Generalization of Dunkl Dini Lipschitz Functions

Salah El Ouadih1,*, Radouan Daher1

1 Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II
Morocco

\textbf{Abstract.} Using a generalized spherical mean operator, we obtain a generalization of Younis’s Theorem 5.2 in [12] for the Dunkl transform for functions satisfying the \(d\)-Dunkl Dini Lipschitz condition in the space \(L^p(\mathbb{R}^d, w_\lambda(x)dx), 1 < p \leq 2\), where \(w_\lambda\) is a weight function invariant under the action of an associated reflection group.

\textbf{2010 Mathematics Subject Classifications:} 42B37

\textbf{Key Words and Phrases:} Dunkl transform, Dunkl kernel, generalized spherical mean operator

1. Introduction and Preliminaries

Younis’s Theorem 5.2 [12] characterized the set of functions in \(L^2(\mathbb{R})\) satisfying the Dini Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have

\textbf{Theorem 1.} [12] Let \(f \in L^2(\mathbb{R})\). Then the following are equivalents

\begin{enumerate}[(i)]
\item \(\|f(x+h) - f(x)\|_2 = O\left(\frac{h^n}{(\log \frac{1}{h})^\delta}\right)\), as \(h \to 0, 0 < \eta < 1, \delta \geq 0\)
\item \(\int_{|\lambda| \geq \eta} \vert \hat{f}(\lambda) \vert^2 d\lambda = O\left(\frac{s^{-2\eta}}{(\log s)^25}\right), \text{ as } s \to \infty,\)
\end{enumerate}

where \(\hat{f}\) stands for the Fourier transform of \(f\).

In this paper, we obtain a generalization of Theorem 1.1 for the Dunkl transform on \(\mathbb{R}^d\) in the space \(L^p(\mathbb{R}^d, w_\lambda(x)dx), 1 < p \leq 2\). For this purpose, we use a generalized spherical mean operator.

We consider the Dunkl operators \(D_j, 1 \leq j \leq d,\) on \(\mathbb{R}^d\) which are the differential-difference operators introduced by Dunkl in [3]. These operators are very important in pure mathematics and in physics. The theory of Dunkl operators provides generalizations of various multivariable analytic structures, among others we cite the exponential function,

*Corresponding author.

\textit{Email addresses:} salahwadih@gmail.com (S. El Ouadih), rjdaher024@gmail.com (R. Daher)
the Fourier transform and the translation operator. For more details about these operators see [6, 5]. The Dunkl Kernel E_l has been introduced by Dunkl in [4]. This Kernel is used to define the Dunkl transform.

Let R be a root system in \mathbb{R}^d, W the corresponding reflection group, R_+ a positive subsystem of R (see [6, 5, 1, 8, 9]) and l a non-negative and W-invariant function defined on R. The Dunkl operator is defined for $f \in C^1(\mathbb{R}^d)$ by

$$D_j f(x) = \frac{\partial f}{\partial x_j}(x) + \sum_{\alpha \in R_+} l(\alpha) \alpha_j \frac{f(x) - f(\sigma_\alpha(x))}{<\alpha, x>}, x \in \mathbb{R}^d (1 \leq j \leq d).$$

Here $<,>$ is the usual Euclidean scalar product on \mathbb{R}^d with the associated norm $|.|$ and σ_α the reflection with respect to the hyperplane H_α orthogonal to α, and $\alpha_j = <\alpha, e_j>$, $(e_1, e_2, ..., e_d)$ being the canonical basis of \mathbb{R}^d.

We consider the weight function

$$w_l(x) = \prod_{\zeta \in R_+} |<\zeta, x>|^{2l(\alpha)}, x \in \mathbb{R}^d,$$

where w_l is W-invariant and homogeneous of degree 2γ where

$$\gamma = \gamma(R) = \sum_{\zeta \in R_+} l(\zeta) \geq 0.$$

The Dunkl kernel E_l on $\mathbb{R}^d \times \mathbb{R}^d$ has been introduced by C. F. Dunkl in [4]. For $y \in \mathbb{R}^d$, the function $x \mapsto E_l(x, y)$ is the unique solution on \mathbb{R}^d of the following initial problem

$$\left\{ \begin{array}{l}
D_j u(x, y) = y_j u(x, y) \quad \text{si } 1 \leq j \leq d \\
u(0, y) = 0 \quad \text{for all } y \in \mathbb{R}^d
\end{array} \right.$$

E_l is called the Dunkl kernel.

Lemma 1. [6] Let $z, w \in \mathbb{C}^d$ and $\lambda \in \mathbb{C}$

1. $E_l(z, 0) = 1$, $E_l(z, w) = E_l(w, z)$, $E_l(\lambda z, w) = E_l(z, \lambda w)$.
2. For all $\nu = (\nu_1, ..., \nu_d) \in \mathbb{N}^d, x \in \mathbb{R}^d, z \in \mathbb{C}^d$, we have

$$|\partial^\nu z E_l(x; z)| \leq |x|^\nu \exp(||x|| Re z),$$

where

$$\partial^\nu z = \frac{\partial^{|\nu|}}{\partial x_1^{\nu_1} ... \partial x_d^{\nu_d}}, |\nu| = \nu_1 + ... + \nu_d.$$

In particular $|\partial^\nu z E_l(ix; z)| \leq |x|^\nu$ for all $x, z \in \mathbb{R}^d$.

We denote by $L^p_l(\mathbb{R}^d) = L^p(\mathbb{R}^d, w_l(x) dx), 1 < p \leq 2$, the space of measurable functions on \mathbb{R}^d with the norm

$$\|f\|_{p,l} = \left(\int_{\mathbb{R}^d} |f(x)|^p w_l(x) dx \right)^{\frac{1}{p}} < \infty.$$
The Dunkl transform is defined for \(f \in L^1_l(\mathbb{R}^d) = L^1(\mathbb{R}^d, w_l(x)dx) \) by

\[
\mathcal{F}(f)(\xi) = \hat{f}(\xi) = c_l^{-1} \int_{\mathbb{R}^d} f(x) E_l(-i\xi, x) w_l(x)dx,
\]

where the constant \(c_l \) is given by

\[
c_l = \int_{\mathbb{R}^d} e^{-|z|^2/2} w_l(z)dz.
\]

The Dunkl transform shares several properties with its counterpart in the classical case, we mention here in particular that Plancherel’s Theorem holds in \(L^2_l(\mathbb{R}^d) \), when both \(f \) and \(\hat{f} \) are in \(L^1_l(\mathbb{R}^d) \), we have the inversion formula

\[
f(x) = \int_{\mathbb{R}^d} \hat{f}(\xi) E_l(ix, \xi) w_l(\xi)d\xi, x \in \mathbb{R}^d.
\]

By Plancherel’s Theorem and the Marcinkiewicz interpolation theorem (see [10]), we get for \(f \in L^p_l(\mathbb{R}^d) \) with \(1 < p \leq 2 \) and \(q \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \),

\[
\|\mathcal{F}(f)\|_{q,l} \leq K\|f\|_{p,l},
\]

where \(K \) is a positive constant.

The generalized spherical mean value of \(f \in L^p_l(\mathbb{R}^d) \) is defined by

\[
M_h f(x) = \frac{1}{d_l} \int_{S^{d-1}} \tau_x f(hy)d\mu_l(y), x \in \mathbb{R}^d, h > 0.
\]

where \(\tau_x \) Dunkl translation operator (see [9, 11]), \(\mu \) be the normalized surface measure on the unit sphere \(S^{d-1} \) in \(\mathbb{R}^d \) and set \(d\mu_l(y) = w_l(y)d\mu(y), \mu_l \) is a \(W \)-invariant measure on \(S^{d-1} \) and \(d_l = \mu_l(S^{d-1}) \).

We see that \(M_h f \in L^p_l(\mathbb{R}^d) \) whenever \(f \in L^p_l(\mathbb{R}^d) \) and

\[
\|M_h f\|_{p,l} \leq \|f\|_{p,l}.
\]

for all \(h > 0 \).

For \(\beta \geq -\frac{1}{2} \), we introduce the Bessel normalized function of the first kind \(j_\beta \) defined by

\[
j_\beta(z) = \Gamma(\beta + 1) \sum_{n=0}^{\infty} \frac{(-1)^n(z/2)^{2n}}{n!\Gamma(n + \beta + 1)}, z \in \mathbb{C}.
\]

Lemma 2. (Analog of lemma 2.9 in [2]) The following inequality is true

\[
|1 - j_\beta(x)| \geq c,
\]

with \(|x| \geq 1 \), where \(c > 0 \) is a certain constant which depend only on \(\beta \).
Moreover, from (1) we see that

$$\lim_{z \to 0} \frac{j_{\gamma + \frac{d}{2} - 1}(z) - 1}{z^2} \neq 0.$$ \hspace{1cm} (3)

Lemma 3. [7] Let $f \in L^p_l(\mathbb{R}^d)$. Then

$$\hat{M}_h f(\xi) = j_{\gamma + \frac{d}{2} - 1}(h|\xi|) \hat{f}(\xi).$$

The first and higher order finite differences of $f(x)$ are defined as follows

$$Z_h f(x) = (M_h - I) f(x),$$

where I is the identity operator $L^p_l(\mathbb{R}^d)$.

$$Z^k_h f(x) = Z_h(Z^{k-1}_h f(x)) = (M_h - I)^k f(x) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} M_i^h f(x),$$

where $M_i^0 f(x) = f(x)$, $M_i^1 f(x) = M_h(M_i^{h-1} f(x))$, $i = 1, 2, ..$ and $k = 1, 2, ..$

From Lemma 3, we obtain

$$\hat{Z}^k_h f(\xi) = (j_{\gamma + \frac{d}{2} - 1}(h|\xi|) - 1)^k \hat{f}(\xi).$$

By (1), we have

$$\int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^q |\hat{f}(\xi)|^q w_l(\xi) d\xi \leq K^q \|Z^k_h f(x)\|_{p,l}^q,$$ \hspace{1cm} (4)

where $\frac{1}{p} + \frac{1}{q} = 1$.

2. Dunkl Dini Lipschitz Condition

Definition 1. Let $f \in L^p_l(\mathbb{R}^d)$, and define

$$\|Z^k_h f(x)\|_{p,l} \leq C \frac{h^{\eta}}{(\log \frac{1}{h})^{\delta}}, \quad \delta \geq 0,$$

i.e.,

$$\|Z^k_h f(x)\|_{p,l} = O \left(\frac{h^{\eta}}{(\log \frac{1}{h})^{\delta}} \right),$$

for all x in \mathbb{R}^d and for all sufficiently small h, C being a positive constant. Then we say that f satisfies a d-Dunkl Dini Lipschitz of order η, or f belongs to $Lip(\eta, \delta)$.
Definition 2. If however
\[
\frac{\|Z_h^k f(x)\|_{p,l}}{(\log \frac{1}{h})^\delta} \to 0, \quad \text{as} \quad h \to 0,
\]
i.e.,
\[
\|Z_h^k f(x)\|_{p,l} = O\left(\frac{h^\eta}{(\log \frac{1}{h})^\delta}\right), \quad \text{as} \quad h \to 0, \delta \geq 0,
\]
then \(f \) is said to belong to the little \(d \)-Dunkl Dini Lipschitz class \(\text{lip}(\eta, \delta) \).

Remark. It follows immediately from these definitions that
\[
\text{lip}(\eta, \delta) \subset \text{Lip}(\eta, \delta).
\]

Theorem 2. Let \(\eta > 1 \). If \(f \in \text{Lip}(\eta, \delta) \), then \(f \in \text{lip}(1, \delta) \).

Proof. For \(x \in \mathbb{R}^d \), \(h \) small and \(f \in \text{Lip}(\eta, \delta) \) we have
\[
\|Z_h^k f(x)\|_{p,l} \leq C \frac{h^\eta}{(\log \frac{1}{h})^\delta}.
\]
Then
\[
(\log \frac{1}{h})^\delta \|Z_h^k f(x)\|_{p,l} \leq Ch^\eta.
\]
Therefore
\[
\frac{(\log \frac{1}{h})^\delta}{h} \|Z_h^k f(x)\|_{p,l} \leq Ch^{\eta-1},
\]
which tends to zero with \(h \to 0 \). Thus
\[
\frac{(\log \frac{1}{h})^\delta}{h} \|Z_h^k f(x)\|_{p,l} \to 0, \quad h \to 0.
\]
Then \(f \in \text{lip}(1, \delta) \).

Theorem 3. If \(\eta < \nu \), then \(\text{Lip}(\eta, 0) \supset \text{Lip}(\nu, 0) \) and \(\text{lip}(\eta, 0) \supset \text{lip}(\nu, 0) \).

Proof. We have \(0 \leq h \leq 1 \) and \(\eta < \nu \), then \(h^\nu \leq h^\eta \).
Then the proof of the theorem is immediate.

3. New Results on Dunkl Dini Lipschitz Class

Theorem 4. Let \(\eta > 2k \). If \(f \) belong to the \(d \)-Dunkl Dini Lipschitz class, i.e.,
\[
f \in \text{Lip}(\eta, \delta), \quad \eta > 2k, \delta \geq 0.
\]
Then \(f \) is equal to the null function in \(\mathbb{R}^d \).
Proof. Assume that \(f \in \text{Lip}(\eta, \delta) \). Then
\[
\|Z_h f(x)\|_{p,l} \leq C\frac{h^\eta}{(\log \frac{1}{h})^\delta}.
\]
From (4), we have
\[
\int_{\mathbb{R}^d} \left|1 - j_{\gamma + \frac{d-1}{2}}(h|\xi|)\right|^{2k} |\hat{f}(\xi)|^q w_l(\xi) d\xi \leq K^q C^q \frac{h^{\eta q}}{(\log \frac{1}{h})^{q \delta}}.
\]
Then
\[
\int_{\mathbb{R}^d} \frac{\left|1 - j_{\gamma + \frac{d-1}{2}}(h|\xi|)\right|^{2k} |\hat{f}(\xi)|^q w_l(\xi) d\xi}{h^{2qk}} \leq K^q C^q \frac{h^{\eta q - 2qk}}{(\log \frac{1}{h})^{q \delta}}.
\]
Since \(\eta > 2k \) we have
\[
\lim_{h \to 0} \frac{h^{\eta q - 2qk}}{(\log \frac{1}{h})^{q \delta}} = 0.
\]
Thus
\[
\lim_{h \to 0} \int_{\mathbb{R}^d} \frac{\left|1 - j_{\gamma + \frac{d-1}{2}}(h|\xi|)\right|^{2qk} |\hat{f}(\xi)|^q w_l(\xi) d\xi}{|\xi|^q} = 0.
\]
and also from the formula (3) and Fatou’s theorem, we obtain
\[
\int_{\mathbb{R}^d} |\xi|^{2qk} |\hat{f}(\xi)|^q w_l(\xi) d\xi = 0.
\]
Hence \(|\xi|^{2k} \hat{f}(\xi) = 0 \) for all \(\xi \in \mathbb{R}^d \), then \(f(x) \) is the null function.

Analog of the Theorem 4, we obtain this theorem.

Theorem 5. Let \(f \in L^p_1(\mathbb{R}^d) \). If \(f \) belong to \(\text{lip}(2, 0) \), i.e.,
\[
\|Z_h f(x)\|_{p,l} = O(h^2), \quad \text{as} \quad h \to 0.
\]
Then \(f \) is equal to null function in \(\mathbb{R}^d \).

Now, we give another the main result of this paper analog of Theorem 1.

Theorem 6. Let \(f \in L^p_1(\mathbb{R}^d) \). If \(f(x) \) belong to \(\text{Lip}(\eta, \delta) \), then
\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^q w_l(\xi) d\xi = O\left(\frac{s^{-\eta q}}{(\log s)^{q \delta}}\right), \quad s \to \infty,
\]
where \(\frac{1}{p} + \frac{1}{q} = 1 \).
Proof. Suppose that \(f \in \text{Lip}(\eta, \delta) \). Then

\[
\| Z_h^k f(x) \|_{p,l} = O \left(\frac{h^\eta}{(\log \frac{1}{h})^{\delta}} \right), \quad h \to 0.
\]

From (4), we have

\[
\int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{q}{2} - 1}(h|\xi|)|^q |\hat{f}(\xi)|^q w_l(\xi) d\xi \leq K^q \| Z_h^k f(x) \|_{p,l}^q.
\]

If \(|\xi| \in [\frac{1}{h}, \frac{2}{h}]\) then \(h|\xi| \geq 1 \) and Lemma 2 implies that

\[
1 \leq \frac{1}{c^q k} |1 - j_{\gamma + \frac{q}{2} - 1}(h|\xi|)|^q.
\]

Then

\[
\int_{\frac{1}{h} \leq |\xi| \leq \frac{2}{h}} |\hat{f}(\xi)|^q w_l(\xi) d\xi \leq \frac{1}{c^q k} \int_{\frac{1}{h} \leq |\xi| \leq \frac{2}{h}} |1 - j_{\gamma + \frac{q}{2} - 1}(h|\xi|)|^q |\hat{f}(\xi)|^q w_l(\xi) d\xi
\]
\[
\leq \frac{1}{c^q k} \int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{q}{2} - 1}(h|\xi|)|^q |\hat{f}(\xi)|^q w_l(\xi) d\xi
\]
\[
\leq \frac{K^q}{c^q k} \| Z_h^k f(x) \|_{p,l}^q
\]
\[
= O \left(\frac{h^\eta}{(\log \frac{1}{h})^{\delta}} \right).
\]

So we obtain

\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^q w_l(\xi) d\xi \leq C' \frac{s^{-\eta}}{(\log s)^{q\delta}},
\]

where \(C' \) is a positive constant. Now, we have

\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^q w_l(\xi) d\xi = \sum_{i=0}^{\infty} \int_{2^i s}^{2^{i+1} s} |\hat{f}(\xi)|^q w_l(\xi) d\xi
\]
\[
\leq C' \frac{s^{-\eta}}{(\log s)^{q\delta}} + \frac{(2s)^{-\eta}}{(\log 2s)^{q\delta}} + \frac{(4s)^{-\eta}}{(\log 4s)^{q\delta}} + \cdots
\]
\[
\leq C' \frac{s^{-\eta}}{(\log s)^{q\delta}} \left(1 + 2^{-\eta} + (2^{-\eta})^2 + (2^{-\eta})^3 + \cdots \right)
\]
\[
\leq K \eta \frac{s^{-\eta}}{(\log s)^{q\delta}},
\]

where \(K = C'(1 - 2^{-\eta})^{-1} \) since \(2^{-\eta} < 1 \). Consequently

\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^q w_l(\xi) d\xi = O \left(\frac{s^{-\eta}}{(\log s)^{q\delta}} \right), \quad \text{as} \quad s \to \infty.
\]
References

