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Comultiplication Modules
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Abstract. Let R be a commutative ring. An R-module M is comutiplication if for every submodule N
of M there exists an ideal I of R such that N = (0 :,, I). This paper is devoted to study some properties
of comultiplication rings and modules.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity. We recall that
R-module M is comutiplication if for every submodule N of M there exists an ideal I of R
such that N = (0 :3; I). It was shown that M is comultiplication if and only if for each
submodule N of M, N = (0 :j; Anng(N)) [4]. Also a Noetherian local ring R is a gorenstein
ring if injdimR < oo [6]. In this article, among other results, we will show that if R is a local
Artinian ring, then R is comultiplication if and only if R is gorenstein. An R-module M is called
generalized hopfian, if every surjective endomorphism of M has a small kernel. It is proved
that every comultiplication module is generalized hopfian. At last but not at least, we consider
the direct sum of comultiplication modules, it is shown that M = €,¢; M;, is comultiplication
if and only if for each i € I, M; is a comultiplication module and for each submodule N of

M,N = @;e;(N (| Mp).

2. Auxiliary Results

In this section we will provide the definitions and results which are necessary in the next
section.

Definition 1.
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(1) Let M be an R— module. A submodule N of M is said to be large (resp. small) if for every
non-zero submodule K of M, we have N (\K # 0 (resp. N + K # M).

(2) An R-module M is called generalized hopfian, if every subjective endomorphism of M has a
small kernel.

(3) An R-module M is called weakly co-hopfian, if every injective endomorphism of M has a
large image.

(4) Let I be an ideal of R. We say that I is a second ideal of R, if for each r € R, rI = 0 or
rl =1.

(5) An R-module M is called uniform, if every submodule of M is large.
(6) Anideal I of R is a pure ideal if for each ideal J of R, IJ =1NJ.
(7) A submodule N of M is a copure submodule if for each ideal I of R, (N :3; I) = N+(0 33, I).

(8) An R-module M is called weak comultiplication if for every prime submodule N of M, there
exists an ideal I of R such that N = (0 :3; I)

Theorem 1. Let R be a discrete valuation ring with the unique maximal ideal m. If R-module M
is comultiplication, then M = E(R/m) or M = R/m", for some n € N.

Proof. See [1] and [2]. O
Theorem 2 ([4]). Let R be a Noetherian ring, and M be a comultiplication R-module so M is
Artinian.

Theorem 3 ([3]). Let R be a Noetherian ring, and M be an injective multiplication R-module, so
M is comultiplication.

Lemma 1 ([5]). If M is a comultiplication R -module, then for each endomorphism f of M,
Imf = Anng(kerf)M.

3. Main Results

Lemma 2. Let R be a Noetherian ring. Then the following statements are equivalent:
(1) Ris a comultiplication ring;
(2) For all P € Spec(R), Rp is a comultiplication ring;
(3) Forall P € Max(R), Rp is a comultiplication ring.

Proof. (1—2) Let J be an ideal of Rp, then there exists an ideal I of R such that J = I.
Now I = AnnAnnl and so J = I, = AnnAnnl, = AnnAnnJ.

(2—3) It is clear.

(3—1) Let I be an ideal of R. For all P € Max(R), we have I, = AnnAnnlp = (AnnAnnlI)p
and so I =AnnAnnl. O



J. Azami, M. Khajepour / Eur. J. Pure Appl. Math, 9 (2016), 244-249 246

Theorem 4. Let M be a comultiplication R-module then

(D
&)
3

If I is a second ideal of R, then N = (0 :); I) is a prime submodule of M.
If N is a second submodule of M, then AnngN is a prime ideal of R.

If M is faithful, and N a submodule of M such that AnngN is a large ideal of R, then N is
a small submodule of M.

(4) IfN be a submodule of M such that AnnN is a pure ideal of R, then N is a copure submodule
of M.
Proof.
(1) Let r € R and m € M be elements such that rm € N and r ¢ (N :z M). Therefore

(2)

(3)

(4)

rM ¢ N and so rMI # 0. This shows that rI # 0, and by hypothesis rI = I. Since
rm € N = (0 :; I), it follows that rmI = 0 and so mI = 0, that impliesm € (0:), [) = N.

Let N be a second submodule of M. Set I :=AnnzyN and so N = (0 :,, I). Suppose that
x,y be two elements of R such that xy € I but x ¢ I and y € I. Now xy € I, implies that
xyN = 0 and hence (xy)"N # N for each n € N. Since x,y ¢ I, it follows that there
exists n € N such that x"N = N and y"N = N. Consequently (xy)"N = x"y"N =N,
which is a contradiction.

Let there exists a submodule K of M such that M =N + K. So
M =N +K =(0:,; AnnN) + (0 :3; AnnK) = (0 :); AnnN ﬂAnnK).

Therefore AnnN (JAnnK C AnnM = 0, and consequently AnnK = 0 which implies that
K =(0:y AnnK) = M.

We show that for each ideal I of R, (N :3; I) = N + (0 :j; I). Note that for each ideal I of
R there exists a submodule K of M such that (0 :;; I) = (0 :3; AnnK), so

(N 3 I)=((0:3; AnnN) 13, I) = ((0 :ps I) 13y AnnN) = ((0 3, AnnK) :3; AnnN)
=(0 :j; AnnKAnnN) = (0 :;; AnnK ﬂAnnN)
=(0:); AnnN) + (0 :p; AnnK) =N + (0 :;; I).

O

Theorem 5. Every comultiplication module is a generalized hopfian and weakly co-hopfian mod-

ule.

Proof. Let M be a comultiplication module and f be a surjective endomorphism of M.
Suppose that there exists a submodule N of M such that M = kerf + N. In this case
f(M)=f(kerf +N)=f(N). Therefore M = f(N) = (0:), (0 :z f(N))).
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Since M is a comultiplication R-module, it follows that f(N) € N and so we have:

M=(0:(0:f(N)))ES(0:(0:xN))=N,

and hence ker f is a small submodule of M. Now let f be an injective endomorphism of M and
N be a submodule of M such that Imf (N = 0. By the previous lemma, Imf = Anng(kerf)M,
and so Anng(kerf)M (N = 0. But kerf =0 and hence N =M (|N =0. O

Theorem 6. let (R, m) be a local Artinian ring, then the following statements are equivalent:
(1) Ris a comultiplication ring;
(2) Ris a gorenstein ring;
(3) soc(R)~R/m;
(4) E(R/m) is a multiplication R module.

Proof. (1— 2) It is enough to show that r(R) = 1. Suppose on the contrary that r(R) # 1,
sor(R)=0orr(R)> 1. If r(R) =0, then r(R) = dimpHomgz(R/m,R) = 0 and so
(0 :g m) ~ Homgz(R/m,R) = 0. Which is a contradiction, because the annihilator of any proper
ideal of an Artinian local ring is non-zero. Now suppose thatr(R) > 1, so there exist two ideals
I and J of R such that (0 :;zy m) = I @J = (0 :zg AnnI) (0 :g AnnJ) = (0 :g Annl [ |AnnJ), this
means that (0 :z Annl [ JAnnJ) # 0. On the other hand

1{")J =AnnAnnl (|AnnAnnJ = Ann(Annl +AnnJ) # 0,

Which is a contradiction.

(2—3) Since R is gorenstein, it follows from [6], for all non-zero ideals I and J of R,
I(J # 0. Now let S; and S, be two simple submodules of R, then S;()S, # 0 and conse-
quently S; = S,.

(3—4) Since soc(R) = (0 :z m) ~ R/m, it follows that r(R) = 1 and so R is a gorenstein
ring. On the other hand dimR = injdimR = 0. Thus R is an injective R module and so
R~ E(R/m), by [6].

(4—1) E(R/m) is multiplication and Artinian, it follows that E(R/m) is cyclic and so
E(R/m) ~ R. Now R is an injective and multiplication R module, then by [3] R is comultipli-
cation. O

Theorem 7. Let (R, m) be a local Artinian ring, and M be a faithful comultiplication R-module.
Then M is uniform.

Proof. Let (R, m) be a local Artinian ring, and M be a faithful comultiplication R-module
and N be a submodule of M such that N NK = 0, for some submodule K of M. Then we have

NNK =(0:y Anng(N))N (0 :3; Anng(K)) = (0 :3; Anng(N) + Anng(K)).
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Now if Anng(N) + Anng(K) = 0, then

So suppose that Anng(N) + Anng(K) # 0, then Anng(N) + Anng(K) € m. Therefore

0=NnNK =(0:y Anng(N) + Anng(K)). (D)
Hence

Ann(Anng(N) +Anng(K)) C Ann(M) =0 (2)
which is a contradiction, because R is Artinian. O

Lemma 3. Let (R, m) be an Artinian local ring. Then R is comultiplication if and only if
(0:g m""1)/(0 ;g m™) >~ m"/m"*! for all n > 0.

Proof. Let R be a comultiplication ring, then by Theorem 6, soc(R) ~ R/m and so we have
(0:g m) ~R/m. Now let n > 1, consider the following exact sequence:

0_)mn/mn+1_)R/mn+l_>R/mn_>0

Since R is gorenstein, it follows that 0 = dimR < injdimR = depthR < dimR = 0, and so
R is injective R-module. Therefore we have the following exact sequence.

0— (0:3m") = (0:xg m"™) - Hom(m"/m™™,R) — 0

On the other hand r(R) = 1 and we have

t t t
Hom(m"/m"™,R) ~ Hom(@R/m,R) o~ @Hom(R/m,R) A @R/m =m"/m"L.
i=1 i=1 i=1

Therefore by the last exact sequence (0 :zg m")/(0 ;g m" 1) ~ m"®/m™*!. O

Lemma 4. Let My, M, be two submodules of a comultiplication R-module M such that
M= Ml @Mz Then HOTTlR(Ml,Mz) = HOTTlR(Mz, Ml) =0.

Proof. Let f : M; — M, be a homomorphism. Since M is comultiplication, f (M;) € M;, by
[2]. On the other hand f(M;) € M, and so f(M;) € M; [ |M, = 0. This shows that f =0. [

Theorem 8. Let R be a Dedekind domain, and M be a comultiplication module, then there exist
distinct maximal ideals P;;c; of R and submodules M;, i € I of M, such that M = @;c; M; and
for each i € I, M; = E(R/P;) or M; = R/P/", for some n; € N.
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Proof. Let R be a Dedekind domain and M be comultiplication, so R is Noetherian and M is
Artinian by [4]. Set M(P) :={m € M |3In € N, P"m = 0} for P € Spec(R). There exist distinct
maximal ideal {P;};c; such that M = ,;c; M(P;). Let M; = M(P;), since M is comultiplication,
it follows that each M; is also comultiplication. On the other hand each M; is an Rp -module.
So by Theorem 8 for each i € I, M; = E(Rp,/P;Rp,) or M; = Rpi/PiRgi, since P;("\(R\ P;) =0,
it follows that E(Rp /P;Rp) = E(R/P;), also Rp, /Pl-R;: =R/P/". O

Theorem 9. Let R C R be an integral extension and R be weak comultiplication, then R is weak
comultiplication.

Proof Let P € Spec(R) so there exists a prime ideal q of R such that p = ¢ so

p=q° = (0:gAnng(q))" 2 (0 :g Anng(q)) = (0 :g Anng(p)). 3)
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