EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 4, 2017, 638-644 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Coefficient estimates for the generalized subclass of analytic and bi-univalent functions

Haigen Xiao¹, Qinghua Xu^{2,*}

¹ The Binjiang Campus of the High School Attached to Jiangxi Normal University, China

² School of Science, Zhejiang University of Science and Technology, China

Abstract. In this paper, we introduce and investigate an interesting subclass $\mathcal{B}_{\Sigma}^{h,p}(\lambda)$ of analytic and bi-univalent functions in the open unit disk U. For functions belonging to the class $\mathcal{B}_{\Sigma}^{h,p}(\lambda)$, obtain estimates on the first two coefficients $|a_2|$ and $|a_3|$. The results presented in this paper generalize and improve some recent works of Frasin et al. [B.A.Frasin, M.K.Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24:1569-1573, 2011] and Srivastava et al. [Qing-Hua Xu, Ying-Chun Gui, H.M.Srivastava, coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25: 990-994, 2012].

2010 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Univalent functions, Bi-univalent functions, Coefficient bounds

1. Introduction and definitions

Let ${\mathcal A}$ denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(1)

which are analytic in the open unit disk

$$\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

We denote by S the subclass of the analytic function class A consisting of all functions in A which are also univalent in \mathbb{U} .

It is well known that every function $f \in S$ has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathbb{U})$$

http://www.ejpam.com

© 2017 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: haigen2008@sina.com (H.G Xiao), xuqh@mail.ustc.edu.cn (Q.H.Xu)

H.G Xiao, Q.H.Xu / Eur. J. Pure Appl. Math, 10 (4) (2017), 638-644

and

$$f^{-1}(f(w)) = w$$
 $(|w| < r_0(f); r_0(f) \ge \frac{1}{4}).$

In fact, the inverse function f^{-1} is given by

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} . Let Σ denote the class of bi-univalent functions in \mathbb{U} given (1).

The coefficient bounds for the class Σ have been studied by Lewin [1], Brannan and Clunie [2], Netanyahu [3]. The coefficient estimate problem for $|a_n|$ $(n \in \mathbb{N} \setminus \{1, 2\}; \mathbb{N} := \{1, 2, 3, \dots\})$ is presumably still an open problem. In [4](see [5, 6, 7]), certain subclasses of the bi-univalent function class Σ were introduced, and non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$ were found.

Recently, Frasin et al. [8] introduced the following subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$. **Definition 1**(see [8]). A function f(z) given by (1) is said to be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$f \in \Sigma$$
 and $\left| \arg\left((1-\lambda)\frac{f(z)}{z} + \lambda f'(z) \right) \right| \le \frac{\alpha \pi}{2}$ $(z \in \mathbb{U}; \ 0 < \alpha \le 1; \ \lambda \ge 1)$

and

$$\left| \arg\left((1-\lambda)\frac{g(w)}{w} + \lambda g'(w) \right) \right| \le \frac{\alpha \pi}{2} \quad (w \in \mathbb{U}; \ 0 < \alpha \le 1; \ \lambda \ge 1),$$
$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots.$$
(2)

Theorem 1(see [8]). Let f(z) given by (1) be in the function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$. Then

$$|a_2| \le \frac{2\alpha}{\sqrt{(\lambda+1)^2 + \alpha(1+2\lambda-\lambda^2)}}$$

and

$$|a_3| \le \frac{4\alpha^2}{(\lambda+1)^2} + \frac{2\alpha}{2\lambda+1}.$$

Definition 2(see [8]). A function f(z) given by (1) is said to be in the class $\mathcal{B}_{\Sigma}(\beta, \lambda)$ if the following conditions are satisfied:

$$f \in \Sigma$$
 and $\Re\left((1-\lambda)\frac{f(z)}{z} + \lambda f'(z)\right) > \beta$ $(z \in \mathbb{U}; \ 0 \le \beta < 1; \lambda \ge 1)$

and

$$\Re\left((1-\lambda)\frac{g(w)}{z} + \lambda g'(w)\right) > \beta \quad (w \in \mathbb{U}; \ 0 \le \beta < 1; \ \lambda \ge 1),$$

639

where the function g is defined by (2).

Theorem 2(see [8]). Let f(z) given by (1) be in the function class $\mathcal{B}_{\Sigma}(\beta, \lambda)$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{2\lambda+1}}$$

and

$$|a_3| \le \frac{4(1-\beta)^2}{(\lambda+1)^2} + \frac{2(1-\beta)}{2\lambda+1}.$$

Here, in our present sequel to some of the aforecited works (especially [7, 8]), we introduce the following subclass of analytic functions.

Definition 3. Let $h, p : \mathbb{U} \to \mathbb{C}$ be functions such that

$$\min\{\Re(h(z)), \ \Re(p(z))\} > 0, \ (z \in \mathbb{U}) \quad and \quad h(0) = p(0) = 1,$$

Also let f be an analytic function in \mathbb{U} defined by (1). We say that $f \in \mathcal{B}^{h,p}_{\Sigma}(\lambda)$ if the following conditions are satisfied:

$$f \in \Sigma$$
 and $(1-\lambda)\frac{f(z)}{z} + \lambda f'(z) \in h(\mathbb{U})$ $(z \in \mathbb{U}; \lambda \ge 1)$ (3)

and

$$(1-\lambda)\frac{g(w)}{w} + \lambda g'(w) \in p(\mathbb{U}) \quad (w \in \mathbb{U}; \ \lambda \ge 1),$$
(4)

where the function g is given by (2).

We note that for $\lambda = 1$, the class $\mathcal{B}_{\Sigma}^{h,p}(\lambda)$ reduces to the class $\mathcal{H}_{\Sigma}^{h,p}$ introduced and studied by Xu et al.[7].

Remark 1. There are many choices of the functions h and p which would provide interesting subclasses of analytic functions. For example, if we let

$$h(z) = p(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} \quad (z \in \mathbb{U}; \quad 0 < \alpha \le 1)$$

or

$$h(z) = p(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \qquad (z \in \mathbb{U}; \ 0 \le \beta < 1),$$

it is easy to verify that h(z) and p(z) satisfy the hypotheses of Definition 3. If $f \in \mathcal{B}_{\Sigma}^{h,p}(\lambda)$, then

$$f \in \Sigma$$
 and $\left| \arg \left((1-\lambda) \frac{f(z)}{z} + \lambda f'(z) \right) \right| \le \frac{\alpha \pi}{2}$ $(z \in \mathbb{U}; \ 0 < \alpha \le 1; \ \lambda \ge 1)$

and

$$\left|\arg\left((1-\lambda)\frac{g(w)}{w} + \lambda g'(w)\right)\right| \le \frac{\alpha\pi}{2} \quad (w \in \mathbb{U}; \ 0 < \alpha \le 1; \ \lambda \ge 1),$$

or

$$f \in \Sigma$$
 and $\Re \left((1-\lambda)\frac{f(z)}{z} + \lambda f'(z) \right) > \beta$ $(z \in \mathbb{U}; \ 0 \le \beta < 1)$

and

$$\Re \left((1-\lambda)\frac{g(w)}{w} + \lambda g'(w) \right) > \beta \quad (w \in \mathbb{U}; \ 0 \le \beta < 1; \ 0 \le \beta < 1),$$

where the function g is given by (2). This means that

$$f \in \mathcal{B}_{\Sigma}(\alpha, \lambda)$$
 or $f \in \mathcal{B}_{\Sigma}(\beta, \lambda)$

In this paper, stimulated by [7, 8], we introduce the following subclass of the biunivalent function class Σ and obtain estimates on the first two coefficients $|a_2|$ and $|a_3|$. Our results would generalize and improve the related works of Frasin et al.[8] and Xu et al.[7].

2. Main results and their proofs

In this section, we state and prove our results involving the bi-univalent function class $\mathcal{B}_{\Sigma}^{h,p}(\lambda)$ given by Definition 3.

Theorem 3. Let f(z) given by (1) be in the function class $f \in \mathcal{B}^{h,p}_{\Sigma}(\lambda)$. Then

$$|a_2| \le \sqrt{\frac{|h''(0)| + |p''(0)|}{4(1+2\lambda)}} \quad and \quad |a_3| \le \frac{|h''(0)|}{2(1+2\lambda)}.$$
(5)

Proof. It follows from (3) and (4) that

$$(1-\lambda)\frac{f(z)}{z} + \lambda f'(z) = h(z) \quad (z \in \mathbb{U})$$
(6)

and

$$(1-\lambda)\frac{g(w)}{w} + \lambda g'(w) = p(w) \quad (w \in \mathbb{U}),$$
(7)

where h and p satisfy the conditions of Definition 3, Furthermore, the functions h(z) and p(w) have the following series expansions:

$$h(z) = 1 + h_1 z + h_2 z^2 + \cdots$$

and

$$p(w) = 1 + p_1 w + p_2 w^2 + \cdots,$$

respectively. Now, equating the coefficients in (6) and (7), we get

$$(1+\lambda)a_2 = h_1,\tag{8}$$

$$(1+2\lambda)a_3 = h_2,\tag{9}$$

$$-(1+\lambda)a_2 = p_1 \tag{10}$$

and

$$(1+2\lambda)(2a_2^2 - a_3) = p_2.$$
(11)

From (8) and (10), we get

$$h_1 = -p_1$$
 $2(1+\lambda)^2 a_2^2 = h_1^2 + p_1^2.$ (12)

Also, from (9) and (11), we find that

$$2(1+2\lambda)a_2^2 = h_2 + p_2,\tag{13}$$

which gives us the desired estimate on $|a_2|$ as asserted in (5).

Next, in order to find the bound on $|a_3|$, by subtracting (11) from (9), we get

$$2(1+2\lambda)a_3 - 2(1+2\lambda)a_2^2 = h_2 - p_2.$$
(14)

Upon substituting the value of a_2^2 from (13)into (14), it follows that

$$a_3 = \frac{h_2}{1+2\lambda},\tag{15}$$

as claimed. This completes the proof of Theorem 1.

3. Corollaries and consequences

In view of Remark 1, if we set

$$h(z) = p(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} \quad (z \in \mathbb{U}; \quad 0 < \alpha \le 1)$$

and

$$h(z) = p(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (z \in \mathbb{U}; \ 0 \le \beta < 1)$$

642

REFERENCES

in Theorem 3, respectively, we can readily deduce the following two corollaries, which we merely state here without proof.

Corollary 1. Let f(z) given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$. Then

$$|a_2| \le \sqrt{\frac{2}{2\lambda+1}}\alpha$$
 and $|a_3| \le \frac{2\alpha^2}{2\lambda+1}$. (16)

Remark 2. It is easy to prove that

$$\sqrt{\frac{2}{1+2\lambda}}\alpha \le \frac{2\alpha}{\sqrt{(\lambda+1)^2 + \alpha(1+2\lambda-\lambda^2)}} \qquad (0 < \alpha \le 1; \ \lambda \ge 1)$$

and

$$\frac{2\alpha^2}{1+2\lambda} \leq \frac{4\alpha^2}{(\lambda+1)^2} + \frac{2\alpha}{2\lambda+1} \qquad (0 < \alpha \leq 1; \ \lambda \geq 1),$$

which, in conjunction with Corollary 1, would obviously yield an improvement of Theorem 1.

Corollary 2. Let f(z) given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\beta, \lambda)$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{2\lambda+1}} \quad and \quad |a_3| \le \frac{2(1-\beta)}{2\lambda+1}.$$
 (17)

Remark 3. It is obvious that

$$\frac{2(1-\beta)}{2\lambda+1} \le \frac{4(1-\beta)^2}{(\lambda+1)^2} + \frac{2(1-\beta)}{2\lambda+1} \qquad (0 \le \beta < 1; \ \lambda \ge 1),$$

which, in conjunction with Corollary 2, would lead us to an improvement of Theorem 2.

Setting $\lambda = 1$ in Theorem 3, we get the following estimate, which was obtained by Xu et al. [7].

Corollary 3 (see [7]). Let f(z) given by (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{h,p}$. Then

$$|a_2| \le \sqrt{\frac{|h''(0)| + |p''(0)|}{12}} \quad and \quad |a_3| \le \frac{|h''(0)|}{6}.$$
 (18)

References

- M.Lewin, On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18: 63-68, 1967.
- [2] D.A. Brannan, J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.

- [3] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 32 : 100-112, 1969.
- [4] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş-Bolyai Math. 31 (2): 70-77, 1986.
- [5] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
- [6] H.M. Srivastava, A.K. Mishra, P.Gochhayat, Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 23: 1188-1192, 2010.
- [7] Qing-Hua Xu, Ying-Chun Gui, H.M.Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. *Appl. Math. Lett.* 25(6): 990-994, 2012.
- [8] B.A.Frasin, M.K.Aouf, New subclasses of bi-univalent functions. Appl. Math. Lett. 24: 1569-1573, 2011.