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Abstract. In this paper, we introduce and investigate an interesting subclass Bh,pΣ (λ) of analytic

and bi-univalent functions in the open unit disk U. For functions belonging to the class Bh,pΣ (λ),
obtain estimates on the first two coefficients |a2| and |a3|. The results presented in this paper
generalize and improve some recent works of Frasin et al. [B.A.Frasin, M.K.Aouf, New subclasses
of bi-univalent functions, Appl. Math. Lett. 24:1569-1573, 2011] and Srivastava et al. [Qing-Hua
Xu, Ying-Chun Gui, H.M.Srivastava, coefficient estimates for a certain subclass of analytic and
bi-univalent functions, Appl. Math. Lett. 25: 990-994, 2012].
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1. Introduction and definitions

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}.

We denote by S the subclass of the analytic function class A consisting of all functions in
A which are also univalent in U.

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)
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and

f−1(f(w)) = w (|w| < r0(f); r0(f) ≥ 1

4
).

In fact, the inverse function f−1 is given by

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent
in U. Let Σ denote the class of bi-univalent functions in U given (1).

The coefficient bounds for the class Σ have been studied by Lewin [1], Brannan and
Clunie [2], Netanyahu [3]. The coefficient estimate problem for |an| (n ∈ N \ {1, 2}; N :=
{1, 2, 3, · · · }) is presumably still an open problem. In [4](see [5, 6, 7]), certain subclasses
of the bi-univalent function class Σ were introduced, and non-sharp estimates on the first
two coefficients |a2| and |a3| were found.

Recently, Frasin et al.[8] introduced the following subclasses of the bi-univalent function
class Σ and obtained non-sharp estimates on the first two coefficients |a2| and |a3|.
Definition 1(see [8]). A function f(z) given by (1) is said to be in the class BΣ(α, λ) if the
following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg

(
(1− λ)

f(z)

z
+ λf ′(z)

)∣∣∣∣ ≤ απ

2
(z ∈ U; 0 < α ≤ 1; λ ≥ 1)

and ∣∣∣∣arg

(
(1− λ)

g(w)

w
+ λg′(w)

)∣∣∣∣ ≤ απ

2
(w ∈ U; 0 < α ≤ 1; λ ≥ 1),

g(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

Theorem 1(see [8]). Let f(z) given by (1) be in the function class BΣ(α, λ). Then

|a2| ≤
2α√

(λ+ 1)2 + α(1 + 2λ− λ2)

and

|a3| ≤
4α2

(λ+ 1)2
+

2α

2λ+ 1
.

Definition 2(see [8]). A function f(z) given by (1) is said to be in the class BΣ(β, λ) if the
following conditions are satisfied:

f ∈ Σ and <
(

(1− λ)
f(z)

z
+ λf ′(z)

)
> β (z ∈ U; 0 ≤ β < 1;λ ≥ 1)

and

<
(

(1− λ)
g(w)

z
+ λg′(w)

)
> β (w ∈ U; 0 ≤ β < 1; λ ≥ 1),
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where the function g is defined by (2).
Theorem 2(see [8]). Let f(z) given by (1) be in the function class BΣ(β, λ) . Then

|a2| ≤
√

2(1− β)

2λ+ 1

and

|a3| ≤
4(1− β)2

(λ+ 1)2
+

2(1− β)

2λ+ 1
.

Here, in our present sequel to some of the aforecited works (especially [7, 8]), we
introduce the following subclass of analytic functions.
Definition 3. Let h, p : U→ C be functions such that

min{<(h(z)), <(p(z))} > 0, (z ∈ U) and h(0) = p(0) = 1,

Also let f be an analytic function in U defined by (1). We say that f ∈ Bh,pΣ (λ) if the
following conditions are satisfied:

f ∈ Σ and (1− λ)
f(z)

z
+ λf ′(z) ∈ h(U) (z ∈ U; λ ≥ 1) (3)

and

(1− λ)
g(w)

w
+ λg′(w) ∈ p(U) (w ∈ U; λ ≥ 1), (4)

where the function g is given by (2).

We note that for λ = 1, the class Bh,pΣ (λ) reduces to the class Hh,pΣ introduced and
studied by Xu et al.[7].
Remark 1. There are many choices of the functions h and p which would provide
interesting subclasses of analytic functions. For example, if we let

h(z) = p(z) =

(
1 + z

1− z

)α
(z ∈ U; 0 < α ≤ 1)

or

h(z) = p(z) =
1 + (1− 2β)z

1− z
(z ∈ U; 0 ≤ β < 1),

it is easy to verify that h(z) and p(z) satisfy the hypotheses of Definition 3. If f ∈ Bh,pΣ (λ),
then

f ∈ Σ and

∣∣∣∣arg

(
(1− λ)

f(z)

z
+ λf ′(z)

)∣∣∣∣ ≤ απ

2
(z ∈ U; 0 < α ≤ 1; λ ≥ 1)
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and ∣∣∣∣arg

(
(1− λ)

g(w)

w
+ λg′(w)

)∣∣∣∣ ≤ απ

2
(w ∈ U; 0 < α ≤ 1; λ ≥ 1),

or

f ∈ Σ and <
(

(1− λ)
f(z)

z
+ λf ′(z)

)
> β (z ∈ U; 0 ≤ β < 1)

and

<
(

(1− λ)
g(w)

w
+ λg′(w)

)
> β (w ∈ U; 0 ≤ β < 1; 0 ≤ β < 1),

where the function g is given by (2).
This means that

f ∈ BΣ(α, λ) or f ∈ BΣ(β, λ).

In this paper, stimulated by [7, 8], we introduce the following subclass of the bi-
univalent function class Σ and obtain estimates on the first two coefficients |a2| and |a3|.
Our results would generalize and improve the related works of Frasin et al.[8] and Xu et
al.[7] .

2. Main results and their proofs

In this section, we state and prove our results involving the bi-univalent function class
Bh,pΣ (λ) given by Definition 3.

Theorem 3. Let f(z) given by (1) be in the function class f ∈ Bh,pΣ (λ). Then

|a2| ≤

√
|h′′(0)|+ |p′′(0)|

4(1 + 2λ)
and |a3| ≤

|h′′(0)|
2(1 + 2λ)

. (5)

Proof. It follows from (3) and (4) that

(1− λ)
f(z)

z
+ λf ′(z) = h(z) (z ∈ U) (6)

and

(1− λ)
g(w)

w
+ λg′(w) = p(w) (w ∈ U), (7)

where h and p satisfy the conditions of Definition 3, Furthermore, the functions h(z) and
p(w) have the following series expansions:

h(z) = 1 + h1z + h2z
2 + · · ·
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and

p(w) = 1 + p1w + p2w
2 + · · · ,

respectively. Now, equating the coefficients in (6) and (7), we get

(1 + λ)a2 = h1, (8)

(1 + 2λ)a3 = h2, (9)

−(1 + λ)a2 = p1 (10)

and

(1 + 2λ)(2a2
2 − a3) = p2. (11)

From (8) and (10), we get

h1 = −p1 2(1 + λ)2a2
2 = h2

1 + p2
1. (12)

Also, from (9) and (11), we find that

2(1 + 2λ)a2
2 = h2 + p2, (13)

which gives us the desired estimate on |a2| as asserted in (5).
Next, in order to find the bound on |a3|, by subtracting (11) from (9), we get

2(1 + 2λ)a3 − 2(1 + 2λ)a2
2 = h2 − p2. (14)

Upon substituting the value of a2
2 from (13)into (14), it follows that

a3 =
h2

1 + 2λ
, (15)

as claimed. This completes the proof of Theorem 1.

3. Corollaries and consequences

In view of Remark 1, if we set

h(z) = p(z) =

(
1 + z

1− z

)α
(z ∈ U; 0 < α ≤ 1)

and

h(z) = p(z) =
1 + (1− 2β)z

1− z
(z ∈ U; 0 ≤ β < 1)
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in Theorem 3, respectively, we can readily deduce the following two corollaries, which we
merely state here without proof.
Corollary 1. Let f(z) given by (1) be in the bi-univalent function class BΣ(α, λ) . Then

|a2| ≤
√

2

2λ+ 1
α and |a3| ≤

2α2

2λ+ 1
. (16)

Remark 2. It is easy to prove that√
2

1 + 2λ
α ≤ 2α√

(λ+ 1)2 + α(1 + 2λ− λ2)
(0 < α ≤ 1; λ ≥ 1)

and

2α2

1 + 2λ
≤ 4α2

(λ+ 1)2
+

2α

2λ+ 1
(0 < α ≤ 1; λ ≥ 1),

which, in conjunction with Corollary 1, would obviously yield an improvement of Theorem
1.
Corollary 2. Let f(z) given by (1) be in the bi-univalent function class BΣ(β, λ). Then

|a2| ≤
√

2(1− β)

2λ+ 1
and |a3| ≤

2(1− β)

2λ+ 1
. (17)

Remark 3. It is obvious that

2(1− β)

2λ+ 1
≤ 4(1− β)2

(λ+ 1)2
+

2(1− β)

2λ+ 1
(0 ≤ β < 1; λ ≥ 1),

which, in conjunction with Corollary 2, would lead us to an improvement of Theorem 2.
Setting λ = 1 in Theorem 3, we get the following estimate, which was obtained by Xu

et al. [7].

Corollary 3 (see [7]). Let f(z) given by (1) be in the bi-univalent function class Hh,pΣ .
Then

|a2| ≤
√
|h′′(0)|+ |p′′(0)|

12
and |a3| ≤

|h′′(0)|
6

. (18)
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