sum of two KL distances. Similarly, ICOM P is not necessarily related

to Wei’s [see 43, page 30] Fisher Information Criterion (F IC) in the standard multiple re-

gression model. In F IC , the incorporation of the determinant of the Fisher information is not

based on any theoretical grounds such as the entropic complexity measure of the covariance

matrix in ICOM P. F IC is more related to the Predictive Least Squares (PLS) criterion, as [43]

demonstrates.

4. Information Complexity for the Multivariate Regression Models

4.1. ICOM P and Information Criteria for Correctly Specified MVR Models

For multivariate regression, the number of estimated parameters is m = pq+ p(p+ 1)/2;

we have a coefficient for each of the q covariates for each of the p responses, and allow for a

fully general covariance matrix, which has p(p + 1)/2 unique elements. Thus, the AIC-type

criteria are given as

AIC = np log(2π)+ n log |Σ̂|+ np+ 2(pq+
p(p+ 1)

2
), and (60)

SBC = np log(2π)+ n log |Σ̂|+ np+ log(n)(pq+
p(p+ 1)

2
). (61)

The typical ICOM P(F̂−1) is

ICOM P(F̂−1) = np log(2π)+ n log |Σ̂|+ np+ 2C1(F̂−1). (62)

Rather than compute and store the entire IFIM, we can compute C1(F̂−1) after “opening it

up” as shown in (63):

ICOM P(F̂−1) = −2 log L(θ̂ | Y, X )+ 2C1(F̂−1)

= np log(2π)+ n log |Σ|+ np
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+ s log(
1

s


tr(Σ̂) tr[(X ′X )−1] +

1

2n
(tr(Σ̂2) + tr(Σ̂)2 + 2

p∑

j=1

(σ2
j j)

2)


)

− (p+ q) log |Σ̂|+ p log |X ′X |+ p(p+ 1)

2
log(n)− p log(2), (63)

where (σ2
j j)

2 indicates the square of the jth diagonal element of Σ̂. To compute ICOM P(F̂−1)PEU ,

one would simply add m to (63). For ICOM P(F̂−1)PEU_LN , multiply the ICOM P(F̂−1)

penalty by log(n)/2, then add m.

4.2. ICOM P for Misspecified MVR Models

Model misspecification is an important issue with regression models. To protect the re-

searcher against model misspecification, we need ÔCov(θ̂) = F̂−1R̂F̂−1. F̂−1 is repeated in

(64)

F̂−1 =

�
Σ̂⊗ (X ′X )−1 0

0′ 2

n
D+p (Σ̂⊗ Σ̂)D+p ′

�
, (64)

R̂ is derived in the appendix, and we show the results here.

R̂ =

 Σ̂−1 ⊗ X ′X 1

2
(Σ̂−1/2 ⊗ X ′)Γ̂1D+p

′
∆

1/2∆D+p Γ̂
′
1(Σ̂
− 1

2 ⊗ X ) 1

4
∆D+p Γ̂

∗
2D+p

′
∆


 (65)

This matrix takes into consideration the actual sample skewness

Γ̂1 = vec Z
�

vec (Z ′Z − nIp)
�′

, (66)

and kurtosis

Γ̂∗2 = (vec Z ′Z)(vec Z ′Z)′+ n2(vec Ip)(vec Ip)
′. (67)

We define

∆= D′p(Σ̂
−1/2 ⊗ Σ̂−1/2)Dp,

and we standardize the response matrix with

Z = (Y − X β̂)Σ̂−1/2.

The vec (·) operator stacks the columns of a matrix on top of each other, such that

Z ∈ Rn×p −→ vec Z ∈ Rnp×1,

and Σ̂−1/2 indicates the inverse of the matrix square root defined by

Σ̂1/2Σ̂1/2 = Σ̂.

In cases where the model is correctly specified, we have

E ∼ Nnp(0,Σ⊗ In), (68)



H. Bozdogan, J. Howe / Eur. J. Pure Appl. Math, 5 (2012), 211-249 228

Γ1 reduces to 0, and Γ∗2 −→ 2nDpD+p , such that R̂ = F̂ , in theory.

Thus, the misspecification-resistant estimator of the model covariance matrix is given in

(69)

ÔCov(θ̂) = F̂−1R̂F̂−1

=

�
Σ̂⊗ (X ′X )−1 1

n
(Σ̂1/2 ⊗ (X ′X )−1X ′)Γ̂1Dp∆

−1

1

n
∆−1D′pΓ̂

′
1(Σ̂

1/2 ⊗ X (X ′X )−1) 1

n2∆
−1D′pΓ̂

∗
2Dp∆

−1

�
. (69)

A procedure for “opening up” ÔCov(θ̂) is shown in Appendix 2. As with the regular ICOM P,

this procedure simplifies the computation, since the entire covariance matrix does not have to

be built and stored.

There is an issue of matrix stability to be addressed with the sandwich covariance ma-

trix, however. In both simulated and real datasets, we have observed that the matrix is

consistently rank-deficient. We performed simulation studies similar to those detailed in Sec-

tion 7.2, in which the model was correctly specified, and observed that ICOM PM ISP(ÔCov(θ̂))

and ICOM P(F̂−1) did not, in fact, select similar models. It appears that numerical issues with

the sandwich covariance matrix prevent it from approximating the IFIM when the model is

correctly specified. As an example, consider a dataset in which p = 2 and q∗ = 8. The number

of parameters estimated is m = 19, and the model covariance matrix is of size 19× 19. How-

ever, the rank is only 16. Of course, the determinant is 0. We employ the robust covariance

estimators (discussed in Section 6) to ensure ÔCov(θ̂) is of full rank.

4.3. KL Information between True and Fitted Model

Suppose that we denote a true multivariate regression model by

Mt : Y = X ∗B∗ + E∗, Cov(vecY ∗) = Σ∗ ⊗ In (70)

and the fitted (or candidate) multivariate regression model by

M f : Y = X B+ E, Cov(vecY ) = Σ⊗ In. (71)

Under the multivariate normal assumption, the log likelihood of the true model Mt is

log L(Mt) = −
np

2
log(2π)− n

2
log |Σ∗| − 1

2
tr[(Y − X ∗B∗)Σ∗−1(Y − X ∗B∗)′]. (72)

The log likelihood of the fitted model M f is

log L(M f ) = −
np

2
log(2π)− n

2
log |Σ| − 1

2
tr[(Y − X B)Σ−1(Y − X B)′]. (73)

Then the log likelihood of the difference between the true model and the fitted model becomes

∆ log L(Mt , M f ) = log L(Mt)− log L(M f )
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= log

� |Σ|
|Σ∗|

�
+

1

n
tr[(Y − X B)Σ−1(Y − X B)′]− 1

n
tr[(Y − X ∗B∗)Σ∗−1(Y − X ∗B∗)′]. (74)

Now, taking the expectation with respect to the true model, we obtain the Kullback-Leibler

distance as [5]:

K L = E
�
∆ log L(Mt , M f )

�

= log

� |Σ|
|Σ∗|

�
+ tr(Σ−1Σ∗) +

1

n
tr[(X ∗B∗ − X B)Σ−1(X ∗B∗ − X B)′]− p. (75)

Using the maximum likelihood estimators

B̂ = (X ′X )−1X ′Y , and Σ̂ =
(Y − X B̂)′(Y − X B̂)

n
=

Y ′MY

n
, (76)

we have the estimated KL

ÓK L = log

� |Σ̂|
|Σ∗|

�
+ tr(Σ̂−1Σ∗) + tr[Σ̂−1(X ∗B∗ − X B̂)(X ∗B∗ − X B̂)′]− p. (77)

This gives us a yardstick in comparing the performance of model selection criteria between

the true and the fitted model in how close they are to the KL distance, especially in simulation

protocols, since the true model is known by design. By means of simulation study, we can

investigate the finite sample behavior of ICOM P criteria both when the model is correctly

specified, and the model is misspecified.

5. Genetic Algorithm (GA)

The GA is a search algorithm that borrows concepts from biological evolution. Biological

chromosomes, which determine so much about organisms, are represented as binary words

– these determine the composition of possible solutions to an optimization problem. Unlike

most search algorithms, the GA simulates a large population of potential solutions. These

solutions are allowed to interact over time; random mutations and natural selection allow the

population to improve, eventually iterating to an optimal solution. For multivariate regression

subsetting, each chromosome is a q-length vector such that each locus represents the presence

(1) or absence (0) of a specific predictor. An example chromosome may be [10011001]; in

this case, predictors 1,4,5,8 will be used for OLS while 2,3,6,7 will not. The general procedure

in the GA is simple and straightforward:

1. Generate initial population of chromosomes

2. Score all members of current population

3. Determine how current population is mated and represented in next generation

4. Perform chromosomal crossover and genetic mutation

5. Pass on offspring to new generation

6. Loop back to step 2 until termination criteria met
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As seen in Table 1, there are 8 major parameters used to define the operation of the genetic

algorithm. These are all discussed, along with implementation methods, below.Table 1: Sample Geneti
 Algorithm parameters.
Parameter Setting

Number Generations 60

Population Size 30

Generation Seeding Roulette

Crossover Probability 0.75

Mutation Probability 0.10

Objective Function Information Criterion

5.1. Number Generations

Each iteration in the GA is called a generation, for obvious reasons. Thus, this parameter is

fairly self explanatory. There is an important trade-off to note, when selecting the number of

generations through which the GA will run. More generations mean more computation time;

however, not allowing the process to go through enough iterations can mean termination with

a suboptimal result.

5.2. Population Size

This parameter, P, determines the number of chromosomes are considered in each genera-

tion. In general, one would expect convergence times to decrease as population size increases,

up to a point. After that point, the computational time (and hence, time to convergence)

increases quickly. In other unpublished research, performance of the GA when used for mul-

tivariate subsetting was analyzed as operational parameters were purposely varied. In this

case, the goal was to maximize the frequency, across all generations, with which the proce-

dure selected the optimal subset. Tests were performed on a dataset for which the optimal

subset was known. It was determined that the GA was robust to all parameters tested (not all

parameters used here were varied) excepting population size; though in this case, variation

in population size only explained half the variation in the response.

5.3. Generation Seeding

From a given population, how do we seed the members of the next generation in prepara-

tion for mating? There are two primary methods; in both, the first step is to sort the current

population by the objective function values, such that the “most fit” chromosomes are at the

beginning of the list. For the simpler “sorted” method, no more preparation is necessary. Chro-

mosomes are mated in sequential pairs (mate(1,2), mate(3,4), etc. . .). The second method is

akin to a biased roulette wheel, in which the individual bins are of varied size as in Figure 4.

Bins for all chromosome are computed as bi = 2i/(P(P + 1)) | bi ∈ [0,1], then a cumulative
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eptual roulette �wheel�.
sum of these bins is computed. As an example, consider the sorted list of 4 chromosomes -

the bin widths are given as bi =
�

0.40 0.30 0.20 0.10
�

, so the bin limits are

bin 1 2 3 4

Lower Limit 0.00 0.40 0.70 0.90

Upper Limit 0.40 0.70 0.90 1.00

.

Clearly, the larger bins are at the beginning, corresponding to the most fit chromosomes. At

this point, P random numbers are generated uniformly from [0,1] and placed in the appro-

priate bin. For each random variate in bin i, chromosome i gets represented in the next

generation. In this way, chromosomes with a better objective function value are overrepre-

sented in the mating pool. The last step, then, is to randomly permute the ordering of the

chromosomes before mating; after permutation, mating occurs just as in the sorted method.

5.4. Crossover Probability

There are several ways in which crossover can be implemented, including:

• Single-point (fixed or random)

• Multiple-point (fixed or random)

• Uniform (fixed or random)

We’ve chosen to use the simplest - randomized single-point crossover. For each mating pair, a

random uniform variate is selected from integers in the range
�

2,q− 1
�

, this range is used,

rather than
�

1,q
�

, to protect against endpoint crossovers. For a given pair of mating chro-

mosomes, their right-most portions are traded starting from this point. For example, if the

crossover point is 2, we have

����
1 1 1 0 1

1 0 0 1 0

���� −→
����
1 1 0 1 0

1 0 1 0 1

���� .

For each mating pair, a random variate from U(0,1) is generated; if it is less than the crossover

probability, the mating pair undergo the crossover operation. Otherwise, the offspring are

pure genetic replicants of the parents.

5.5. Mutation Probability

The mutation operation is simple. Based on the mutation rate, chromosomes are randomly

selected from the current population to undergo mutation. For each chromosome, loci are

randomly selected (uniformly), at the same mutation rate, and their bits are switched: 1−→ 0

or 0−→ 1 (a not operation).
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5.6. Objective Function

More or less, all optimization or search procedures need some objective function to either

maximize or minimize. There is a large universe of appropriate functions that could fill this

role. For this problem we’ve chosen to use a class of criteria called information criteria.

Specifically, we present the use of Bozdogan’s ICOM P which drives effective model selection

in the face of model misspecification.

6. Robust Covariance Estimation

In many real-life problems, covariance matrices can become ill-conditioned, non-positive

definite, or even singular. This is especially true in cases of regression with highly collinear

predictors. It is also seen in situations in which there are not many more observations than

there are measurements, or variables - i.e., when it is not the case that n ≫ p. The usual

response to singular or ill-conditioned covariance matrix estimates is ridge regularization,

Σ̂∗ =
�
Σ̂ +αIp

�
, (78)

which works to counteract the ill-conditionedness by adjusting the eigenvalues of Σ̂. Usually,

the ridge parameter, α, is chosen to be very small. This, of course, begs the questions

• "How large should α be?"

• "How small can α be?".

The answer to these questions is to use robust covariance estimators. Many different robust,

or smoothed, covariance estimators have been developed as a way to data-adaptively improve

ill-conditioned and/or singular covariance matrix estimates. Several of them work by the

same mechanism as ridge regularization - perturb the diagonals, and hence, the eigenval-

ues. Although we use only the MLE/EB covariance estimator in our reported results, several

methods implemented in our algorithm include:

• Maximum Likelihood / Empirical Bayes

Σ̂M LE/EB = Σ̂+
p− 1

(n) tr(Σ̂)
Ip (79)

• Stipulated Ridge, [39]

Σ̂SRE = Σ̂+ p(p− 1)
�
(2n) tr(Σ̂)

�−1
Ip (80)

• Stipulated Diagonal, [39]

Σ̂SDE = (1−π)Σ̂ +πdiag(Σ̂), π= p(p− 1)
�

2n(tr(Σ̂−1)− p)
�−1

(81)

• Convex Sum, [31, 11]

Σ̂CSE =
n

n+m
Σ̂ + (1− n

n+m
)

�
tr(Σ̂)

p

�
Ip (82)

0< m <
2
�

p(1+ β)− 2
�

p− β , β =
tr(Σ̂)2

tr(Σ̂2)
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• Thomaz Stabilization [41]

Σ̂Thomaz = VΛ∗V (83)

Λ∗ =




max(λ1,λ) 0

max(λ2,λ)
. . .

...

0 max(λp,λ)




(84)

λi = ith eigenvalue,λ =mean eigenvalue, V =matrix of eigenvectors

When a small amount of perturbation is all that is required, Σ̂M LE/EB has a certain appeal. As

is clear in (79), this is the same form of the naive ridge regularization, where α is determined

by the data.

For the results reported here, we used the Empirical Bayes estimator, so as to perturb the

estimates as little as possible. Even then, we prefer to not change the problem more than

necessary, so we perform two tests for matrix condition:

1. Is the reciprocal of the condition number small: κ−1(Σ̂)≤ 1e−10?

2. Is the MLE nonpositive definite?

If the answer to either question is in the affirmative, we apply the robust covariance estimator

to give us a well-conditioned estimate, Σ̂∗.

7. Numerical Results

7.1. Simulation with Correlated Redundant Variables

We first demonstrate the performance of misspecification-robust information criteria on a

simulated dataset using a complex simulation protocol. We begin by generating five correlated

regressors, with x4 and x5 redundant.

x0 = 1 (constant)

x1 = 10+ ǫ1

x2 = 10+ρǫ1 +αǫ2

x3 = 10+ρǫ1 + 0.5604αǫ2+ 0.8282αǫ3

x4 = −8+ x1+ 0.5x2+ρx3 + 0.5ǫ4

x5 = −5+ 0.5x1+ x2 + 0.5ǫ5

The ǫi are drawn from a standardized Gaussian distribution, ρ = 0.3 controls the correlation,

as does α =
p

1−ρ2. Thus far, we have X =
�

x0, x1, x2, x3, x4, x5

�
. We now turn our focus

to the response matrix, which we create as:

Yn×2 = X ∗n×4B4×2 + εn×2 where

X ∗ =
�

x0, x1, x2, x3

�
and
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B =




−8 −5

1.0 0.5

0.5 0.0

0.3 0.3


 .

To make this a truly misspecified model, we generate the error terms from the multivariate

power exponential distribution (MPE). From [16], the density function for the MPE is shown

in (85).

f (x i | µ,Σ,β) =
pΓ(

p

2
)|Σ|− 1

2

2π
p

2Γ(1+
p

2β
)2

1+
p

2β

exp(−1

2

�
(x i −µ)Σ−1(x i −µ)′

�β
) (85)

This distribution includes others as special cases:

• When β = 1, we have the multivariate Gaussian

• When β = 1/2, we have the multivariate Laplace

• When β →∞, we have the multivariate uniform

We generate the error terms two different ways:

S1: µ = [0,0] ,Σ =

�
1 0.5

0.5 1

�
,β = 0.75 S2: µ = [0,0] ,Σ =

�
1 0

0 1

�
,λ = [2,−2]

In simulation S2, the error terms matrix is created as two independent columns of skewed

univariate power exponential distributions, with one skewed right and the other being left-

skewed. The skewness is imparted utilizing Azzalini-type skew, with the functional form

shown in (86) - see [2]. Figure 5 shows two examples.

g(x) = 2 f (x)F(λx)∼ Skew( f ,λ) (86)

−20 −10 0 10
0

0.05

0.1

0.15

0.2

0.25

0.3

ε
1
,λ = 2
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0
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0.2
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0.3

ε
2
,λ = −2

Figure 5: Demonstrating the univariate Azzalini-type skewed PE.
For our first Monte Carlo study, we let β = 0.75 and ran M = 500 trials with both n= 500

and n = 1000. The results are summarized in Tables 2 and 3. Table 2 summarizes re-
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Criteria True Model

KL Distance 100.0

AIC/GAIC 74.8

SBC 72.8

ICOM P(F̂−1) 72.4

ICOM PPEU(F̂−1) 73.4

ICOM PM ISP (ÔCov(θ̂)) 85.8

ICOM PM ISP_PEU(ÔCov(θ̂)) 82.6Table 3: % model hits out of M = 500 simulations of S1 with n = 1000.
Subset AIC/GAIC SBC ICOM P(F̂−1)/PEU ICOM PM ISP(ÔCov(θ̂))/PEU

{0,1,2,3,4,5} 1.6 0.0 0.0/0.0 0.0/0.0

{1,2,3,4,5} 0.0 0.0 0.4/0.2 0.0/0.0

{0,1,3,4,5} 0.2 0.0 0.0/0.0 0.0/0.0

{0,1,2,3,5} 11.0 0.2 1.2/0.4 2.0/0.8

{0,1,2,3,4} 12.2 0.0 0.0/0.0 1.2/0.8

{0,1,3,5} 0.0 0.4 0.2/0.2 0.4/0.4

{0,1,2,3} 75.0 98.2 98.2/99.2 96.2/97.6

{0,1,2} 0.0 1.2 0.0/0.0 0.2/0.4

sults from the experiment with n= 500 observations generated from the simulation protocol.

There are, of course, 26−1= 63 possible subsets of the covariates; not counting subsets never

selected, there were too many to show in detail here. As such, we’re reporting the percent

of simulations in which the criteria selected exactly the true model X ∗ =
�

x0, x1, x2, x3

�
. It

is interesting to note that AIC and GAIC performed identically. We also see that AIC seems

more appropriate for smaller samples. ICOM PM ISP (ÔCov(θ̂)) performed well, only selecting

a model that did not include the true model in 11% trials. The misspecified ICOM Ps hit the

true model with the highest frequency of all the criteria.

Next we have the results from the experiment with n = 1000 observations in Table 3. As

can be seen, the rates at which all forms of ICOM P selected exactly the true model improved

dramatically, as good as 99.2% for ICOM PPEU(F̂−1). In this table, only subsets that had any

hits at all are included, in the interest of space. It seems that, with a large enough sample,

ICOM P(F̂−1) is robust to a degree of misspecification. SBC also demonstrated a dramatic

improvement; though it is considered to be a “consistent” criteria, this quality seems to be

somewhat lacking when the functional form of the regression model is not correctly specified.

It is interesting to note that the hit percentages for AIC and GAIC did not improve much at

all, rising slightly to 75.0%. As with the smaller sample size, the KL distance selected the true

model 100.0% of the time.
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Criteria True Model

n= 500 n= 1000

KL Distance 57.2 67.6

AIC/GAIC 64.6 73.0

SBC 29.6 86.8

ICOM P(F̂−1) 58.0 93.0

ICOM PPEU(F̂−1) 53.2 93.6

ICOM PM ISP (ÔCov(θ̂)) 59.0 91.8

ICOM PM ISP_PEU(ÔCov(θ̂)) 46.0 90.2

Next, we performed to sets of simulation experiments with the S2 model for n= 500 and

n = 1000. In the presence of asymmetry there was a lot more confusion, with 38 different

models being selected by different criteria. Table 4 summarizes the results.

In the presence of skewness, AIC and GAIC performed admirably in the tests with the

smaller sample size, while SBC did not. The ICOM P criteria performed very well, especially

with the larger sample sizes. ICOM PM ISP (ÔCov(θ̂)) proved better than even the KL distance

at both selecting the true model, and a model that included the truth. The KL distance per-

formed much worse than it did when the errors were generated symmetrically. We also note

that, like the S1 simulation, ICOM P(F̂−1) is robust against a high degree of skewness, with

performance similar to the misspecified form of ICOM P.

In summary, we observe that in all experiments, AIC and GAIC performed identically.

This suggests that considering just estimated bias does not provide much benefit. Effectively

adjusting for model misspecification seems to require the entire sandwich covariance matrix.

7.2. Simulation with Redundant and Unnecessary Variables

This simulation protocol, with the multicollinearity and non-Gaussian errors, is a decent

test of the performance of information criteria in the presence of misspecification, but we can

do better. Thus, we add 15 unrelated variables to our matrix of regressors, such that

X ∈ Rn×21 =
�

x0, x1, x2, x3, x4, x5,
�

x i ∼ U(0, i) | i = 6 . . . 20
	�

.

Under this extended simulation protocol, we have 221 − 1 = 2,097,151 different possible

models to evaluate, and the true model is still X ∗ =
�

x0, x1, x2, x3

�
. This is a very difficult

problem for any criteria to perform well under. We use the genetic algorithm to search the

subset space with the settings: population size = 30, number generations = 60, crossover

rate = 0.75, mutation rate = 0.10. The four Monte Carlo simulation experiments from the

previous section, all with M = 100, were performed.

For β = 0.75, as can be seen in Table 5 the KL distance, assuming normality, gave up its
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tion statisti
s from extended S1 simulations.
Criteria n Model Selected True Model Avg Length

KL Distance 500 {0,1,2,3} 86.0 4

1000 {0,1,2,3} 92.0 4

AIC 500 {0,1,2,3,6,10,12,19} 6.0 7

1000 {0,1,2,3,6,12,14,15} 4.0 6

SBC 500 {0,1,2} 54.0 4

1000 {0,1,2,3} 94.0 4

GAIC 500 {0,1,2,3,5,16,17} 7.0 7

1000 {0,1,2,3,15} 4.0 6

ICOM P 500 {1,2,3,4} 11.0 7

1000 {1− 8,10,14,17,18} 63.0 5

ICOM PPEU 500 {1,4,5} 20.0 5

1000 {0,1,2,3} 70.0 5

ICOM PM ISP 500 {0,1,2,3} 77.0 4

1000 {0,1,2,3} 89.0 4

ICOM PM ISP_PEU 500 {0,1,2,3} 75.0 4

1000 {0,1,2,3} 93.0 4

perfect track record - at best selecting the true model in 92% of the trials. With more infor-

mation in the tails, the misspecified ICOM P criteria performed well regardless of the sample

size. In fact, minimization of both criteria across all simulations selected X ∗ =
�

x0, x1, x2, x3

�
as the best model The PEU version did very well, hitting the true model in 93 of the 100 sim-

ulations for the larger sample size. Over all simulations, these two criteria and SBC selected

models, on average, with 4 regressors - there was no substantial tendency to overfit. Once

again, though, we see the inconsistent behavior of SBC , only doing really well with the large

sample. Both AIC and GAIC performed extremely poorly, both tending to pick models with

2 or 3 extra predictor variables. To their credit, they also displayed a strong tendency to pick

models that included the true model (eg. x∗ =
�

x0, x1, x2, x3, x4, x5

�
). The final model se-

lected by ICOM P(F̂−1) for the large sample simulation is truly bizarre - 12 regressors, while

the average model length was a respectable 5. This seems like it may have been a vagary

of simulation. In Table 6, we see the results from one of the many simulations in which theTable 6: Summary from one simulation of the extended S1 proto
ol.
Subset ICOM PM ISP(ÔCov(θ̂)) Weights # Generations

{0,1,2,3} 6789.73 0.948 30

{0,1,2,3,5} 6796.30 0.035 25

{0,1,2,3,5,14} 6797.80 0.017 1

{0,1,2,3,5,9,14} 6808.76 0.000 1

{0,1,2,3,4,9,14} 6819.01 0.000 1

{0,1,2,3,5,9,14,18,19} 6828.54 0.000 2
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e plot of ICOM PM ISP (ÔCov(θ̂).
misspecified version of ICOM P selected X ∗ as the best model. Here we see that the criteria

was almost 95% certain that its solution was the true model. Finally, we see, in Figure 6, how

much the GA smoothed the search surface, with relatively rare spikes in the ICOM P scores.

Though this plot doesn’t show it, the simulation found it’s final solution in the 30th generation.

Secondly, we performed 100 simulations with n= 500 and 100 simulations with n= 1000

from the extended protocol with the skewed error terms. Results from these simulations can

be seen in Table 7. It seems noteworthy that the KL distance, assuming normality, did not

perform substantially better with the increase in sample size. With the smaller sample size,

ICOM PM ISP(ÔCov(θ̂)) did the best job of hitting the true model, at 42%; minimizing both

SBC and ICOM PM ISP_PEU(ÔCov(θ̂)) selected the true model. However, when the sample size

was increased to n = 1000, both misspecified forms of ICOM P had the highest hit rates of

80% and 73%, besting the 58% obtained by the KL distance. The only criteria which selected,

via minimization, the true model were three of the four ICOM Ps.

With these Monte Carlo Simulation studies, we’ve shown that, in multivariate regression,

when the error terms exhibit nonnormal skewness or peakedness, the forms of ICOM P which

account for the sample characteristics can consistently pick the correct, or truly best fitting

model.
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tion statisti
s from simulations of extended S2.
Criteria n Model Selected True Model Avg Length

KL Distance 500 {0,1,2,3} 48.0 4

1000 {0,1,2,3} 58.0 4

AIC 500 {0,1,2,3,6,8} 6.0 6

1000 {0,1,2,3,14,16} 8.0 6

SBC 500 {0,1,2,3} 17.0 2

1000 {0,1,3,5} 63.0 4

GAIC 500 {0,1,2,3,4,12,19} 5.0 6

1000 {0,1,2,3,5,14,15} 3.0 6

ICOM P 500 {1,3,4,5,6,9} 6.0 6

1000 {0,1,2,3,5} 47.0 5

ICOM PPEU 500 {1,3,4,5,9,13,14} 9.0 4

1000 {0,1,2,3} 49.0 5

ICOM PM ISP 500 {0,1,3} 42.0 4

1000 {0,1,2,3} 80.0 5

ICOM PM ISP_PEU 500 {0,1,2,3} 38.0 3

1000 {0,1,2,3} 73.0 4

7.3. GA Performance under Simulations

Regarding the performance of the GA, recall that, for the extended simulation protocol,

there were over two million possible models to evaluate. Each simulation evaluated 30 (not

necessarily unique) solutions per generation; and was allowed to progress through 60 gen-

erations. Therefore, each simulation evaluated at most 30× 60 = 1,800 subset regression

models. With the exception of the ICOM PM ISP criteria, computation time for each simulation

hovered in the (1.5s, 3.5s) range - (8.5s, 25s) for the misspecified criteria. That some of these

model statistics could consistently pick out the correct model while only evaluating at most

100× (1800/2,097,151) = 0.086% of the subset space, in such a short time, is phenomenal.

In fact, to demonstrate this performance and scalability, we performed a series of timing ex-

periments. We set generation count = 60 and used the GA to perform subset regression while

varying q, with P = q+ 10 (P = population size). So as to remove any timing effect of sam-

pling of misspecification, simulations were performed with β = 1.0 and n= 500; for this test,

we used SBC to drive model selection. Ten simulations at each level of q were performed, and

the average process time was computed; results are summarized in Table 8. While the number

of possible models grows exponentially, the number of models evaluated only grows linearly.

Note also how well the GA seems to scale in regard to computation time. A 5-fold increase

in q only leads to something like a 4-fold increase in time. Keep in mind, of course, that the

number of unique models evaluated was actually much less than shown. Additionally, the GA

was artificially constrained to not allow early termination. Thus, the times are most likely

inflated from what they would be in practical use. These results were obtained using our own

software written for Mathworks MATLAB®, on a non-dedicated Windows XP PC with a 3.4
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q P Possible Models

Models Evaluated

per Simulation
Average Time

20 30 1,048,575 ≤ 1,800 1.89s

25 35 33,554,431 ≤ 2,100 1.82s

35 45 34,359,738,367 ≤ 2,700 2.34s

50 60 1,125,899,906,842,623 ≤ 3,600 2.89s

75 85 3.7779e22 ≤ 5,100 4.84s

100 110 1.2677e30 ≤ 6,600 7.99s

GHz processor and 2 GB of RAM while many other processes were running.

7.4. Real Data - Body Fat Measurement

The first real dataset to be analyzed was the familiar body fat dataset This data is com-

posed of body measurement observations from n = 252 men. There are p = 2 responses and

q = 13 regressors, listed in Table 9. Where not specified, measurements are in centimeters.

Accurately measuring body composition, and specifically the percentage that is fat, is an in-

convenient and costly procedure. A method for accurately computing these amounts from

simple body measurements without requiring underwater weighing is highly desirable.Table 9: Body fat dataset variables.
y1 =Body Density (gm/cm3) y2 =Percent body fat from Siri’s equation

x0 =Constant x7 =Hip circumference

x1 =Age (yrs) x8 =Thigh circumference

x2 =Weight (lbs) x9 =Knee circumference

x3 =Height (in) x10 =Ankle circumference

x4 =Neck circumference x11 =Extended biceps circumference

x5 =Chest circumference x12 =Forearm circumference

x6 =Abdomen 2 circumference x13 =Wrist circumference

We first ran the genetic algorithm with population size = 20, using the ICOM P(F̂−1)

as the objective function. In both real datasets analyzed in this paper, we opted not to use

SBC , due to the fact that the sample sizes are small, when compared to the n = 500 in

the simulations. Given that its consistency appears to depend on the type of departure from

normality, it seems dangerous to use unless with very large datasets. Minimizing ICOM P led

to the best model being: a constant, Weight, and Abdomen 2 circumference, with the estimated

coefficients shown in Table 10. The ICOM P score for this model was −644.36. From the

univariate plots of the residuals in Figures 7 and 8, it appears that the normality assumption

is mostly justified, with only slightly nonnormal tail behavior. However, looking at the plots of

each dimension separately disguises the truth that we can discover empirically. Using the tests

for multivariate Gaussian skewness and kurtosis of [29], this assumption does not appear to
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be justified. In the case of multivariate normality, the theoretical population skewness and

kurtosis parameters are respectively β1 = 0 and β2 = p(p+ 2), or β2 = 8 for p = 2. Mardia’s

sample values can be computed as in (87) and (88).

β̂1 =
1

n2

n∑

i=1

n∑

j=1

�
(yi − y)Σ̂−1(y j − y)′

�3
(87)

β̂2 =
1

n

n∑

i=1

�
(yi − y)Σ̂−1(yi − y)′

�2
(88)

To test the null hypothesis H0 : ε∼ Np(µ,Σ) versus the alternative Ha : ε≁ Np(µ,Σ), we form

the test statistics shown here; the test is one-sided for skewness, while the kurtosis test is twoTable 10: Estimated regression 
oe�
ients for body fat data.
y1 y2

b0 1.202 −45.952

b2 0.0004 −0.148

b6 −0.002 0.990



H. Bozdogan, J. Howe / Eur. J. Pure Appl. Math, 5 (2012), 211-249 242

sided. Thus, the latter test can determine if the data exhibit higher or lower peakedness than

expected.

χ2∗ =
n

6
β̂1 ∼ χ2(

p(p+ 1)(p+ 2)

6
) (89)

Z∗ =
(β̂2− β2)q

8p(p+2)

n

∼ N(0,1) (90)

Using the residuals from this model, β̂2 = 132.13 ≫ 8, indicating substantial peakedness;

the test statistic is Z∗ = 246.32, and the p-value is 0.00000. Additionally, the sample skew-

ness value is β̂1 = 69.39; this is significantly different (p-value= 0.00000) from what is ex-

pected. Thus, we see that the residuals from this model are not Gaussian white noise. In light

of this information, we used the GA to perform the multivariate subset regression with the

misspecification-robust form of ICOM P. The score for ICOM PM ISP(ÔCov(θ̂)) = −658.39 is

substantially different than that of ICOM P(F̂−1) (−644.36), also indicative of misspecifica-

tion. Interestingly, even though ICOM P(F̂−1) 6= ICOM PM ISP(ÔCov(θ̂ )), the same model was

selected - X ∗ =
�

x0, x2, x6

�
.

8. Concluding Remarks

Model misspecification is a major challenge faced by all statistical modeling techniques.

As compared to the bell curve, real world multivariate data frequently exhibit higher kurtosis

and heavier tails, asymmetry, or both. We have extended ICOM P for multivariate regres-

sion so as to protect the statistical researcher against model misspecification, using the newly

derived model covariance matrix that is appropriate whether or not the specified model is.

Once this matrix is regularized to adjust for numerical instabilities, our modified criterion

can take into consideration the actual sample kurtosis and skewness. Using this extended

ICOM P as the fitness function, we have employed the genetic algorithm to consistently iden-

tify the known true subset regression model in the presence of multicolinearity, unnecessary

variables, redundant variables, and asymmetrical or leptokurtic behavior. The results from

our challenging simulation studies bolster the application of our new criteria to a real dataset.

Our findings suggest that when data are overly peaked or skewed, criteria which adjust for

sample deviance from normality, such as the new ICOM P, should be used to drive model

selection.

The world of statistics has too long relied upon the Gaussian distribution for analysis and

model selection, and this can lead to suboptimal solutions in medical diagnostics, business

analytics and intelligence, bioinformatics, econometric modeling, and engineering applica-

tions. With the new methods proposed in this paper, we expect advances in the usefulness

and accuracy of statistical models.
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Appendices

In what follows, for the completeness of the paper and the benefit of the readers, we repeat

necessary matrix calculus derivations of the outer-product form of the Fisher information

matrix and the misspecification resistent sandwich covariance matrix for the MVR model given

in [27] to derive the ICOM P criterion and its different forms.

Appendix 1: Outer-Product Form of the Fisher Information Matrix for the MVR

Model

When the MVR model is misspecified, in order to obtain the outer-product form of the

information matrix we standardize Y by defining Z = (Y − X B)Σ−1/2, so that

E (Z) = 0, Var(vec Z) = Ipn,

and introduce matrix generalizations of the usual skewness and kurtosis measures by defining

Γ1 = E
�
(vec Z)(vec (Z ′Z − nIp)

�′
,Γ2 = E

�
(vec Z ′Z)(vec Z ′Z)

�′
.

In the special case of correct specification, these specialize to

Γ1 = 0, Γ2 = 2nNp + n2(vec Ip)(vec Ip)
′, (91)

where Np denotes the p2 × p2 symmetrizer matrix. The symmetrizer matrix has the property

(for a square matrix A of dimensions p) Np vecA = 1

2
vec (A+ A′). If n = p = 1, the kurtosis

further specializes to Γ2 = 3, as expected.

We now evaluate E
�
(d log L(θ | y))2

�
. Squaring (7) yields

(d log L(θ | y))2 = (1
2

tr(Σ−1/2Z ′ZΣ−1/2 − nΣ−1)dΣ+ trΣ−1/2Z ′X d B)2.

Letting ∆= D′p(Σ
−1/2 ⊗Σ−1/2)Dp, we thus obtain

E
�
(d log L(θ | y))2

�
=

1

4
E
�

tr(Σ−1/2Z ′ZΣ−1/2 − nΣ−1)dΣ
�2
+ E
�

trΣ−1/2Z ′X d B
�2

+E
�

tr(Σ−1/2Z ′ZΣ−1/2 − nΣ−1)dΣ
�
(trΣ−1/2Z ′X d B)
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=
1

4
(dvecΣ)′(Σ−1/2 ⊗Σ−1/2)Var(vec Z ′Z)(Σ−1/2 ⊗Σ−1/2)dvecΣ

+(dvec B)′(Σ−1/2 ⊗ X ′)Var(vec Z)(Σ−1/2 ⊗ X )dvec B

+(dvecΣ)′(Σ−1/2 ⊗Σ−1/2)Γ′1(Σ
−1/2 ⊗ X )dvec B

=
1

4
(dvech(Σ))′∆D+p (Γ2 − n2(vec Ip)(vec Ip)

′)D+′p ∆dvech(Σ)

+(dvec B)′(Σ−1 ⊗ X ′X )dvec B

+(dvech(Σ))′∆D+p Γ
′
1(Σ
−1/2 ⊗ X )d vec B.

Hence,

E
�
d log L(θ | y)�2

= (dθ)′R dθ ,

where R is the outer-product form,

R =
�

Σ−1 ⊗ X ′X 1

2
(Σ−1/2 ⊗ X ′)Γ1D+′p ∆

1

2
∆D+p Γ

′
1(Σ
−1/2 ⊗ X ) 1

4
∆D+p Γ

∗
2D+′p ∆

�
, (92)

and Γ∗2 = Γ2−n2(vec Ip)(vec Ip)
′. In the correctly specified case where Γ1 = 0 and Γ∗2 = 2nNp,

one verifies that R =F .

Appendix 2: Misspecification-Resistent Sandwich Covariance Matrix for the

MVR model and ICOM P

In the presence of misspecification, the variance of the quasi maximum-likelihood estima-

tor bθ is

Cov(θ) = F−1RF−1

=


 Σ⊗ (X ′X )−1 1

n
(Σ

1
2 ⊗ (X ′X )−1X ′)Γ1Dp∆

−1

1

n
∆−1D′pΓ

′
1(Σ

1/2 ⊗ X (X ′X )−1) 1

n2∆
−1D′pΓ

∗
2Dp∆

−1


 . (93)

Furthermore, a little algebra gives

tr Cov(θ) = trΣ⊗ (X ′X )−1+
1

n2
tr∆−1D′pΓ

∗
2Dp∆

−1

= (trΣ)(tr(X ′X )−1)

+
1

n2
tr D+p (Σ

1/2 ⊗Σ1/2)Γ∗2(Σ
1/2 ⊗Σ1/2)D+p

′
, (94)

and

|Cov(θ)| = |Σ⊗ (X ′X )−1| · | 1
n2
∆−1D′p(Γ

∗
2 − Γ′1(Ip ⊗ X (X ′X )−1X ′)Γ1)Dp∆

−1|
= 2−p(p−1)n−p(p+1)|Σ|p+k+1|X ′−p

×|D′p(Γ∗2 − Γ′1(Ip ⊗ X (X ′X )−1X ′)Γ1)Dp|. (95)
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In the special case of correct specification, one verifies that

tr Cov(θ) = trF−1 = (trΣ)(tr(X ′X )−1) +
1

2n
(trΣ2 + (trΣ)2+ 2

p∑

j=1

σ2
j j),

and

|Cov(θ)|= |F−1| = 2pn−
1

2
p(p+1)|Σ|p+k+1|X ′X |−p.

To derive ICOM P for the misspecified multivariate regression model, we need the determi-

nant and trace of ÔCov(θ̂), the estimator of Cov(θ). The matrix Cov(θ) itself is given in (93),

and its trace and determinant in (94) and (95). Thus,

trÔCov(θ̂ ) = (tr bΣ)(tr(X ′X )−1)

+
1

n2
tr D+p (

bΣ1/2 ⊗ bΣ1/2)cΓ2
∗
(bΣ1/2 ⊗ bΣ1/2)D+′p ,

and

|ÔCov(θ̂)| = 2−p(p−1)n−p(p+1)|bΣ|p+k+1|X ′X |−p

×|D′p(bΓ∗2 −cΓ1
′
(Ip ⊗ X (X ′X )−1X ′)cΓ1)Dp|.

As a result we obtain

ICOM P(ÔCov(θ̂))M ISP = np log 2π+ n log |Σ̂|+ np+ 2C1(ÔCov(θ̂)), (96)

where C1, repeated from (16), is

C1(ÔCov(θ̂)) =
s

2
log

tr(ÔCov(θ̂))

s
− 1

2
log |ÔCov(θ̂)|. (97)

In the special case of correct specification these results simplify to trÔCov(θ̂) = tr F̂−1 and

|ÔCov(θ̂)| = |F̂−1|, and ICOM P(ÔCov(θ̂))M ISP reduces to ICOM P(F̂−1).

Appendix 3: Derivation of the Penalty Bias

When the model is correctly specified, the skewness and kurtosis are given by (91), so that

R =F . In general (under misspecification), we obtain

tr(F−1R) = tr(Σ⊗ (X ′X )−1)(Σ−1 ⊗ X ′X )

+
1

2n
tr(D+p (Σ⊗Σ)D+′p ∆D+p Γ

∗
2D+′p ∆)

= pk+
1

2n
tr NpΓ

∗
2 = pk+

1

2n
trΓ∗2. (98)

As derived in (57), the bias is then given by

b =
1

n
tr(F−1R) +O(n−2) =

1

n

�
pk+

1

2n
tr(Γ∗2)

�
+O(n−2),
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and hence the estimated bias b̂ is

b̂ =
1

n
tr(F̂−1R̂) = 1

n

�
pk+

1

2n
tr(Γ̂2

∗
)

�
, (99)

which we compare with b = k/n, typically used in subset selection of variables and deletion

diagnostics in multivariate regression models.

In the special case when there is no misspecification, we have Γ∗2 = 2nNp and

tr(Γ∗2) = np(p+ 1).

In that case,

tr(F−1R) = pk+ p(p+ 1)/2,

which is the number of estimated parameters in the multivariate regression model and also

the penalty term in AIC . This shows why AIC-type criteria and cross-validation techniques do

not guard the researcher against misspecification of the model - the bias is computed under

the assumption that the model is correctly specified.


