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Beta G-Star Relation on Modules
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Abstract. In this work, we say submodules X and Y of M are (3 equivalence, X 37V, if and only
if Y + K = M for every K < M such that X + K = M and X +T = M for every T' < M such
that Y +7 = M. It is proved that the 3 relation is an equivalent relation and has good behaviour
with respect to addition of submodules and homomorphisms.
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1. Introduction

Throughout this paper all rings will be associative with identity and all modules will
be unital left modules.

Let R be a ring and M be an R—module. We will denote a submodule N of M by
N < M. Let M be an R—module and N < M. If L = M for every submodule L of M
such that M = N + L, then N is called a small submodule of M and denoted by N < M.
Let M be an R—module and N < M. N is called essential submodule of M and denoted
by N < M in case KNN # 0 for every submodule K # 0. Let M be an R—module and K
be a submodule of M. K is called a generalized small (briefly, g-small) submodule of M if
for every essential submodule T of M with the property M = K +T implies that T = M,
then we write K <, M. (in [11], it is called an e-small submodule of M and denoted by
K <. M). It is clear that every small submodule is a generalized small submodule but the
converse is not true generally. M is called a (generalized) hollow module if every proper
submodule of M is (generalized) small in M. Here it is clear that every hollow module is
generalized hollow module. Let M be an R—module and U,V < M. If M = U + V and
V' is minimal with respect to this property, or equivalently, M =U +V and UNV K<V,
then V is called a supplement of U in M. M is called a supplemented module if every
submodule of M has a supplement in M. Let M be an R—module and U,V < M. If
M=U+V and M =U+T with T <V implies that T' =V, or equivalently, M = U +V
and UNV <, V, then V is called a g-supplement of U in M. M is called g-supplemented
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if every submodule of M has a g-supplement in M. Let M be an R—module and U < M.
If for every V < M such that M = U + V, U has a g-supplement V'with V' < V, we say
U has ample g-supplements in M. If every submodule of M has ample g-supplements in
M, then M is called an amply g-supplemented module. SocM indicates the socle of M
(the sum of all simple submodules of M).

Lemma 1. Let M =U+V and M =UNV +T. Then M =U+VNT=V+UNT.

Proof. See [4, Lemma 1.24].

2. The ; Relation

Definition 1. We define the relation '5; " on the set of submodules of an R—module M by
XBY if and only if Y + K = M for every K I M such that X + K = M and X +T = M
for every T' I M such that Y +T = M.

Proposition 1. Let M be an R—module and X,Y < M. If XB*Y, then X 7Y .

Proof. Clear from definitions. (See [2]).

Lemma 2. The §; relation is an equivalence relation.

Proof. The reflective and symmetric properties are clear. For transitive property,
assume X 37Y and Y377, Let K 9 M and X + K = M. Since X3}V, then Y + K = M,
and since Y37, then Z + K = M. Let T < M and Z + T = M. Since Y37, then
Y +T = M, and since X3;Y, then X +T = M. Hence X3;7

Lemma 3. Let X,Y < M. The following statements are equivalent.
(i) XBY
(ii) For every T < M such that X +Y +T =M, X+T =M andY +T = M.

Proof. (i) = (i1) Let T QM and X +Y +T = M. Since T'I M, then Y + T I M
and X +7 < M. Then by XY, M = X +Y +T =X+ X+T = X +T and
M=X+Y+T=Y+Y+T=Y+T.

(1i) = (i) Let K S M and X + K = M. Then X +Y + K = M and by hypothesis,
Y + K = M. Similarly we prove that for every ' < M such that Y +T =M, X+T = M.

Proposition 2. Let X,Y < M. If XB;Y, then 2 < & and XX <, &

Proof. Let X+Y + %4 % for % < % Clearly, we can see that T < M. Since
AR 2 =4 thenX: XY 4L = YT and Y + T = M. Then by XB}Y,
X+T= M and since X < T, T M. Hence X;Y <4 % Similarly, we can prove that

.C3 QP
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Remark 1. The converse of the Proposition 2 is not true in general. For example, con-
sider the Z-module zZ and let p and q be primes with p # q. Since le and qu are simple,
Zp+Z Zp+Z .

% = Z% <g Z% and %qq = Z% <g Z%' But ZpB;Zq is not true.

Theorem 1. Let X, Y < M such that X <Y + A and Y < X + B, where A,B <4 M.
Then XY .

Proof. Let T < M and X+Y+T = M. Then (Y + A)+Y+T = M and A+Y+T = M.
Since T' < M, then Y + T < M. Then, by A <4, M, Y +T = M. Similarly, we can see
that X +7 = M.

Lemma 4. Let X <M. X <4, M if and only if X3;0.

Proof. (=) Let X <4y M andlet X +0+4+T7T = X +T = M for T < M. Since
X <y M and X +T = M, then 0+ T =T = M. Then, by Lemma 3 X 570.

(<=) Let X53;0. Let X +T = M for T < M. Since X3;0, then T'=0+1T = M.
Hence X <4 M.
Corollary 1. Let X,Y < M and XB;Y. If X <4 M, then Y <4 M.

Proof. Since X <4 M, then by Lemma 4, X 3/0, and since X5;Y’, then by Lemma 2,
Y 3;0. Then, by Lemma 4, Y <, M.
Corollary 2. Let M be an R—module. Then M is generalized hollow if and only if X 530
for every proper submodule X of M.

Proof. Clear from Lemma 4.

Corollary 3. Let M be an R—module. Then M is generalized hollow if and only if X 3;Y
for every proper submodules X, Y of M.

Proof. Clear from Lemma 4.

Remark 2. Let M be a nonzero semisimple R—module. Since M have no proper essential
submodules, M <4 M and by Lemma 4, M[B3;0. But MB*0 is not true.

Corollary 4. Let M be an R—module. Then SocM ;0.
Lemma 5. Let X1, Xo,Y1,Ys < M such that X18;Y1 and X2;Ys. Then (X1 + Xo) By (Y1 +Y3).

Proof. Let X1+ Xo+ K = M for K < M. Since K < M, then Xo + K < M. Then,
by X18;Y1, Y1+ Xo + K = M. Since K < M, then Y1 + K < M. Then, by X257V,
Yy + Y, + K = M. Similarly, we can see that X1 + Xo + T = M for every T' <\ M such
that Y7 + Yo +7 = M.

Corollary 5. Let X1, Xo,..., Xy, Y1,Y2,..., Yy, < M and X;5;Y; for every i = 1,2,....n.
Then X1+ Xo+ ...+ Xn/B;YI +Y+..4Y,.
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Proof. Clear from Lemma 5.

Corollary 6. Let X1, Xo,.... X, Y < M and X;8]Y for every i = 1,2,..n. Then

Proof. Clear from Lemma 5.

Lemma 6. Let f: M — N be an R—module epimorphism and X,Y < M. If XBjY,
then f(X) By f (Y).

Proof. Let f(X)+ f(Y)+T =N for T I N. Then X +Y + f~1(T) = M. Since
T < N, then we can see that f~1 (T) < M. Then, by Lemma 3, X + f~1(T) = M and
Y+ fYT)=M. Since X + f1(T) =M and Y + f~1(T) = M, then f(X)+T =N
and f(Y)+ T = N. Hence, by Lemma 3, f (X) 85 f (Y).

Corollary 7. Let X,Y,Z < M. If XB]Y, then %B;%

Proof. Clear from Lemma 6.

Corollary 8. Let M be an R—module, A be a direct summand of M and X,Y < A. If
XByY in M, then XB;Y in A also holds.

Proof. Clear from Lemma 6.

Proposition 3. Let X,Y < M. If XB;Y and Y is an essential mazimal submodule of
M, then X <Y.

Proof. Assume X £ Y. Then, because Y is an essential maximal submodule of M,
X +Y =M and since XY, Y =Y +Y = M. This contradicts maximality of Y.

Definition 2. Let M be an R—module and U,V < M. IfU+V =M and UNV <4 M,
then V is called a weak g-supplement of U in M. If every submodule of M has a weak
g-supplement in M, then M is called a weakly g-supplemented module. (See [8])

Proposition 4. Let X37Y in M.

(i) If X has an essential g-supplement V in M, then V is also a g-supplement of Y in
M.

(ii) If X has an essential weak g-supplement V in M, then V is also a weak g-
supplement of Y in M.

Proof. (i) Since M = X+V and V. < M, then by XB;Y, Y +V =M. Let M =Y +T
with 7' V. Since T' <V and V < M, then we can see that T' < M. Then by XB;‘Y,
X+T =M. Since X+T =M and T <V, then T = V. Hence V is a g-supplement of
Y in M.

(4i) Since M = X +V and V < M, then by XB7Y, Y +V =M. Let YNV +T =M
with T < M. Since M =Y +Vand M =Y NV +T, then by Lemma 1, M =Y +VNT.
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Since V. <9 M and T" < M, then V.NT < M. Then by X5V, X +V NT = M.
Since M =V +T and M = X +V NT, then by Lemma 1, X NV +T = M. Because
XNV+T=MandT JdMand XNV K, M, thenT'= M. Hence Y NV <4 M and V'
is a weak g-supplement of Y in M.

Proposition 5. Let M be an amply g-supplemented module and X, Y < M. If g-
supplements of X and 'Y in M is the same, then XY .

Proof. Let X + K = M with K < M. Since M is amply g-supplemented, there exists
a g-supplement K "of X with K' < K. By hypothesis, K "is a g-supplement of Y in M.
Then Y + K = M and since K’ < K, Y + K = M. Similarly, we can see that X +7 = M
for every T' < M such that Y +7T = M.

Proposition 6. Let M be weakly g-supplemented module and X,Y < M. If weak g-
supplements of X and 'Y in M is the same, then X5V .

Proof. Let X + K = M with K < M. Since M is weakly g-supplemented, by [8,
Proposition 1] there exists a weak g-supplement K "of X with K’ < K. By hypothesis,
K' is a weak g-supplement of Y in M. Then Y + K' = M and since K’ < K, Y +K = M.
Similarly, we can see that X +7T = M for every T' < M such that Y + 7T = M.

Proposition 7. Let M be an R—module, X <Y < M and C be an essential weak
g-supplement of X in M. If XBJY, then Y N C <4 M.

Proof. Since X3;Y and C is an essential weak g-supplement of X in M, then by
Proposition 4, C'is also a weak g-supplement of Y in M. Hence Y N C <, M.

Lemma 7. Let M be an R—module, X <Y < M and C be a weak g-supplement of X in
M. IfYNC <y M, then XBjY.

Proof. Let Y +T = M with T' < M. Since C is a weak g-supplement of X in M,
C+ X =M. Since X <Y, by Modular Law, Y =Y "M =Y N(C+X)=YNC+ X.
Then M =Y +T =YNC+X+T andsince YNC <4y M and X +T I M, X +T =M.
If X +K=Mwith KAM,Y + K = M also holds since X <Y. HenceXﬁ;Y.

Proposition 8. Let M = M; © My and My < X < M. If X N My <4 M, then Xﬁ;Ml.

Proof. Clear from Lemma 7.

Proposition 9. Let M be an R—module. If every submodule of M equivalent to an
essential weak g-supplement in M by By relation, then M is weakly g-supplemented.

Proof. Let X < M. By hypothesis, there exists an essential weak g-supplement V in
M such that X37V. Let V be a weak g-supplement of U in M. By hypothesis, there
exists an essential weak g-supplement Y in M such that UBJY. Since V' is an essential
weak g-supplement of U in M, by Proposition 4, V is a weak g-supplement of Y in M.
Then Y is an essential weak g-supplement of V' in M and since X85V, by Proposition 4,
Y is a weak g-supplement of X in M. Hence M is weakly g-supplemented.
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