Finiteness Conditions for Unions of Two Semigroups and Ranks of $B(G, n)$

Melis Minisker

Mustafa Kemal University, Faculty of Education, Antakya-Hatay

Abstract. In this paper we try to find the finiteness conditions for union of two finite semigroups with a specially defined binary equation. Moreover we find the ranks of the semigroup $B(G, n)$.

2010 Mathematics Subject Classifications: 20M05

Key Words and Phrases: finiteness conditions, ranks, union

1. Introduction

Finiteness conditions of semigroups (the properties of semigroups which all finite semigroups have) have been considered for certain classes of semigroup constructions. (for examples see [1, 2]). In this paper periodicity, residual finiteness and solvability of word problem of union of two finite semigroups are determined.

Let S and T be two finite semigroups with empty intersection. We define a binary equation on $S \cup T$ as follows:

If $s_1 \in S$ and $s_2 \in S$ then $s_1.s_2$ is considered as the same operation defined on S. If $t_1 \in T$ and $t_2 \in T$ then $t_1.t_2$ is considered as the same operation defined on T. If $s \in S$ and $t \in T$ then $st = ts = t$. In [3] it is shown that any finitely presented semigroup S is embedded into an inefficient semigroup, namely, the semigroup $S \cup SL_n$ where SL_n is the free semilattice of rank n.

Let S be a finite semigroup. A subset U of S is called independent if, for every u in U, the element u does not belong to the semigroup $< U \setminus \{u\} >$ generated by the remaining elements of U (see [4]). In [5] Howie and Ribeiro introduced $r_1(S)$, $r_2(S)$, $r_3(S)$, $r_4(S)$ and $r_5(S)$ defined as follows:

- $r_1(S) = \max \{ k : \text{every subset } U \text{ of } S \text{ of cardinality } k \text{ is independent} \}$
- $r_2(S) = \min \{ k : \text{there exists a subset } U \text{ of } S \text{ of cardinality } k \text{ which generates } S \}$

Email addresses: melisminisker@hotmail.com

http://www.ejpam.com 335 © 2013 EJPAM All rights reserved.
Theorem 2. A congruence \(\phi \) is a homomorphism \(\rho \) with finite index (that is \(\rho \) has finitely many equivalence classes) such that \(\phi(s) \neq \phi(t) \). (Residual finiteness of completely (0)-simple semigroups, which are Rees matrix semigroups \(M[G; I, J, P] \) over groups was investigated in [2].)

Theorem 1. Let \(S \) and \(T \) be finite semigroups. Then \(S \) and \(T \) are periodic if and only if \(S \cup T \) is periodic.

Proof. (\(\Rightarrow \)) Let \(S \) and \(T \) be periodic. Let \(x \in S \cup T \). Then \(x \in S \) or \(x \in T \). If \(x \in S \), since \(S \) is periodic there exists \(m, n \in \mathbb{N} \) such that \(x^m = x^n \). If \(x \in T \), since \(T \) is periodic there exists \(k, l \in \mathbb{N} \) such that \(x^k = x^l \). So \(S \cup T \) is periodic.

(\(\Leftarrow \)) Let \(S \cup T \) be periodic. Let \(x \in S \). Since \(S \subseteq S \cup T \) we have \(x \in S \cup T \). Since \(S \cup T \) is periodic there exists \(k_1, k_2 \in \mathbb{N} \) such that \(x^{k_1} = x^{k_2} \). We obtain \(S \) is periodic. Let \(y \in T \). Since \(T \subseteq S \cup T \) we have \(y \in S \cup T \). Since \(S \cup T \) is periodic there exists \(k_3, k_4 \in \mathbb{N} \) such that \(y^{k_3} = y^{k_4} \). Thus \(T \) is also periodic.

3. Residual Finiteness

We call a semigroup residually finite if, for each pair \(s \neq t \in S \) there exists a homomorphism \(\phi \) from \(S \) onto a finite semigroup such that \(\phi(s) \neq \phi(t) \), or equivalently, there exists a congruence \(\rho \) with finite index (that is \(\rho \) has finitely many equivalence classes) such that \((s, t) \notin \rho \). (Residual finiteness of completely (0)-simple semigroups, which are Rees matrix semigroups \(M[G; I, J, P] \) over groups was investigated in [2].)

Theorem 2. \(S \cup T \) is residually finite if and only if \(S \) and \(T \) are residually finite.

Proof. (\(\Rightarrow \)) Assume that \(S \cup T \) is residually finite. Since \(S \) and \(T \) are subsemigroups of \(S \cup T \) then \(S \) and \(T \) are residually finite.

(\(\Leftarrow \)) Assume that \(S \) and \(T \) are residually finite semigroups. We will show that \(S \cup T \) is residually finite. Let \(s_1, s_2 \in S \cup T \) and \(s_1 \neq s_2 \). Since \(S \) is residually finite there is a finite semigroup \(K \) and an onto homomorphism \(\phi : S \to K \) such that \(\phi(s_1) \neq \phi(s_2) \). Let \(\Psi : S \cup T \to K \cup \{0\} \). If \(x \in S \)
let $\Psi(x) = \phi(x)$ and if $x \in L$ let $\Psi(x) = 0$. Then $\Psi(s_1) = \phi(s_1) \neq \phi(s_2) = \Psi(s_2)$. If $s_1, s_2 \in S$ then $\Psi(s_1s_2) = \phi(s_1)\phi(s_2)$. If $t_1, t_2 \in T$ then $\Psi(t_1t_2) = 0 = \psi(t_1)\psi(t_2) = 0.0$. If $s \in S$ and $t \in T$ then $\Psi(st) = \Psi(t) = 0 = \Psi(s)\Psi(t)$. So Ψ is an onto homomorphism.

Let $t_1, t_2 \in S \cup T$ and $t_1 \neq t_2$. Since T is residually finite there is a finite semigroup L and an onto homomorphism $\theta: T \to L$ such that $\theta(t_1) \neq \theta(t_2)$. We define $\alpha : S \cup T \to L \cup \{1\}$ as follows. If $x \in S$ let $\alpha(x) = 1$ and if $x \in T$ let $\alpha(x) = \theta(x)$. It is clear that $\alpha(t_1) = \theta(t_1) \neq \theta(t_2) = \alpha(t_2)$. If $s_1, s_2 \in S$ then $\alpha(s_1s_2) = \alpha(s_1)\alpha(s_2) = 1.1 = 1$. If $t_1, t_2 \in T$ then $\alpha(t_1t_2) = \theta(t_1t_2) = \theta(t_1)\theta(t_2)$. If $s \in S$ and $t \in T$ then $\alpha(st) = \alpha(t) = \theta(t) = \alpha(s)\alpha(t) = 1.\theta(t)$. So α is an onto homomorphism.

Let $s, t \in S \cup T$ and $s \neq t$. We define $\mu : S \cup T \to R_2 = \{a, b\}$. Here $R_2 = \{a, b\}$ is the right zero semigroup with 2 elements and $ab = b, ba = a$. If $s \in S$ let $\mu(s) = a$ and if $t \in T$ let $\mu(t) = b$. We have $\mu(s) = a \neq \mu(t) = b$. If $s_1, s_2 \in S$ then $\mu(s_1s_2) = a = \mu(s_1)\mu(s_2) = a.a = a$. If $t_1, t_2 \in T$ then $\mu(t_1t_2) = b = \mu(t_1)\mu(t_2) = b.b = b$. If $s \in S$ and $t \in T$ then $\mu(st) = \mu(t) = b = \mu(s)\mu(t) = a.b = b$. Thus μ is an onto homomorphism.

\section{Solvable Word Problem}

A semigroup S is said to have a solvable word problem with respect to a generating set A if there exists a algorithm which, for any two words $u, v \in A^+$, decides whether the relation $u = v$ holds in S or not. It is a well-known fact that, for a finitely generated semigroup S, the solvability of the word problem does not depend on the choice of the finite generating set for S. Thus we say that a semigroup S has a solvable word problem with respect to any finite generating set.

\textbf{Theorem 3.} $S \cup T$ has solvable word problem if and only if S and T have solvable word problem.

\textbf{Proof.} (\Rightarrow) Let $S \cup T$ have solvable word problem. Since S and T are finitely generated, let Y_1 be generating set of S and Y_2 be generating set of T. Then $Y_1 \cup Y_2$ is a generating set for $S \cup T$. Let $w_1, w_2 \in Y_1^+$. Since $w_1, w_2 \in Y_1^+ \subseteq (Y_1 \cup Y_2)^+$ and $S \cup T$ has solvable word problem there exists an algorithm which decides whether $w_1 = w_2$ holds in $S \cup T$. Since $w_1, w_2 \in Y_1^+$ and Y_1 is a generating set for S, the algorithm decides whether $w_1 = w_2$ holds in S. So S has a solvable word problem. Similarly it is shown that T has a solvable word problem.

(\Leftarrow) Assume that S and T have solvable word problem. Let X be a finite generating set for $S \cup T$. Then $X_1 = X \cap S$ and $X_2 = X \cap T$ are generating sets for S and T. The set $Z = \{x_1x_2 = x_2, x_2x_1 = x_2 \mid x_1 \in X_1, x_2 \in X_2\}$ is finite. For $w_1, w_2 \in X^+$, if we apply some necessary relations from Z we obtain $w_1, w_2 \in X^+$ such that $w_1 = w'_1$ and $w_2 = w'_2$ holds in T. $w'_1 \in X_1^+(i = 1, 2)$ or $w'_2 \in X_2^+(i = 1, 2)$. If w'_1 and w'_2 are not elements of the same free semigroup $X_1^+(i = 1, 2)$ then $w'_1 = w'_2$ does not hold in $S \cup T$. If w'_1 and w'_2 are in the same free semigroup $X_1^+(i = 1, 2)$ there exists an algorithm which decides whether the relation $w'_1 = w'_2$ holds in S or T. Because S and T have solvable word problem. So $S \cup T$ has solvable word problem.

\hfill \square
5. Ranks of $B(G, n)$

The semigroup $B(G, n) = \{1, 2, \ldots, n\} \times G \times \{1, 2, \ldots, n\} \cup \{0\}$ is the Brandt semigroup. The binary operation on $B(G, n)$ is defined as follows

$$(i, a, j)(k, b, l) = (i, ab, l)$$ if $j = k$
$$0$$ if $j \neq k$
$$0(i, a, j) = (i, a, j).0 = 0 = 0$$

In [5] $r_5(B(G, n))$ is given. Now we define other ranks of $B(G, n)$.

Lemma 1. Let $B(G, n)$ be the Brandt semigroup. Let A be the minimum generating set of G. Then $r_1(B(G, n)) = 1$, $r_2(B(G, n)) = 2n.|A|$ and $r_3(B(G, n)) = 2n.|A|$.

Proof. Let A be the minimum generating set of G. We show the set
$$B = \{(1, a, j),(i, a, 1)|a \in A, 1 \leq i \leq n, 1 \leq j \leq n\}$$
is the minimum generating set for $B(G, n)$. For $(i, g, j) \in B(G, n)$ we have
$$(i, g, j) = (i, a_1, 1).(1, a_2, 1).(1, a_3, 1)\ldots(1, a_m, j)$$
$(a_i \in A, i = 1, 2, \ldots m)$.

So B is a generating set for $B(G, n)$. Let C be a generating set for $B(G, n)$. Since $(i, a, 1) = (i, a, 1).(1, 1, 1)(a \in A)$ and $(1, 1, j) = (1, 1, 1).(1, 1, j)$. So we have $B \subseteq C$. Thus B is the minimum generating set for $B(G, n)$. We have $r_2(B(G, n)) = 2n.|A|$.

Let D be a generating set for $B(G, n)$ and assume that D is independent. Since D is a generating set and B is the minimum generating set then $B \subseteq D$. Let $(i', g', j') \in D B$. Let $g = a_1'a_2'\ldots a'_i'(a_i' \in A)$. Then $(i', g, j') = (i', a_1', 1).(1, a_2', 1)(1, a_3', 1)\ldots(1, a_i', 1')$. This contradicts with the assumption of D to be independent. So B is the unique independent generating subset of $B(G, n)$. Thus $r_3(B(G, n)) = 2n.|A|$.

Let $(i, g, j) \in B(G, n)$. If $i = j$ then $(i, g, j). (i, g, j) = (i, g^2, j) \neq (i, g, j)$ unless $g^2 = g$. If $i \neq j$ then $(i, g, j). (i, g, j) = 0$. So $B(G, n)$ is not a band. Since $r_2(B(G, n)) \neq |B(G, n)|$ then $B(G, n)$ is not royal. (see [5]) So $r_1(B(G, n)) = 1$.

In the following theorem we determine $r_4(B(G, n))$.

Theorem 4. Let $B(G, n)$ be a Brandt semigroup. Let $r_4(G) = k$. Then $r_4(B(G, n)) = k + 1$.

Proof. Let U be the maximum independent subset of G. Since $r_4(G) = k$ then $|U| = k$. We will show that $U' = \{(1, u, 1)|u \in U\} \cup \{0\}$ is the maximum independent subset of $B(G, n)$. Let $(1, u, 1) = (1, u_1, 1).(1, u_2, 1)(u_1, u_2 \in U)$. Then $u = u_1.u_2$. Since U is independent then $u = u_1$ or $u = u_2$. We obtain U' is independent. Let $U'' \subseteq B(G, n)$ be another independent set. We have $U' \cup (S \setminus U') = S = B(G, n)$. Let $s \in S \setminus U'$. Let

$$s = (i, g, j)(1 \leq i \leq n, g \in G\setminus U, 1 \leq j \leq n).$$

Since $g \in G\setminus U$ then $g = g_1.g_2(g_1, g_2 \in G, g_1 \neq g, g_2 \neq g)$. We have $(i, g, j) = (i, g_1, 1).(j, g_2, j)$ and $U'' = ((U' \cup \{0\}) \cap U'') \cup (U'' \cap (S \setminus U'))$. Since the elements of $S \setminus (U' \cup \{0\})$ can be written
as a product of two elements. So $U'' \cap (S\setminus(U' \cup \{0\})) = \emptyset$. Then $U'' = (U' \cup \{0\}) \cap U''$. So $U'' \subseteq (U' \cup \{0\})$. We obtain $U' \cup \{0\}$ is the maximum independent set. So $r_4(B(G, n)) = k + 1$.

The studies on finiteness conditions of semigroups and ranks of semigroups may be expanded to different classes of semigroups as future work.

References

