
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 1, 2015, 26-49

ISSN 1307-5543 – www.ejpam.com

Modeling, Simulation and Performance Analysis of a Flexible

Production System

Mohamed Boualem1, Mouloud Cherfaoui2, Amina Angelika Bouchentouf3,∗, Djamil

Aïssani1

1 Research Unit LaMOS (Modeling and Optimization of Systems), Faculty of Technology, University

of Bejaia, 06000 Bejaia, Algeria
2 Research Unit LaMOS (Modeling and Optimization of Systems) University of Bejaia, 06000 Bejaia,

Algeria

Department of Mathematics, University of Biskra, 07000 Biskra, Algeria.
3 Mathematics Laboratory, Department of Mathematics, Djillali Liabes University of Sidi Bel Abbes,

89, Sidi Bel Abbes 22000, Algeria.
4Research Unit LaMOS (Modeling and Optimization of Systems), Faculty of Exact Sciences, Univer-

sity of Bejaia, 06000 Bejaia, Algeria.

Abstract. This paper deals with a flexible production system modeled by re-entrant queueing network;

a system decomposed into two fundamental multi-productive stations and three classes, a part follows

the route fixed by the system, where each one is processed first by station 1 for the first step, then by

station 2 for the second step, and again by the first station for third and last step before leaving the

system. We assume that there is an infinite supply of work available, so that there are always parts

ready for processing step 1, and that the first station gives preemptive priority to buffer 3.

Several performance measures have been used to evaluate the system performances considering two

scenarios; high priority with service conservation and high priority with loss of parts. So, performances

due to varying its parameters are investigated through expanded Monte Carlo simulations.
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1. Introduction

Flexible production systems have emerged as one of the revolutions in the production

industries in recent years. It has made it possible to produce a vast variety of parts in less time

and cost.
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These systems are generally consisting in a number of machine tools, robots, material

handling, automated storage and retrieval system, and computers or workstations. A typical

flexible production system can fully process the members of one or more part families on a

continuing basis without human intervention.

Over the last few decades, the modeling and the analysis of flexible production systems

has been meticulously studied by control theorists and engineers.

The case study in the present paper mainly consists of modeling, simulation and analysis

of a flexible production system.

Modeling and simulation of flexible production systems is a field of research for many

people now days. However, they all share a common aim; to search for solutions to attain

higher speeds and more flexibility and thus maximize/multiplicate manufacturing productivity.

Computer simulation is a great numeric modeling technique for the analysis of flexible

manufacturing/product systems. Bruccoleri et al. [5] suggested the simulation as a tool for

defining the configuration of an flexible manufacturing system. Shnits et al. [29] used sim-

ulation of operating system as a decision support tool for controlling the flexible system to

exploit flexibility. Tüysüz and Kahraman [30] presented an approach for modeling and anal-

ysis of time critical, dynamic and complex systems using stochastic Petri nets together with

fuzzy sets.

Many other authors used Petri net approach to analyze and present the Performance eval-

uation of complex manufacturing systems, for simultaneously modeling and scheduling man-

ufacturing systems for instance Liu et al. [22], Huang et al. [19], Delgadillo and Llano [14].

In this research work, flexible production system is modeled by a reentrant queueing sys-

tem to analyze its performance measures. In addition, we compare and verify the results

obtained from the simulation techniques and theoretical results given for this type of systems.

Stability and performance analysis of multi-class queueing networks is by now a well-

researched field. Some preeminent papers which have set the accent of this research field in

the past 25 years are many, some of them are [7, 8, 18, 20]. Some notorious contributions with

respect to stability analysis can be summarized in [3, 11, 15, 25, 28], additional contributions

are summarized in [4, 10, 24].

Let us note that the re-entrant lines (described in Harrison [18]) are a special case of

queueing systems that can be used to model complex manufacturing system such as wafer

fabrication facilities. Kumar [20] defined these systems called standard re-entrant lines for

convenience.

In our paper, we consider a re-entrant model consisting of two stations with infinite supply

of work at the first one. Different from standard re-entrant line, In an infinite re-entrant line

we assume that there are always infinitely many class 1 jobs available, which guarantees that

the station serving class 1 will be always busy under non-idling service discipline. We call such

a class infinite virtual queue. Infinite supply of work expresses an ability to control the arrivals

and is often a reasonable way to model a processing system. In some situations there may

indeed be an infinite supply of work; in production systems, the supply of parts for processing

at an expensive machine may be controlled and not allowed to exhaust. We refer to this as

an infinite virtual queue: it acts like an infinite queue while in fact it only contains a few jobs

which are continually replenished. In standard queueing networks one can regard the input
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stream as the output of a server which is fed by an infinite supply of work.

Infinite supply of work and infinite virtual queues are discussed in [1, 2, 17, 27, 31, 32].

A succinct study of these results is given in [26].

The layout of our paper is as follow; after an introduction, a mathematical model of the

production system is described in Section 2. Section 3 presents some theoretical results given

for such model, Section 4 is devoted to the simulation approach study. In Section 5 a general

conclusion is offered.

2. Mathematical Model

2

1

3

Figure 1: A Reentrant Network with Two Stations and Three Classes

The production system considered in our study is schematically shown in Figure 1. This

process can be seen as a reentrant queueing network, consisting of two stations and three

classes. Parts arrive according to a Poisson process with rate λ. When the part arrives at the

first station, if it finds some ones before it, it waits in the queue 1, otherwise it goes directly

to the service to be served with rate µ1, then aligns the second line requiring a second service

with rate µ2. Finally, the part returns to the first station for the third and final service before

leaving the system. Indeed, there are three types of parts, parts of class C1 processed by the

first station for the first service, parts of class C2 processed by the second station for the second

service and parts of the class C3 processed by the first station for the third and final service.

We assume that there is an infinite supply of work available, so that there are always parts

ready for processing step 1. In that case station 1 will always be busy. Each class is processed

in FIFO order. Processing is non-idling, that is a station will always process a part when there

is work. The present research work consider two scenarios.

The first one is as follows: station 1 gives preemptive priority to class 3; whenever there

exist some parts in class 3, station 1 will work on the first of them; when class 3 empties,

station 1 will instantaneously resume processing of a part in step 1. This is possible by the

supposition that there is an infinite supply of work. Class 1 is called a virtual infinite queue.

The queue is virtual because in practice class 1 need not contain many parts, but it needs to be

controlled so it will never be empty. If during the processing of class 1 a part arrives from class
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2 into class 3, station 1 will preempt its work at class 1, and immediately starts processing

class 3.

In the second scenario, each part which arrives to the system, is lost if it is not at the head

of the queue, it will be also lost if it is interrupted by the arriving parts from station 2 to class

3.

3. Theoretical Study

Queueing systems are excessively useful class models that have found application in many

areas including communication networks, computer systems, manufacturing. . . Much of this

success is maybe due to the constitutional tractability of a large class of queueing systems.

However, the question of stability of many queueing systems and their performance evalua-

tion are extremely exchanging issues. Stability analysis and performance evaluation of queu-

ing systems have received a great deal of attention, this is partly due to several examples that

demonstrate that the usual conditions; traffic intensity less than one at each station (ρi < 1)

are not sufficient for stability, even under the well known FIFO service discipline (Dai and

Vande Vate [12]). Rybko and Stolyar [28] and Lu and Kumar [23] demonstrated that in a

deterministic version the usual conditions do not guarantee the stability of many queueing

networks. Dai [11] provided a unified approach via fluid limit model to prove positive Harris

recurrence of a network with two stations and N classes with feedback. Thereafter, Dai and

Weiss [13] gave sufficient conditions for the re-entrant line to be stable (global stability) what-

ever the discipline of service. Chen and Zhang [9] have established sufficient conditions for

the stability of multi-class queueing networks under FIFO service discipline. Weiss [31] stud-

ied a reentrant network with two stations and three classes with an infinite supply of work

under LFBS service discipline (Last Buffer First served), where arrivals are not random and

the service times are exponential with mean mi for each class i.

The stability conditions associated with our production system are those removed from the

model studied by Weiss [31]. Indeed, the purpose of his work revolves around the following

question: Under what conditions on the system parameters, the Markov process reaches the

steady state ?

So, we assume that there is an infinite supply of work available, we analyze this system

under the LBFS policy: station 1 gives priority to parts in class 3 over parts in class 1, we assume

that this priority is preemptive; whenever a part arrives in class 3, station 1 will preempt the

part in class 1 and start processing the part in class 3, and it will resume work on the part in

class 1 only when class 3 is empty.

Let note that in general, it is well know that if parts arrive at this system in a renewal

stream, at rate λ, then under the condition ρ1 = λ(m1 +m3)< 1, and λm2 < 1 the queues of

parts waiting for each step are stable, and in fact the system is positive Harris recurrent, for

any work conserving policy, readers are referred to Kumar and Kumar [21] and Dai and Weiss

[13], for more details.

If however the arrival rate a is high enough to equal the bottleneck processing rate, i.e.,

max{ρ1,ρ2}= 1, then the system is weakly stable but not stable: The departure rate from the

queues is equal toλ, but as time increases, the queue length at some of the classes will converge
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weakly to infinity. Consequently such a system cannot work at a rate max{ρ1,ρ2}= 1, without

accumulating unbounded queues.

Weiss [31], established a sufficient condition for the stability for such system. So if

λ
�

1
µ1
+ 1
µ3

�

> α 1
µ2

then under LBFS policy ρ1 = 1, but the queues for steps 2 and 3 will be

stable, and the system will be positive recurrent.

Theorem 1 ([31]). If

λ

�

1

µ1

+
1

µ3

�

> α
1

µ2

, (1)

then the system is recurrent positive.

Adan and Weiss [1] kept considering the case λ
�

1
µ1
+ 1
µ3

�

> α 1
µ2

; station 1 works all the

time and the system is weakly stable, then by solving the balance equations of such system a

stationary distribution network is obtained.

Guo and Zhang [17] obtained sufficient and necessary condition for the stability for such

network.

Guo [16] using a fluid model approach, obtained a sufficient condition for the model con-

sidered. In addition, the author got necessary conditions for the corresponding fluid model to

be weakly stable.

Proposition 1. [16] If

ρ2 > 1, (2)

the the fluid model is weakly stable. Thus the reentrant network is unstable.

Yoni Nazarathy and Gideon Weiss [27] considered the same model given in Weiss [31],

and proposed a method for the control over a finite time horizon, the model was approximated

by a fluid network and formulated a fluid optimization problem. The optimal fluid solution

partitions the time horizon to intervals in which constant fluid flow rates were maintained.

Then, they used a policy by which the queueing network tracks the fluid solution. To that

end, they modeled the deviations between the queueing and the fluid network in each of the

intervals by a multi-class queueing network with some infinite virtual queues. These deviations

were kept stable by an adaptation of a maximum pressure policy.

Now, let us note that from previous results, one leads to the following consequence.

Consequence 1. Consider the network presented in Figure 1, if

ρ1 =λ

�

1

µ1

+
1

µ3

�

< 1, (3)

ρ2 =
λ

µ2

< 1, (4)

ρ1 >ρ2, (5)

then the network is stable.
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4. Simulation Study Approach

Performance analysis of any system is one of the most studied topics in Operations Re-

search. In practice, we are often interested in numbers of customers in the system and their

waiting time.

However, the expression of these performances depends heavily on how customers arrive

to the system, the manner on which customers request services and service disciplines. To

control them, we are led to the problem by modeling these systems via queueing models.

So, a queueing network is a set of interconnected queues, at which circulate one or more

classes of customers. Two important parameters (generally stochastic) determine the behavior

of the network (open or closed network) over the time:

• The inter-arrival times of customers.

• The service times.

The main objective of this work is to model the production line, to analyze, to evaluate

and improve its performance using computer simulation techniques. Finally, conclusions are

drawn from the analysis made and then recommendations are given based on those concluded

points.

Therefore, it is believed that the work will add some value to the existing knowledge.

Analysis and evaluation of a production system usually uses performance indicators capa-

ble of assessing the adequacy of the model used with respect to the real system. We first start

by specifying performance measures which we consider interesting to study:

• Mean number of customers in the overall system N and in each sub-system Ni , i = 1,3.

• Mean number of customers waiting in the overall system Q and in each sub-system Q i ,

i = 1,3.

• Total load of the overall system ρC and the load of each sub-system ρCi
, i = 1,3.

Our main goal is to evaluate these performance measures, via Monte Carlo simulation

technique for the network described in Section 2 considering two scenarios:

Scenario 1: Station 1 gives preemptive priority to C3, when this latter empties, station 1 will

instantaneously resume processing of a part in step 1.

Scenario 2: Station 1 gives preemptive priority to C3, and customer of class 1 is lost if it is

not at the head of the queue, it will be also lost if it is interrupted by the arriving

customer from station 2 to C3.

To this end, we develop a simulation algorithm under MATLAB at discrete event. The latter

allows us to have two types of results:

Numerical results: Performance measures for the analysis of results.
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Graphical results: Representation of the stationary probabilities of the states of the overall

system and subsystems, depending on its parameters. The abscissa axis represents the

number of customers k in the system (respectively, ki in the ith sub-system, i = 1,3) and

the ordinate axis represents the stationary probability πk having k parts in the system

(respectively, π
(i)

ki
in the ith sub-system), where k =

3
∑

i=1

ki .

Subsequently, we analyze the influence of parameters of the considered systems (Scenario

1 and Scenario 2), by varying the arrival and service rates λ (resp. µi , i = 1,3), after that,

we determine some values of parameters ρ j , j = 1,2 which are in terms of λ and µi , to check

whether the stability conditions of such systems described by the inequalities (3), (4) and

(5) are fulfilled. Firstly, we fix the service rate (µi , j = 1,3) and let varying the arrival rate

λ. Secondly, the procedure is taken inversely (we fix λ and let varying µi , i = 1,3), so as to

obtain the different states of the network (stable, unstable, weakly stable).

5. First scenario: Results and Discussion

In this part, we suppose that when the third class is empty n3 = 0, parts are processed out

of class 1 and n2 increases until the second station completes the processing of a part out of

it class at which time the state is (n2 − 1,1), and station 1 switches to class C3 at that time

customers of class C1 are interrupted, the interrupted customer joins the QRIC queue (queue

of capacity 1 reserved for interrupted customer).

While class C3 is not empty, parts arrive at class C3 from class C2 at rate µ2 and depart out

of class C3 at rate µ3, so class C3 behaves like an M/M/1 queue, except that the total number

of arrivals into class C3 cannot exceed µ2. Mathematical model associated with this network

is shown in Figure 2.
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Figure 2: The Mathematical Model (Scenario 1)
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5.1. Variation of the Parameter λ

Let T max = 10000 time units be the simulation duration and MC = 100 the number of

replications. For µi = 1/3, (i = 1,3), we vary λ (λ = [0.10,0.13,0.16,0.17]). The mean

number of customers in the sub-systems, in the overall system and the in the queues as the

loads are mainly summarized in the Tables 1, 2 and 3.

Table 1: Variation of N and Ni in Terms of λ

λ N1 N2 N3 N

0.10 0.95 0.46 0.36 1.78

0.13 2.45 0.73 0.53 3.71

0.16 14.36 1.13 0.73 16.24

0.17 37.34 1.24 0.78 39.37

Table 2: Variation of Q and Q i in Terms of λ

λ Q1 Q2 Q3 Q

0.10 0.47 0.16 0.06 0.70

0.13 1.75 0.34 0.14 2.24

0.16 13.43 0.66 0.26 14.36

0.17 36.37 0.75 0.29 37.41

Table 3: Variation of ρC and ρCi
in Terms of λ

λ ρC1
ρC2

ρC3
ρC

0.10 47.50 30.13 29.70 73.53

0.13 69.53 38.94 39.16 88.35

0.16 92.72 47.42 47.63 97.89

0.17 97.83 49.20 49.22 99.44

5.2. Discussion of Results

From Tables 1, 2 and 3, we remark that:

Ø The mean number of customers in the system and in the queue of each sub-system in-

creases with respect to λ. The number of customers increases significantly in the sub-

system 1 compared to subsystems 2 and 3, which generates a big number of customers

in the queue 1 and the overall system. The overall system load increases in terms of λ

(loads of subsystems 2 and 3 are nearly equal in all cases).

Ø For λ ≤ 0.13, the three subsystems and the overall system have an average load. A de-

crease in the mean number of customers in each sub-system and in the queue is observed,
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which indicates that there is a smooth transit from a sub-system to another, which means

that customers are not blocked at any sub-system. In addition, the load of the overall

system is ρC ≤ 90% (the system is stable, because of the stability conditions given in (1)

are verified).

Ø For λ ≥ 0.16, the system load is considerable (ρC > 97%) which is generated by a high

load at the first sub-system (ρC1
≥ 92%). Moreover, when λ increases (from 0.16 to

0.17), the network moves from stability to instability because of the the first station.

While the loads of the two subsystems 2 and 3 are average.

Ø A significant difference between the mean number of customers in the 1st sub-system

and subsystems 2 and 3, because of blocked customers of class C1, caused by the high

priority given to the class C3 and the service rate which is below the arrival rate.

Figures 3 and 4 represent the stationary probabilities of the states of the network for λ = 0.1

and λ = 0.17; we conclude that:

Ø More λ increases, more the probability that the system is empty decreases (π0). Unlike

the stability case (Figure 3), the probability π0 is almost negligible in the instability case

(Figure 4 for the case λ = 0.17).

Ø The probability that it would have a very large number of customers in the first sub-

system, πk1
, is considerable (Figure 4), the station 1 is saturated. Consequently, the

global system becomes saturated, this is due to the fact that the first condition of stability

is not verified (ρ1 = 1.02).
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Figure 3: Stationary Probabilities π
(i)

ki
and πk for λ = 0.10 and µi = 1/3
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Figure 4: Stationary probabilities π
(i)

ki
and πk for λ = 0.17 and µi = 1/3

Table 4 summarizes the results carried out previously. Essentially, we can say that the

network is unstable if at least one of the necessary conditions (ρ1 < 1 andρ2 < 1) is unverified.

Furthermore, the stability is not achieved if the following three conditions is violated: ρ1 < 1,

ρ2 < 1 and ρ1 > ρ2.

Table 4: Summary, when λ Varies

λ ρ1 ρ2 Ascertainment

0.10 0.60 0.30

0.13 0.78 0.39 Stable

0.16 0.96 0.48

0.17 1.02 0.51 unstable

5.3. Variation of Service Rates µ1 and µ3

Let varying the service rates µ1 and µ3, and fixe the arrival rate λ = 0.10 and µ2 = 0.15.

T max = 10000 time units the period simulation, MC = 100 the number of replications.

Results provided by our simulator, are summarized in Tables 5, 6 and 7.



M. Boualem, M. Cherfaoui, A. Bouchentouf, D. Aïssani / Eur. J. Pure Appl. Math, 8 (2015), 26-49 36

Table 5: Variation of N and Ni in Terms of (µ1,µ3)

µ1 µ3 N1 N2 N3 N

0.75 0.10 61.58 6.25 4.33 72.16

0.70 0.15 3.29 3.44 1.50 8.24

0.65 0.20 1.25 2.40 0.84 4.49

0.60 0.25 0.80 2.24 0.59 3.64

0.55 0.30 0.63 2.18 0.46 3.28

0.50 0.35 0.57 2.09 0.37 3.04

0.45 0.40 0.55 2.10 0.32 2.98

0.44 0.41 0.55 1.97 0.30 2.84

0.40 0.45 0.59 2.07 0.28 2.94

0.35 0.50 0.63 1.97 0.24 2.85

0.30 0.55 0.76 1.96 0.21 2.95

0.25 0.60 1.00 2.00 0.19 3.20

0.20 0.65 1.53 2.05 0.18 3.76

0.15 0.70 3.69 2.00 0.16 5.86

Table 6: Variation of Q and Q i in Terms of (µ1,µ3)

µ1 µ3 Q1 Q2 Q3 Q

0.75 0.10 60.60 5.66 3.46 69.74

0.70 0.15 2.61 2.78 0.84 6.25

0.65 0.20 0.77 1.74 0.34 2.86

0.60 0.25 0.40 1.57 0.20 2.18

0.55 0.30 0.28 1.51 0.13 1.92

0.50 0.35 0.22 1.42 0.09 1.75

0.45 0.40 0.21 1.42 0.07 1.71

0.44 0.41 0.21 1.31 0.06 1.59

0.40 0.45 0.22 1.40 0.05 1.69

0.35 0.50 0.25 1.31 0.04 1.61

0.30 0.55 0.33 1.30 0.03 1.68

0.25 0.60 0.50 1.33 0.02 1.87

0.20 0.65 0.93 1.38 0.02 2.34

0.15 0.70 2.91 1.34 0.02 4.27
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Table 7: Variation of ρC and ρCi
in Terms of (µ1,µ3)

µ1 µ3 ρC1
ρC2

ρC3
ρC

0.75 0.10 97.52 58.11 86.90 99.82

0.70 0.15 67.31 66.25 66.04 96.88

0.65 0.20 48.17 65.77 49.44 91.74

0.60 0.25 39.60 66.69 39.77 88.53

0.55 0.30 35.64 66.85 33.08 86.24

0.50 0.35 34.27 66.47 28.44 84.55

0.45 0.40 34.57 67.34 25.05 84.44

0.44 0.41 34.44 65.90 24.28 83.44

0.40 0.45 36.22 66.76 22.42 83.71

0.35 0.50 38.19 66.28 19.81 83.53

0.30 0.55 42.90 66.18 18.15 84.32

0.25 0.60 49.74 66.69 16.66 86.27

0.20 0.65 60.41 66.83 15.42 89.07

0.15 0.70 78.45 66.46 14.26 94.08

5.4. Discussion of Results

According to the numerical results stored in Tables 5, 6 and 7, we observe that:

Ø For µ1 = 0.75 and µ3 = 0.10, the mean number of customers in the first sub-system is

very large compared to subsystems 2 and 3. Therefore, the network is unstable, because

of (ρ1 > 1).

Ø For µ1 and µ3 which vary respectively from 0.45 to 0.75 and from 0.10 to 0.40, the mean

number of customers in the sub-system 1 decreases. As against, for µ1 varying from 0.15

to 0.40 and µ3 from 0.45 to 0.70, the mean number of customers in the sub-system 1

increases. This situation is due because of high priority given to C3 over C1.

Ø When the service rate of class C3 is less than service rate of class C1, the interrupted

customers of class 1 resume their services within a short time, which justifies the decrease

in the number of customers in the 1st sub-system, and the converse is true.

Ø For µ1 = 0.70 and µ3 = 0.15, the mean number of customers in each subsystems and the

loads are distributed equitably. In addition, the arriving customers are served at the end

of the simulation time, then the system is stable (all stability conditions are satisfied).

Ø For µ1 varying from 0.65 to 0.20 and µ3 varying from 0.20 to 0.65, the mean number

of customers is high in the 2nd sub-system and in the queue 2, compared to sub-systems

1 and 3. The load in the second station 2 is average (ρC2
> 65%), the transition to the

station 1 is slow and the load in the sub-system 3 is decreasing. Therefore, the system

is weakly stable, this is due to the fact that condition (5) is not verified, ρ1 < ρ2.
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Ø For µ1 = 0.15 and µ3 = 0.70, the system reaches the steady state as all stability condi-

tions are fulfilled.

Details of some of results given in Tables 5, 6 and 7 are illustrated in Figures 5 and 6. When

the service rate of class C3 is higher than the class C1, the probability of having 0 customer

in the third sub-system is very high (equal almost to 1), the network is stable because all the

conditions are fulfilled
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Figure 5: Stationary Probabilities π
(i)

ki
and πk for λ = 0.10, µ1 = 0.15 and µ3 = 0.70

Figures 5 and 6, look the same. In Figure 6, the probability for having 0 customers in the

third class decreases considerably, compared to that given in 5, because the service rate has

declined (from 0.7 to 0.2). So the network converges to the steady state, but is not stable ((5)

not verified).

Table 8 summarizes the different situations depending on the network parameters. Indeed,

it allows us to see that the state of the network is sensitive to the variation of its parameters.

Indeed, it moves from a stability state when all the conditions are verified, to instability one

as one of the usual conditions is violated (ρ1 > 1 or ρ2 > 1), through an intermediate state

(weakly stable network), if ρ1 < ρ2, which confirm the theoretical results.
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Figure 6: Stationary Probabilities π
(i)

ki
and πk for λ = 0.10, µ1 = 0.65 and µ3 = 0.20

Table 8: Summary, when µ1 and µ3 vary

µ1 µ3 ρ1 Ascertainment

0.75 0.10 1.33 unstable

0.70 0.15 0.80 weakly Stable

0.65 0.20 0.65

0.60 0.25 0.57

0.55 0.30 0.51

0.50 0.35 0.48

0.45 0.40 0.46 Stable

0.44 0.41 0.47

0.40 0.45 0.47

0.35 0.50 0.48

0.30 0.55 0.51

0.25 0.60 0.57

0.20 0.65 0.65

0.15 0.70 0.80 weakly Stable

5.5. Conclusion of the First Scenario

As conclusion of the first scenario, we can say that the state of the production system is

strongly linked to the variation of its parameters.
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Ø While increasing the arrival rate λ from 0.1 to 0.16 (ρ1 < 1), the number of customers

in the system increases gradually, especially in the station 1, but the system is stable as

all the conditions are satisfied. Beyond λ = 0.16, the sub-system 1 is saturated (ρ1 > 1),

which causes the instability of the global network.

Ø We can see a change in performance while fixing µ2 and varying µ1 and µ3 in interval

[0.15,0.7]. The state of the network is greatly affected by the fluctuation service rate

of the first station. Indeed, when λ = 0.01 and µ2 = 0.15, we get ρ2 < 1. These

performance measures are the best when µ3 < µ1, this is due to the priority given to

customers of class C3. But for some values of µ1 and µ3, for which the third condition

is not verified, the system becomes weakly stable.

Finally, numerical results obtained by the simulation approach and the theoretical results

shown by Weiss [31] correspond perfectly.

6. Scenario two: Results and Discussion
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Figure 7: The mathematical model (Scenario 2)

In this part, we study the stability and performance measures of the network described in

Figure 2, considering the case of Loss customers (the interrupted customer leaves definitively

the system), see Figure 7. Thus, when a customer arrives and finds the first station occupied by

customer of class C3, it leaves the system (lost customer) in order to include the assumption of

perfect control of customers of class C1. Note that our scenario corresponds to the one given in

[2], except that in the latter, author has considered that processing of a part from class 1 only

starts when class 3 is empty. However, once started machine 1 will complete the processing

of step 1 of the part even if parts arrive in class 3 (after being processed by machine 2). As a

result, if class 2 contains n2 parts and class 3 is empty, and processing of a part from class 1

starts, then at the end of the processing of step 1 of this part, there may be between 0 and n2

parts in class 3.

So, in our paper, we have to evaluate the characteristics of the our system with loss parts,

then we compare the results. We follow the same study that it was given for the first scenario.
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6.1. Variation of the Parameter λ

In this experience, we fix the the service rate µi = 1/3 (i = 1,3), and let varying λ from

0.01 to 0.17 with a pitch of 0.03. We keep the same input parameters as in the first experience

(Scenario 1), let T max = 10000 time units be the simulation duration and MC = 100 the

number of replications. The results obtained for this situation are stored in Tables 9, 10 and

11.

Table 9: Variation of N and Ni in Terms of λ

λ N1 N2 N3 N

0.01 0.02 0.02 0.02 0.08

0.04 0.10 0.10 0.10 0.31

0.07 0.18 0.17 0.16 0.52

0.10 0.24 0.24 0.21 0.70

0.13 0.30 0.30 0.25 0.86

0.16 0.37 0.34 0.29 1.01

0.17 0.39 0.37 0.30 1.07

Table 10: Variation of Q and Q i in Terms of λ

λ Q1 Q2 Q3 Q

0.01 0.0009 0.0008 0.0005 0.002

0.04 0.011 0.011 0.005 0.03

0.07 0.03 0.03 0.01 0.07

0.10 0.05 0.05 0.02 0.13

0.13 0.08 0.07 0.03 0.20

0.16 0.12 0.10 0.04 0.27

0.17 0.13 0.11 0.05 0.29

Table 11: Variation of ρC and ρCi
in Terms of λ

λ ρ1 ρ3 ρC1
ρC2

ρC3
ρC

0.01 0.06 0.03 2.87 2.83 2.79 8.38

0.04 0.24 0.12 9.67 9.66 9.74 27.55

0.07 0.42 0.21 15.01 14.87 14.99 41.12

0.10 0.60 0.30 18.94 18.83 18.77 50.26

0.13 0.78 0.39 22.08 22.36 22.11 57.68

0.16 0.96 0.48 24.91 24.76 24.90 63.43

0.17 1.02 0.51 25.70 25.73 25.73 65.05
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6.2. Discussion of Results

From the results given in Tables 9, 10 and 11, we conclude that:

Ø The number of customers in the queue and in the system increases gradually in terms of

λ. Moreover, based on the important number of rejected customers of class C1, caused

by the high priority given to the class C3, the number of customers increases slightly.

Ø For all values of λ, all arriving customers to the network are served. This is due to the

fact that the mean number of customers in the system and the loads are almost the same

in the three subsystems. In addition, the overall load never reaches a high level, even

when the stability condition, given by the inequality (3) is not verified (ρC varies from

8.38%, ( λ = 0.01), to 65.05%, ( λ = 0.17)).

Ø The mean number of customers in the system and in the queue is small, compared to

Scenario 1, for fixed values of λ (λ = 0.10, λ = 0.13, λ = 0.16 and λ = 0.17). This is

due to the fact that all interrupted customers are lost.

Figures 8 and 9 illustrate graphically the details of some results given in Tables 9, 10 and 11.

Indeed, increasing λ from 0.01 to 0.17 generates a high probability that the network is empty

(Probability of having 0 customers at the end of the simulation period in the overall system

is higher than 0.50). Moreover, the stationary probability of having 0 customers in each sub-

system i (i = 1,3) is considerable (π
(i)

0
> 0.80, i = 1,3). However, the network is still stable,

even when the stability condition given by inequality (3) is not verified (for instance: ρ1 > 1

for λ = 0.17).

A comparison between Figures 3 and 9, shows the affect of the perfect control on the

change of state of the network for the same input parameters.
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Figure 8: Stationary Probabilities π
(i)

ki
and πk for λ = 0.01 and µi = 1/3
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and πk for λ = 0.17 and µi = 1/3
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6.3. Variation of Service Rates

In this part, some comparisons with results of the first scenario will be done, to this end we

keep the same input parameters (λ = 0.1, µ2 = 0.15 and let varying µ1 and µ3 in the interval

[0.1,0.75]). The characteristics obtained are summarized in tables 12, 13 and 14.

Table 12: Variation of N and Ni in Terms of (µ1,µ3)

µ1 µ3 N1 N2 N3 N

0.75 0.10 0.07 0.56 0.67 1.31

0.70 0.15 0.09 0.69 0.51 1.29

0.65 0.20 0.11 0.77 0.39 1.28

0.60 0.25 0.12 0.83 0.32 1.28

0.55 0.30 0.14 0.84 0.27 1.26

0.50 0.35 0.16 0.88 0.23 1.28

0.45 0.40 0.18 0.89 0.20 1.28

0.44 0.41 0.19 0.88 0.19 1.27

0.40 0.45 0.21 0.88 0.17 1.27

0.35 0.50 0.25 0.86 0.15 1.26

0.30 0.55 0.30 0.81 0.13 1.25

0.25 0.60 0.36 0.76 0.11 1.26

0.20 0.65 0.46 0.70 0.10 1.26

0.15 0.70 0.62 0.59 0.08 1.30

Table 13: Variation of Q and Q i in Terms of (µ1,µ3)

µ1 µ3 Q1 Q2 Q3 Q

0.75 0.10 0.0088 0.24 0.20 0.45

0.70 0.15 0.01 0.31 0.13 0.46

0.65 0.20 0.01 0.36 0.09 0.47

0.60 0.25 0.01 0.39 0.06 0.48

0.55 0.30 0.02 0.40 0.04 0.47

0.50 0.35 0.02 0.43 0.03 0.49

0.45 0.40 0.03 0.43 0.03 0.49

0.44 0.41 0.03 0.42 0.02 0.49

0.40 0.45 0.04 0.42 0.02 0.49

0.35 0.50 0.05 0.41 0.01 0.48

0.30 0.55 0.07 0.37 0.01 0.46

0.25 0.60 0.10 0.33 0.01 0.45

0.20 0.65 0.15 0.29 0.0088 0.46

0.15 0.70 0.25 0.22 0.0061 0.48



M. Boualem, M. Cherfaoui, A. Bouchentouf, D. Aïssani / Eur. J. Pure Appl. Math, 8 (2015), 26-49 45

Table 14: Variation of ρC and ρCi
in Terms of (µ1,µ3)

µ1 µ3 ρ1 C1 C2 C3 C

0.75 0.10 1.33 06.35 31.62 47.47 73.32

0.70 0.15 0.80 08.06 37.40 37.54 69.47

0.65 0.20 0.65 09.53 41.12 30.76 67.42

0.60 0.25 0.57 10.79 43.32 26.11 66.15

0.55 0.30 0.51 12.25 44.40 22.33 65.05

0.50 0.35 0.48 13.62 45.39 19.52 64.56

0.45 0.40 0.47 15.36 45.86 17.24 64.27

0.44 0.41 0.47 15.77 45.94 16.88 64.36

0.40 0.45 0.47 17.17 45.84 15.29 64.00

0.35 0.50 0.48 19.43 45.29 13.64 63.79

0.30 0.55 0.51 22.43 44.50 12.06 63.90

0.25 0.60 0.57 25.94 43.20 10.83 64.15

0.20 0.65 0.65 30.49 40.64 09.42 64.41

0.15 0.70 0.80 37.26 36.83 07.96 65.24

6.4. Discussion of Results

According to the numerical results given in Tables 12, 13 and 14, we conclude that:

Ø When µ1 decreases the number of customers in the first sub-system increases. And

when µ3 increases the number of customers in the third sub-system decreases, this is

explained by the fact that when the processing time of customer class C3 is small, so

fewer customers are rejected. Therefore, the number of customers in the first sub-system

increases and vice versa.

Ø While varying µ1 from 0.75 to 0.10 and µ3 from 0.10 to 0.75, in this case the load of the

global system is still average. It strongly depends on the smallest service rate of station

station 1 (min(µ1,µ3)).

Ø The network can move from the stability to the weak stability but never reaches the

instability.

For fixed values of λ (λ = 0.10) and µ2 (µ2 = 0.15), Figure 10 (respectively, Figure 11) shows

the stationary probability distributions π
(i)

ki
and πk for the case µ1 = 0.75 and µ3 = 0.10

(respectively, for the case µ1 = 0.15 and µ3 = 0.70).
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Figure 10: Stationary Probabilities π
(i)

ki
and πk
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6.5. Conclusion of the Second Scenario

In this scenario, we conclude that:

Ø The arrival rate of customers, large enough, does not affect the stability of the network.

Indeed, it never saturates, even if the usual stability condition (assumed necessary) is

not verified (ρ1 < 1). And this is due to the fact that the arriving customers which find

the station 1 occupied and those interrupted by class C3 are lost.

Ø The condition given by inequality (3) has no reason to be satisfied in this case, since

we are assuming that all arriving customers are controlled so that the network does not

saturate.

Ø The condition given by inequality (5) is too strict.

Ø There is no correlation between the stability conditions from the simulation and those

obtained by Weiss [31] concerning the case of controlled arrivals.

7. General Conclusion

Simulation technique can significantly help to analyze and optimize the capacity utilization

by identifying the problems of existing production facilities.

The presented case study shows the significance of simulation modeling for the production

systems improvement. A flexible production system modeled by a reentrant queueing model

consisting of two stations and three classes is studied. Simulation modeling and analysis using

Monte Carlo simulation approach helped us to understand the behavior and reserves of the

system and to suggest and verify the impact of changes on the system performance. The

simulation model proposed is applicable also for solving other complex operational problems.

Two scenarios for the model were considered; Scenario 1; Whenever there exist some

parts in class 3; station 1 will work on the first of them. When class 3 empties, station 1 will

instantaneously resume processing of a part in step 1. The results obtained for this scenario

correspond perfectly with the theoretical results obtained by Weiss [31]. While for the second

scenario; a customer of class 1 is interrupted and/or when it arrives and finds the first station

occupied by a customer of class C3, it leaves definitively the system and is considered as lost

customer.

Contrariwise, the simulation results do not coincide with the assumptions given by the

author, the network is still stable even if the stability conditions are not fulfilled. This allows

us to think that, this is due because the author [31] has neglected a key result in the theory

of queues, given by Theorem of Burke [6]. Indeed, Weiss [31] has assumed first, that arriving

customers at the first station are controlled (not Poisson). On the other hand, he considered

that the second station behaves as an M/M/1 queue, which contradicts the Theorem of Burke

[6]. Therefore, the stability conditions (ρ1 < 1, ρ2 < 1 and ρ1 > ρ2) are suitable only when

arrivals follow a Poisson process.
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