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Abstract. The focus of this paper is the existence of the best nonlinear least squares estimate for
the shifted Gompertz distribution. As a main result, two theorems on the existence of the least
squares estimate are obtained, as well as their generalization in the lp norm (1 ≤ p <∞).
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1. Introduction

The shifted Gompertz distribution was introduced by Bemmaor [3] in 1994 as a model
of adoption of innovations. The cumulative distribution function (CDF) of the random
variable T having the shifted Gompertz distribution is given by

F (t; a, b) =

{
(1− e−bt) e−a e

−bt
, t > 0

0, t ≤ 0.
(1)

The parameters a > 0 and b > 0 are called the shape parameter and the scale parameter,
respectively. More information on statistical properties of the shifted Gompertz distribu-
tion can be found in Bemmaor [3] and Jiménez and Jodrá [12].

Note that the shifted Gompertz distribution can be interpreted as the distribution
of the maximum of two independent random variables, one of which has an exponential
distribution with parameter b > 0 and the other one has a Gumbel distribution with
parameters a > 0 and b > 0.

In practice, the unknown parameters of the shifted Gompertz distribution are not
known in advance and must be estimated from a random sample. There is no unique
way to estimate the unknown parameters and many different statistical methods have
been proposed in the literature, such as the maximum likelihood method, the method of
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moments, the method of percentiles and the Bayesian method. But, since each of these
methods has some advantages and disadvantages, several other methods are proposed to
estimate the unknown parameters in the shifted Gompertz distribution. For example,
maximum likelihood method is very efficient for large samples, but not so efficient with
small samples. A very popular method for parameter estimation is the least squares
(LS) method. This method usually gives very good estimates even for small data sets.
Numerical methods for solving the nonlinear LS problem are described in Dennis and
Schnabel [9] and Gill et al. [10]. Before starting an iterative procedure, one should ask
whether an LS estimate exists. In the case of nonlinear LS problems, it is still extremely
difficult to answer this question (see [2, 5, 19, 20]). Results on the existence of the LS
estimate for some special classes of functions other than the shifted Gompertz distribution
can be found in [6, 7, 8, 14, 16, 17, 21].

In this paper, we consider the nonlinear weighted LS parameter estimation problem
for the shifted Gompertz distribution. Our focus is on the existence of the corresponding
best LS estimate. To the best of our knowledge, there is no paper focused on this existence
problem. In Section 2, we briefly describe the LS method and show that it is possible that
the LS estimate for the shifted Gompertz distribution does not exist (Proposition 1). As
our main results, we present two theorems (Theorem 1 and Theorem 2) on the existence
of the LS estimate for the shifted Gompertz distribution, as well as their generalizations
(Theorem 3 and Theorem 4) in the lp norm (1 ≤ p <∞).

This paper is motivated by the paper of Jiménez Torres [13], where LS estimation for
the log-transformed shifted Gompertz distribution was considered.

2. Estimation of the shifted Gompertz distribution

In this section, we first formulate the LS fitting problem for the shifted Gompertz
distribution and then present two theorems on the existence of the least squares estimate,
as well as their generalizations in the lp norm (1 ≤ p <∞).

2.1. LS fitting problem for the shifted Gompertz distribution

Suppose we are given the data (wi, ti, yi), i = 1, . . . , n, n > 2, where

0 < t1 < t2 < . . . < tn

denote the values of the independent variable (observations of the nonnegative shifted
Gompertz random variable T , arranged in their increasing order),

0 < y1 < y2 < . . . < yn < 1

are the respective estimators of the empirical CDF, and wi > 0 are some data weights.
Since the shifted Gompertz random variable T is nonnegative and numbers yi denote
empirical CDF values, the above two conditions are natural.
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There are many different ways to derive estimators yi for the empirical CDF corre-
sponding to the sample data t1 < t2 < . . . < tn. Most commonly used estimators can be
expressed in the following form (see [15, 18]):

yi =
i− c

n+ 1− 2c
, i = 1, . . . , n,

for some real number c, 0 ≤ c < 1. Some alternatives are as follows: yi = i
n+1 (mean

rank estimator, c = 0), yi = i−0.5
n (median rank estimator, c = 0.5), yi = i−0.3

n+0.4 (Benard’s
median rank estimator, c = 0.3).

The goal of the LS method (see e.g. [2, 5, 10, 19, 20]) is to choose the unknown
parameters of the shifted Gompertz distribution (1) such that the weighted sum of squared
distances between the model and the data is as small as possible. More precisely, the
unknown parameters a and b have to be estimated by minimizing the functional

S(a, b) =

n∑
i=1

wi[F (ti; a, b)− yi]2 (2)

on the set (parameter space)

P :=
{

(a, b) ∈ R2 : a, b > 0
}
.

A point (a?, b?) ∈ P such that S(a?, b?) = inf(a,b)∈P S(a, b) is called the least squares
estimate (LS estimate), if it exists (see e.g. [5, 8, 10, 19, 20]).

The following proposition shows that there exist data such that the LS estimate for
the shifted Gompertz distribution (1) does not exist.

Proposition 1. Let (wi, ti, yi), i = 1, . . . , n, n ≥ 3, be the data. If the data are such that
the points (ti, yi), i = 1, . . . , n, all lie on some exponential curve g(t) = 1− e−b0t, b0 > 0,
then the LS estimate does not exist.

Proof. Since S(a, b) ≥ for all (a, b) ∈ P, and

lim
a→0+

S(a, b0) = lim
a→0+

n∑
i=1

wi[(1− e−b0ti) e−a e
−b0ti −yi]2 =

n∑
i=1

wi[(1− e−b0ti)− yi]2 = 0,

it is easy to conclude that inf(a,b)∈P S(a, b) = 0. Furthermore, since the graph of any shifted

Gompertz distribution (1) intersects the graph of exponential function g(t) = 1− e−b0t in
at most two points, and n ≥ 3, it follows that S(a, b) > 0 for all (a, b) ∈ P, and hence the
best LS estimate does not exist.

2.2. The LS existence theorem for the shifted Gompertz distribution

The following theorem gives a necessary and sufficient condition on the data which
guarantee the existence of the LS estimate for the shifted Gompertz distribution. First,
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we introduce one notation. Let E? be an infimum of the weighted sum of squares for the
exponential function (distribution) g(t) = 1− e−bt (b > 0), i.e.,

E? = inf
b>0

E(b),

where

E(b) =
n∑
i=1

wi[(1− e−bti)− yi]2.

Theorem 1 (Necessary and sufficient condition). Suppose that the data (wi, ti, yi), i =
1, . . . , n, n ≥ 3, satisfy conditions 0 < t1 < t2 < . . . < tn and 0 < yi < 1, i = 1, . . . , n.
Then the LS estimate for the shifted Gompertz distribution (1) exists if and only if there
is a point (a0, b0) ∈ P such that S(a0, b0) ≤ E?.

By using Theorem 3.1 from Jukić [14], it is easy to show that there exists a β? > 0
such that E(β?) = E?. Therefore, in other words, under the assumptions of the theorem,
the LS estimate exists if and only if there is at least one shifted Gompertz distribution
which is in an LS sense as good as or better than the best exponential distribution.

Remark 1. It can be easily shown that if ∂S/∂a < 0 evaluated at a = 0 and b = b0 =
argminE(b), then there exists a point (a, b0) ∈ P such that S(a, b0) < E?, which according
to the Theorem 1 ensure the existence of the least squares estimate for the shifted Gompertz
distribution.

The next lemma will be used in the proof of Theorem 1.

Lemma 1. Suppose we are given the data (ti, yi), i = 1, . . . , n, n > 2, such that 0 < t1 <
t2 < . . . < tn and 0 < yi < 1, i = 1, . . . , n. Let wi > 0, i = 1, . . . , n, be some weights.
Given any real number τ0 > 0, let

Στ0 :=
∑
ti<τ0

wiy
2
i +

∑
ti>τ0

wi(1− yi)2.

Then there exists a point in P at which functional S defined by (2) attains a value less
than Στ0.

The summation
∑
ti<τ0

(or
∑
ti>τ0

) is to be understood as follows: the sum over those

indices i ≤ n for which ti < τ0 (or ti > τ0). If there are no such points ti, the sum is
empty; following the usual convention, we define it to be zero.

Proof. Let τ0 > 0 be given. If τ0 6= ti, for each index i in the range 1 to n, let ξ0 be an
arbitrary number from the interval (0, 1), and otherwise, if τ0 = ti for some i, let ξ0 = yi.
Define function a :

(
1
τ0

ln 1
1−ξ0 ,∞

)
→ R

a(b) = ln
(1− e−bτ0

ξ0

)
ebτ0 .
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It is easy to verify that a(b) is positive, and therefore (a(b), b) ∈ P. Let us now associate
with each real b ∈

(
1
τ0

ln 1
1−ξ0 ,∞

)
a shifted Gompertz distribution function

F (t; a(b), b) =

{
(1− e−bt) e

− ln
(

1−e−bτ0
ξ0

)
e−b(t−τ0)

, if t > 0
0, if t ≤ 0.

By a straightforward calculation, it can be verified that

F (τ0; a(b), b) = ξ0 (3)

and

lim
b→∞

F (t; a(b), b) =

{
0, if 0 < t < τ0
1, if t > τ0.

Due to this, we may assume that for every sufficiently large b > 0,

0 < F (ti; a(b), b) < yi, if 0 < ti < τ0

(4)

yi < F (ti; a(b), b) < 1, if ti > τ0.

Hence, for every sufficiently large b > 0 it follows from (3) and (4) that

S(a(b), b) =

n∑
i=1

wi[F (ti; a(b), b)− yi]2

=
∑
ti<τ0

wi[F (ti; a(b), b)− yi]2 +
∑
ti>τ0

wi[F (ti; a(b), b)− yi]2

<
∑
ti<τ0

wiy
2
i +

∑
ti>τ0

wi(1− yi)2 = Στ0 .

This completes the proof of the lemma.

Proof of Theorem 1.
Assume first that (a?, b?) ∈ P is the best LS estimate, and then show that S(a?, b?) ≤

E?. In order to do this, first note that for all a, b > 0,

S(a?, b?) ≤ S(a, b) =
n∑
i=1

wi[(1− e−bti) e−a e
−bti −yi]2,

from where, taking the limit as a→ 0, it follows that

S(a?, b?) ≤
n∑
i=1

wi[(1− e−bti)− yi]2.

From the last inequality and the definition of E? we obtain that S(a?, b?) ≤ E?, so that
it is enough to set (a0, b0) = (a?, b?).
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Let us show the converse of the theorem. Suppose that there is a point (a0, b0) ∈ P such
that S(a0, b0) ≤ E?. Since functional S is nonnegative, there exists S? := inf(a,b)∈P S(a, b).
It should be shown that the best LS estimate exists, i.e., that there exists a point (a?, b?) ∈
P such that S(a?, b?) = S?. To do this, first note that

S? ≤ S(a0, b0) ≤ E?

If S? = S(a0, b0), to complete the proof it is enough to set (a?, b?) = (a0, b0). Hence, we
can further assume that

S? < S(a0, b0) ≤ E?. (5)

Let (ak, bk) be a sequence in P, such that

S? = lim
k→∞

S(ak, bk) = lim
k→∞

n∑
i=1

wi[F (ti; ak, bk)− yi]2

= lim
k→∞

n∑
i=1

wi[(1− e−bkti) e−ak e
−bkti −yi]2.

Without loss of generality, in further consideration we may assume that sequences (ak)
and (bk) are monotone. This is possible because the sequence (ak, bk) has a subsequence
(alk , blk), such that all its component sequences (alk) and (blk) are monotone, and since
limk→∞ S(alk , blk) = limk→∞ S(ak, bk) = S?.

As each monotone sequence of real numbers converges in the extended real number
system R̄, denote

a? := lim
k→∞

ak, b? := lim
k→∞

bk.

Note that 0 ≤ a? ≤ ∞ and 0 ≤ b? ≤ ∞, because (ak, bk) ∈ P.
To complete the proof, it is enough to show that (a?, b?) ∈ P, i.e., that 0 < a? <

∞ and 0 < b? < ∞. The continuity of the functional S will then imply that S? =
limk→∞ S(ak, bk) = S(a?, b?), which will complete the proof of the theorem.

Before continuing with the proof, let us note that Lemma 1 implies that

S? < Στ0 , (6)

for arbitrary τ0 > 0.
It remains to show that (a?, b?) ∈ P. The proof will be done in four steps. In Step

1, we will show that b? 6= 0. In Step 2, we will show that b? 6= ∞, which will imply that
0 < b? < ∞. The proof that a? 6= ∞ will be done in Step 3. Finally, in Step 4 we will
show that a? 6= 0.

Step 1. Let us first show that b? 6= 0. We prove this by contradiction. Suppose to the
contrary that b? = 0. First, note that for all ak, bk ≥ 0 and for all t ≥ 0

0 ≤ (1− e−bkt) e−ak e
−bkt ≤ 1− e−bkt . (7)

Furthemore, since bk → 0, then
1− e−bkt → 0,
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and thus from inequalities (7) we have

F (t; ak, bk) = (1− e−bkt) e−ak e
−bkt → 0, for all t ≥ 0.

Therefore, we would obtain that

S? = lim
k→∞

n∑
i=1

wi[F (ti; ak, bk)− yi]2 =

n∑
i=1

wiy
2
i >

n−1∑
i=1

wiy
2
i = Σtn ,

which contradicts (6). This means that in this way functional S cannot attain its infimum
and we have proved that b? 6= 0.

Step 2. Let us now show that b? 6=∞. We prove this by contradiction. Suppose to the
contrary that b? = ∞. For each i = 1, . . . , n, let us denote l?i := limk→∞ ake

−bkti . Now
from the obvious inequalities

ake
−bkt1 ≥ ake−bkt2 ≥ · · · ≥ ake−bktn ≥ 0,

after taking the limit k →∞, we obtain

l?1 ≥ l?2 ≥ · · · ≥ l?n ≥ 0.

Note that only one of the following subcases can occur: (a) l?i = ∞ for all i = 1, . . . , n,
(b) there exists an index i such that 0 ≤ l?i <∞.

Subcase (a) If l?i = ∞ for all i = 1, . . . , n, then limk→∞ F (ti; ak, bk) = 0 for all i, and
consequently we would have that S? =

∑n
i=1wiy

2
i > Σtn . As already shown in Step 1, in

this way functional S cannot attain its infimum.
Subcase (b) Let i0 := min{i | 0 ≤ l?i <∞}. Then for each i > i0,

l?i = lim
k→∞

ak e−bkti = lim
k→∞

ak e−bkti0 e−bk(ti−ti0 ) = l?i0 lim
k→∞

e−bk(ti−ti0 ) = 0.

Thus

l?i =

{
∞, for all i < i0
0, for all i > i0,

and consequently

lim
k→∞

F (ti; ak, bk) =

{
0, for all i < i0
1, for all i > i0,

from where it follows that

S? = lim
k→∞

n∑
i=1

wi[F (ti; ak, bk)− yi]2 ≥
∑
ti<ti0

wiy
2
i +

∑
ti>ti0

wi(1− yi)2 = Σti0
.

Again, this contradicts (6). Thus we have proved that b? 6=∞.
Step 3. In this step, we will show that a? 6= ∞. We prove this by contradic-

tion. Suppose to the contrary that a? = ∞. Then, as in Step 1, we would have that
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limk→∞ F (t; ak, bk) = 0 for all t ≥ 0, and as we have already shown, in that case func-
tional S cannot attain its infimum.

Step 4. It remains to show that a? 6= 0. Suppose to the contrary that a? = 0. Then
limk→∞ F (t; ak, bk) = 1− e−b

?t for all t ≥ 0. In this case we would have

S? =

n∑
i=1

wi
[
(1− e−b

?ti)− yi
]2 ≥ E?,

which contradicts assumption (5). This means that in this way (a? = 0) functional S
cannot attain its infimum. Thus we have provided that a? 6= 0, and herewith we have
completed the proof of Theorem 1.

From the curve fitting point of view, it makes sense to allow parameter a to be zero,
i.e., to minimize functional S over the following set of parameters

P0 :=
{

(a, b) ∈ R2 : a ≥ 0, b > 0
}
.

The next theorem tells us that if that is of interest, then the corresponding LS estimate
will exist.

Theorem 2. Let the points (wi, ti, yi), i = 1, . . . , n, n > 2, be data such that 0 < t1 <
t2 < . . . < tn and 0 < yi < 1, i = 1, . . . , n. Then there exists a point (a?, b?) ∈ P0 such
that

S(a?, b?) = inf
(a,b)∈P0

S(a, b).

The proof of this theorem is omitted; it is the same for respective parts of the proof
of Theorem 1, with the exception that we do not have to prove that a? 6= 0.

2.3. The lp-norm existence theorem for the shifted Gompertz distribution

The LS problem is a nonlinear l2-norm problem. During the last few decades an
increased interest in alternative lp-norm has become apparent (see e.g. [1] and [11]).
For example, l1-norm criteria are more suitable if there are wild points (outliers) in the
data. Thus, instead of minimizing functional S, sometimes a more adequate criterion for
estimation of unknown parameters a and b of the shifted Gompertz distribution (1) is to
minimize the following functional:

Sp(a, b) =

n∑
i=1

wi
∣∣F (ti; a, b)− yi

∣∣p, (8)

where p (1 ≤ p <∞) is an arbitrary fixed number. A point (a?, b?) ∈ P such that

Sp(a
?, b?) = inf

(a,b)∈P
Sp(a, b)

is called the best lp-norm estimate, if it exists. For p = 2, the best l2-norm estimate is the
familiar weighted LS estimate.
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To state the corresponding lp-norm (1 ≤ p <∞) generalizations of Theorems 1 and 2,
we need an additional notation. Let

E?p := inf
b>0

Ep(b), where Ep(b) =
n∑
i=1

wi|(1− e−bti)− yi|p.

Obviously, E? = E?2 and S = S2. Again, by using Theorem 3.1 from Jukić [14], it is easy
to show that there exists a β? > 0 such that Ep(β

?) = E?p .
Arguing in a similar way as in proofs of Lemma 1, Theorem 1 and Theorem 2, we

can easily show the following lp-norm generalizations of Theorem 1 and Theorem 2. To
do this, it suffices to replace the l2 norm by the lp norm. Thereby all parts of the proofs
remain the same.

Theorem 3 (Necessary and sufficient condition). Suppose that the data (wi, ti, yi), i =
1, . . . , n, n ≥ 3, satisfy conditions 0 < t1 < t2 < . . . < tn and 0 < yi < 1, i = 1, . . . , n..
Then functional Sp defined by (8) attains its infimum on P if and only if there is a point
(a0, b0) ∈ P such that Sp(a0, b0) ≤ E?p .

Theorem 4. Let the points (wi, ti, yi), i = 1, . . . , n, n > 2, be data such that 0 < t1 <
t2 < . . . < tn and 0 < yi < 1, i = 1, . . . , n. Then there exists a point (a?, b?) ∈ P0 such
that

Sp(a
?, b?) = inf

(a,b)∈P0

Sp(a, b).
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[5] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[6] E.Z. Demidenko. Criteria for unconstrained global optimization. J. Optim. Theory
Appl., 136:375-395, 2008.



REFERENCES 166

[7] E.Z. Demidenko. Criteria for global minimum of sum of squares in nonlinear regres-
sion. Comput. Statis. Data Anal., 51:1739-1753, 2006.

[8] E.Z. Demidenko. Is this the least squares estimate?. Biometrika, 87:437-452, 2000.

[9] J.E. Dennis, R.B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. SIAM, Philadelphia, 1996.

[10] P.E. Gill, W. Murray, M.H. Wright. Practical Optimization. Academic Press, London,
1981.

[11] R. Gonin, A.H. Money. Nonlinear Lp-Norm Estimation. Marcel Dekker, New York,
1989.
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