EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 4, 2017, 638-644
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Coefficient estimates for the generalized subclass of analytic and bi-univalent functions

Haigen Xiao ${ }^{1}$, Qinghua Xu^{2},*
${ }^{1}$ The Binjiang Campus of the High School Attached to Jiangxi Normal University, China
${ }^{2}$ School of Science, Zhejiang University of Science and Technology, China

Abstract

In this paper, we introduce and investigate an interesting subclass $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U}. For functions belonging to the class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$, obtain estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The results presented in this paper generalize and improve some recent works of Frasin et al. [B.A.Frasin, M.K.Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24:1569-1573, 2011] and Srivastava et al. [Qing-Hua Xu , Ying-Chun Gui, H.M.Srivastava, coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25: 990-994, 2012].

2010 Mathematics Subject Classifications: 30C45
Key Words and Phrases: Univalent functions, Bi-univalent functions, Coefficient bounds

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

We denote by \mathcal{S} the subclass of the analytic function class \mathcal{A} consisting of all functions in \mathcal{A} which are also univalent in \mathbb{U}.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

*Corresponding author.

Email addresses: haigen2008@sina.com (H.G Xiao), xuqh@mail.ustc.edu.cn (Q.H.Xu)
and

$$
f^{-1}(f(w))=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function f^{-1} is given by

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given (1).

The coefficient bounds for the class Σ have been studied by Lewin [1], Brannan and Clunie [2], Netanyahu [3]. The coefficient estimate problem for $\left|a_{n}\right| \quad(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}:=$ $\{1,2,3, \cdots\}$) is presumably still an open problem. In [4](see [5, 6, 7]), certain subclasses of the bi-univalent function class Σ were introduced, and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found.

Recently, Frasin et al.[8] introduced the following subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.
Definition 1 (see [8]). A function $f(z)$ given by (1) is said to be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma \quad \text { and } \quad\left|\arg \left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)\right| \leq \frac{\alpha \pi}{2} \quad(z \in \mathbb{U} ; 0<\alpha \leq 1 ; \lambda \geq 1)
$$

and

$$
\begin{gather*}
\left|\arg \left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right| \leq \frac{\alpha \pi}{2} \quad(w \in \mathbb{U} ; 0<\alpha \leq 1 ; \lambda \geq 1), \\
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2}
\end{gather*}
$$

Theorem $\mathbf{1}$ (see [8]). Let $f(z)$ given by (1) be in the function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1}
$$

Definition 2(see [8]). A function $f(z)$ given by (1) is said to be in the class $\mathcal{B}_{\Sigma}(\beta, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma \quad \text { and } \quad \Re\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U} ; 0 \leq \beta<1 ; \lambda \geq 1)
$$

and

$$
\Re\left((1-\lambda) \frac{g(w)}{z}+\lambda g^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U} ; 0 \leq \beta<1 ; \lambda \geq 1)
$$

where the function g is defined by (2).
Theorem 2 (see [8]). Let $f(z)$ given by (1) be in the function class $\mathcal{B}_{\Sigma}(\beta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2 \lambda+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\lambda+1)^{2}}+\frac{2(1-\beta)}{2 \lambda+1}
$$

Here, in our present sequel to some of the aforecited works (especially [7, 8]), we introduce the following subclass of analytic functions.
Definition 3. Let $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be functions such that

$$
\min \{\Re(h(z)), \Re(p(z))\}>0, \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1
$$

Also let f be an analytic function in \mathbb{U} defined by (1). We say that $f \in \mathcal{B}_{\Sigma}^{h, p}(\lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z) \in h(\mathbb{U}) \quad(z \in \mathbb{U} ; \quad \lambda \geq 1) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w) \in p(\mathbb{U}) \quad(w \in \mathbb{U} ; \quad \lambda \geq 1) \tag{4}
\end{equation*}
$$

where the function g is given by (2).
We note that for $\lambda=1$, the class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$ reduces to the class $\mathcal{H}_{\Sigma}^{h, p}$ introduced and studied by Xu et al.[7].
Remark 1. There are many choices of the functions h and p which would provide interesting subclasses of analytic functions. For example, if we let

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(z \in \mathbb{U} ; \quad 0<\alpha \leq 1)
$$

or

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(z \in \mathbb{U} ; 0 \leq \beta<1)
$$

it is easy to verify that $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 3 . If $f \in \mathcal{B}_{\Sigma}^{h, p}(\lambda)$, then

$$
f \in \Sigma \quad \text { and } \quad\left|\arg \left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)\right| \leq \frac{\alpha \pi}{2} \quad(z \in \mathbb{U} ; 0<\alpha \leq 1 ; \lambda \geq 1)
$$

and

$$
\left|\arg \left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right| \leq \frac{\alpha \pi}{2} \quad(w \in \mathbb{U} ; 0<\alpha \leq 1 ; \lambda \geq 1)
$$

or

$$
f \in \Sigma \quad \text { and } \quad \Re\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U} ; 0 \leq \beta<1)
$$

and

$$
\Re\left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U} ; 0 \leq \beta<1 ; 0 \leq \beta<1)
$$

where the function g is given by (2).
This means that

$$
f \in \mathcal{B}_{\Sigma}(\alpha, \lambda) \quad \text { or } \quad f \in \mathcal{B}_{\Sigma}(\beta, \lambda)
$$

In this paper, stimulated by $[7,8]$, we introduce the following subclass of the biunivalent function class Σ and obtain estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Our results would generalize and improve the related works of Frasin et al.[8] and Xu et al.[7] .

2. Main results and their proofs

In this section, we state and prove our results involving the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$ given by Definition 3.
Theorem 3. Let $f(z)$ given by (1) be in the function class $f \in \mathcal{B}_{\Sigma}^{h, p}(\lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda)} \tag{5}
\end{equation*}
$$

Proof. It follows from (3) and (4) that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)=h(z) \quad(z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)=p(w) \quad(w \in \mathbb{U}) \tag{7}
\end{equation*}
$$

where h and p satisfy the conditions of Definition 3, Furthermore, the functions $h(z)$ and $p(w)$ have the following series expansions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots,
$$

respectively. Now, equating the coefficients in (6) and (7), we get

$$
\begin{align*}
& (1+\lambda) a_{2}=h_{1} \tag{8}\\
& (1+2 \lambda) a_{3}=h_{2} \tag{9}\\
& -(1+\lambda) a_{2}=p_{1} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
(1+2 \lambda)\left(2 a_{2}^{2}-a_{3}\right)=p_{2} . \tag{11}
\end{equation*}
$$

From (8) and (10), we get

$$
\begin{equation*}
h_{1}=-p_{1} \quad 2(1+\lambda)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{12}
\end{equation*}
$$

Also, from (9) and (11), we find that

$$
\begin{equation*}
2(1+2 \lambda) a_{2}^{2}=h_{2}+p_{2}, \tag{13}
\end{equation*}
$$

which gives us the desired estimate on $\left|a_{2}\right|$ as asserted in (5).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (11) from (9), we get

$$
\begin{equation*}
2(1+2 \lambda) a_{3}-2(1+2 \lambda) a_{2}^{2}=h_{2}-p_{2} . \tag{14}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (13)into (14), it follows that

$$
\begin{equation*}
a_{3}=\frac{h_{2}}{1+2 \lambda}, \tag{15}
\end{equation*}
$$

as claimed. This completes the proof of Theorem 1.

3. Corollaries and consequences

In view of Remark 1, if we set

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(z \in \mathbb{U} ; \quad 0<\alpha \leq 1)
$$

and

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(z \in \mathbb{U} ; \quad 0 \leq \beta<1)
$$

in Theorem 3, respectively, we can readily deduce the following two corollaries, which we merely state here without proof.
Corollary 1. Let $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2}{2 \lambda+1}} \alpha \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{2 \lambda+1} \tag{16}
\end{equation*}
$$

Remark 2. It is easy to prove that

$$
\sqrt{\frac{2}{1+2 \lambda}} \alpha \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}} \quad(0<\alpha \leq 1 ; \lambda \geq 1)
$$

and

$$
\frac{2 \alpha^{2}}{1+2 \lambda} \leq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1} \quad(0<\alpha \leq 1 ; \lambda \geq 1)
$$

which, in conjunction with Corollary 1, would obviously yield an improvement of Theorem 1.

Corollary 2. Let $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\beta, \lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2 \lambda+1}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2(1-\beta)}{2 \lambda+1} \tag{17}
\end{equation*}
$$

Remark 3. It is obvious that

$$
\frac{2(1-\beta)}{2 \lambda+1} \leq \frac{4(1-\beta)^{2}}{(\lambda+1)^{2}}+\frac{2(1-\beta)}{2 \lambda+1} \quad(0 \leq \beta<1 ; \lambda \geq 1)
$$

which, in conjunction with Corollary 2, would lead us to an improvement of Theorem 2.
Setting $\lambda=1$ in Theorem 3, we get the following estimate, which was obtained by Xu et al. [7].
Corollary 3 (see [7]). Let $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{h, p}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|}{6} \tag{18}
\end{equation*}
$$

References

[1] M.Lewin, On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18: 63-68, 1967.
[2] D.A. Brannan, J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[3] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Rational Mech. Anal. 32 : 100-112, 1969.
[4] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babes-Bolyai Math. 31 (2): 70-77, 1986.
[5] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[6] H.M. Srivastava, A.K. Mishra, P.Gochhayat, Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 23: 1188-1192, 2010.
[7] Qing-Hua Xu, Ying-Chun Gui, H.M.Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25(6): 990-994, 2012.
[8] B.A.Frasin, M.K.Aouf, New subclasses of bi-univalent functions. Appl. Math. Lett. 24: 1569-1573, 2011.

