
H. S. Al-Saadi

Mathematics Department, Faculty of Applied Sciences, Umm Al-Qura University
Saudi Arabia

There is an error in the proof of Theorem 5 of [1]. In fact:

Remark 1. In the proof of [1, Theorem 5] the inclusion

\[
(cl(A) \cap F)/(U \cap (X/F)) \subset cl(A)/(U \cup (X/F))
\]

is not true in general as shown by the following example.

Example 2. Let \((X, \tau)\) and \(I\) as be as in [1, Example 1], where \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}\) and \(I = \{\phi, \{b\}, \{c\}, \{b, c\}\}\). Then the set of all Ig-closed in \(X\) is \(\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}\). Let \(A = \{c\}, U = \{a, c\}\) and \(F = \{b, c\}\). Then

\[
(cl(A) \cap F)/(U \cap (X/F)) = \{b, c\} \quad \text{and} \quad cl(A)/(U \cup (X/F)) = \{b\}.
\]

Hence the inclusion in Remark 1 is not true.

Remark 3. We provide here an alternative prove:

Theorem 4. [1, Theorem 5] Let \(A\) be an Ig-closed set and \(F\) be a closed set in \((X, \tau)\), then \(A \cap F\) is an Ig-closed set in \((X, \tau)\). **Proof.** Let \(A \cap F \subset U\) and \(U\) is open. Then \(A \subset U \cup (X/F)\). Since \(A\) is Ig-closed, we have \(cl(A)/(U \cup (X/F)) \in I\). Now, \(cl(A \cap F) \subset cl(A) \cap F = (cl(A) \cap F)/(X/F)\). Therefore,

\[
cl(A \cap F)/U \subset (cl(A) \cap F)/U \\
= cl(A) \cap F \cap (X/U) \\
= cl(A) \cap (X/(U \cup (X/F))) \\
= cl(A)/(U \cup (X/F)) \in I.
\]

Hence \(cl(A \cap F)/U \in I\) and \(A \cap F\) is Ig-closed in \((X, \tau)\).

Email addresses: hasa12@hotmail.com (H. S. Al-Saadi)
Acknowledgement

The useful discussion with Prof. T. Noiri is appreciated.

References