Contra δgb-Continuous Functions in Topological Spaces

S.S. Benchalli1,2, P.G. Patil2,*, J.B. Toranagatti3, S.R. Vighnesri4

$^1,^2$ Department of Mathematics, Karnatak University, Dharwad, India
3 Department of Mathematics, Karnatak University’s Karnatak College, Dharwad, India
4 Department of Mathematics, R.L.S College, Dharwad, India

Abstract. In this paper the notion of δgb-open sets in topological spaces is applied to study a new class of functions called contra δgb-continuous functions as a new generalization of contra continuity and obtain their characterizations and properties.

2010 Mathematics Subject Classifications: 54C08, 54C10

Key Words and Phrases: δgb-open, δgb-closed, δgb-connected, contra δgb-continuous, δgb-continuous.

1. Introduction and Preliminaries

Throughout this paper, $(X, \tau), (Y, \sigma)$ and (Z, η) (or simply X, Y and Z) represent topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, the closure of A, interior of A and complement of A are denoted by $\text{cl}(A)$, $\text{int}(A)$ and A^c respectively.

Definition 1. A subset A of a topological space X is called a

(i) pre-closed [9] if $\text{cl}(\text{int}(A)) \subseteq A$

(ii) b-closed [2] if $\text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A)) \subseteq A$

(iii) regular-closed [14] if $A = \text{cl}(\text{int}(A))$

(iv) δ-closed [17] if $A = cl_\delta(A)$ where $cl_\delta(A) = \{x \in X: \text{int}(cl(U)) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U\}$

*Corresponding author.

Email addresses: benchalliss@gmail.com (S.S. Benchalli), pgpatil01@gmail.com (P.G. Patil), jagadeeshbt2000@gmail.com (J.B. Toranagatti), vighneshirs@gmail.com (S.R. Vignesri)

http://www.ejpam.com 312 © 2017 EJPAM All rights reserved.
(v) delta generalized b-closed (briefly, δgb-closed) \([4]\) if \(\text{bcl}(A) \subseteq G\) whenever \(A \subseteq G\) and \(G\) is \(\delta\)-open in \(X\).

The complements of the above mentioned closed sets are their respective open sets.

The \(b\)-closure of a subset \(A\) of \(X\) is the intersection of all \(b\)-closed sets containing \(A\) and is denoted by \(\text{bcl}(A)\).

Definition 2. A function \(f:X \to Y\) from a topological space \(X\) into a topological space \(Y\) is called a,

(i) contra continuous \([6]\) if \(f^{-1}(G)\) is closed in \(X\) for every open set \(G\) of \(Y\).

(ii) contra \(b\)-continuous \([10]\) if \(f^{-1}(G)\) is \(b\)-closed in \(X\) for every open set \(G\) of \(Y\).

(iii) contra rgb-continuous \([13]\) if \(f^{-1}(G)\) is rgb-closed in \(X\) for every open set \(G\) of \(Y\).

(iv) \(\delta gb\)-continuous \([5]\) if \(f^{-1}(G)\) is \(\delta gb\)-open in \(X\) for every open set \(G\) of \(Y\).

(v) completely-continuous \([3]\) if \(f^{-1}(G)\) is regular-open in \(X\) for every open set \(G\) of \(Y\).

(vi) perfectly-continuous \([12]\) if \(f^{-1}(G)\) is clopen in \(X\) for every open set \(G\) of \(Y\).

(vii) \(\delta^*\)-continuous if \(f^{-1}(G)\) is \(\delta\)-open in \(X\) for every open set \(G\) of \(Y\).

(viii) contra gb-continuous \([1]\) if \(f^{-1}(G)\) is gb-closed in \(X\) for every open set \(G\) of \(Y\).

(ix) pre-closed \([7]\) if for every closed subset \(A\) of \(X\) \(f(A)\) is pre-closed in \(Y\).

Definition 3. \([5]\) A topological space \(X\) is said to be a,

(i) \(T_{\delta gb}\)-space if every \(\delta gb\)-closed subset of \(X\) is closed.

(ii) \(\delta gbT_{\frac{1}{2}}\)-space if every \(\delta gb\)-closed subset of \(X\) is \(b\)-closed.

2. Contra \(\delta gb\)-Continuous Functions.

Definition 4. A function \(f:X \to Y\) is called contra \(\delta gb\)-continuous if \(f^{-1}(V)\) is \(\delta gb\)-closed in \(X\) for each open set \(V\) of \(Y\).

Clearly, \(f:X \to Y\) is contra \(\delta gb\)-continuous if and only if \(f^{-1}(G)\) is \(\delta gb\)-open in \(X\) for every closed set \(G\) in \(Y\).

Theorem 1. If \(f:X \to Y\) is contra gb-continuous then it is contra \(\delta gb\)-continuous.

Proof: Follows from the fact that every gb-closed set is \(\delta gb\)-closed.

Theorem 2. If \(f:X \to Y\) is contra \(b\)-continuous then it is contra \(\delta gb\)-continuous.

Proof: Follows from the fact that every contra \(b\)-continuous function is contra gb-continuous and Theorem 1.

Remark 1. The converse of Theorem 1 and Theorem 2 need not be true as seen from the following example.
Example 1. Let $X=Y=\{a,b,c\}$. Let $\tau=\{X,\phi,\{a\}\}$ and $\sigma=\{X,\phi,\{a\},\{b\}\}$ be topologies on X and Y respectively. Then the identity function $f:X\to Y$ is contra δgb-continuous but neither contra b-continuous and nor contra gb-continuous, since $\{a\}$ is open in Y but $f^{-1}(\{a\})=\{a\}$ is not gb-closed in X and hence not b-closed in X.

Theorem 3. If $f:X\to Y$ is contra δgb-continuous then it is contra rgb-continuous.

Proof: Follows from the fact that every δgb-closed set is rgb-closed.

Remark 2. The converse of Theorem 3 need not be true as seen from the following example.

Example 2. Let $X=Y=\{a,b,c\}$. Let $\tau=\{X,\phi,\{a\},\{b\}\}$ and $\sigma=\{X,\phi,\{a\}\}$ be topologies on X and Y respectively. Let $f:X\to Y$ be a function defined by $f(a)=a=f(b)$ and $f(c)=c$. Then f is contra rgb-continuous but not contra δgb-continuous, since $\{a\}$ is open in Y but $f^{-1}(\{a\})=\{a,b\}$ is not δgb-closed in X.

Theorem 4. Let $f:X\to Y$ be a function.

(i) If X is $T_{\delta gb}$-space then f is contra δgb-continuous if and only if it is contra continuous.

(ii) If X is $\delta gbT_{1/2}$-space then f is contra δgb-continuous if and only if it is contra b-continuous.

Proof: (i) Suppose X is $T_{\delta gb}$-space and f is contra δgb-continuous. Let G be an open set in Y. Then by hypothesis $f^{-1}(G)$ is δgb-closed in X and hence $f^{-1}(G)$ is closed in X. Therefore f is contra continuous.

Converse is obvious.

(ii) Suppose X is $\delta gbT_{1/2}$-space and f is contra δgb-continuous. Let G be an open set in Y then $f^{-1}(G)$ is δgb-closed in X and hence $f^{-1}(G)$ is b-closed in X. Therefore f is contra b-continuous.

Converse is follows from the Theorem 2.

Theorem 5. [5] Let $A\subseteq X$. Then $x\in \delta gbcl(A)$ if and only if $U\cap A\neq \phi$, for every δgb-open set U containing x.

Lemma 1. [8] The following properties are hold for subsets A and B of a space X:

(i) $x\in ker(A)$ if and only if $A\cap F=\phi$ for any closed set F of X containing x.

(ii) $A\subseteq ker(A)$ and $A=ker(A)$ if A is open in X.

(iii) If $A\subseteq B$ then $ker(A)\subseteq ker(B)$.

Theorem 6. Suppose that $\delta GBC(X)$ is closed under arbitrary intersections. Then the following are equivalent for a function $f:X\to Y$:

(i) f is contra δgb-continuous
For each $x \in X$ and each closed set B of Y containing $f(x)$ there exists an δ_{gb}-open set A of X containing x such that $f(A) \subseteq B$.

For each $x \in X$ and each open set G of Y not containing $f(x)$ there exists an δ_{gb}-closed set H in X not containing x such that $f^{-1}(G) \subseteq H$.

(iv) $f(\delta_{gb}cl(A)) \subseteq \ker(f(A))$ for every subset A of X.

(v) $\delta_{gb}cl(f^{-1}(B)) \subseteq f^{-1}(\ker(B))$ for every subset B of Y.

Proof:

(i) \rightarrow (ii) Let B be a closed set in Y containing $f(x)$ then $x \in f^{-1}(B)$. By (i), $f^{-1}(B)$ is δ_{gb}-open set in X containing x. Let $A = f^{-1}(F)$ then $f(A) = f(f^{-1}(B)) \subseteq B$.

(ii) \rightarrow (i) Let F be a closed set in Y containing $f(x)$ then $x \in f^{-1}(F)$. From (ii), there exists a δ_{gb}-open set G_x in X containing x such that $f(G_x) \subseteq f^{-1}(F)$. Thus $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$ which is δ_{gb}-open. Hence $f^{-1}(F)$ is δ_{gb}-open set in X.

(iii) \rightarrow (ii) Let G be an open set in Y not containing $f(x)$. Then $Y-G$ is a closed set in Y containing $f(x)$. From (ii), there exists a δ_{gb}-open set F in X containing x such that $f(F) \subseteq Y-G$. This implies $F \subseteq f^{-1}(Y-G) = X-f^{-1}(G)$. Hence $f^{-1}(G) \subseteq X-F$. Set $H = X-F$, then H is δ_{gb}-closed set not containing x in X such that $f^{-1}(G) \subseteq H$.

(iv) \rightarrow (v) Let $B \subseteq Y$ then $f^{-1}(B) \subseteq X$. By (iv), $f(\delta_{gb}cl(f^{-1}(B))) \subseteq \ker(f(f^{-1}(B))) \subseteq \ker(B)$. Thus $\delta_{gb}cl(f^{-1}(B)) \subseteq f^{-1}(\ker(B))$.

(v) \rightarrow (i) Let V be any open subset of Y. Then by (v) and Lemma 1, $\delta_{gb}cl(f^{-1}(V)) \subseteq f^{-1}(\ker(V)) = f^{-1}(V)$ and $\delta_{gb}cl(f^{-1}(V)) = f^{-1}(V)$. Therefore $f^{-1}(V)$ is δ_{gb}-closed set in X.

Lemma 2. [16] For a subset A of a space X, the following are equivalent:

(i) A is open and δ_{gb}-closed

(ii) A is regular open.

Theorem 7. [4] If $A \subseteq X$ is both δ-open and δ_{gb}-closed then it is b-closed.

Theorem 8. If $A \subseteq X$ is regular open then it is b-closed.

Lemma 3. For a subset A of a space X the following are equivalent:

(i) A is δ-open and δ_{gb}-closed

(ii) A is regular open
(iii) A is open and b-closed.

Proof: (i)→(ii): Let A be an \(\delta \)-open and \(\delta gb \)-closed set. Then by Theorem 7, A is b-closed that is \(bcl(A) \subseteq A \) and so \(int(cl(A)) \subseteq A \). Since A is \(\delta \)-open then A is pre-open and thus \(A \subseteq int(cl(A)) \). Hence A is regular open.

(ii)→(i): Follows from the fact that every regular open set is \(\delta \)-open and by Theorem 8.

(ii)→(iii): Follows from the fact that every regular open set is open and Theorem 8.

(iii)→(ii): Let A be an open and b-closed set then \(bcl(A) \subseteq A \) and so \(int(cl(A)) \subseteq A \). Since A is open, then A is pre-open and thus \(A \subseteq int(cl(A)) \), which implies A = \(int(cl(A)) \).

As a consequence of the above lemma, we have the following result:

Theorem 9. The following statements are equivalent for a function \(f:X \to Y \):

(i) \(f \) is completely continuous

(ii) \(f \) is contra \(\delta gb \)-continuous and \(\delta^* \)-continuous

(iii) \(f \) is contra b-continuous and continuous.

Definition 5. [16] A subset A of X is said to be Q-set if \(int(cl(A))=cl(int(A)) \).

Definition 6. [16] A function \(f:X \to Y \) is Q-continuous if \(f^{-1}(V) \) is Q-set in X for every open set V of Y.

Theorem 10. For a subset A of a space X the following are equivalent:

(i) A is clopen

(ii) A is \(\delta \)-open and \(\delta \)-closed

(iii) A is regular-open and regular-closed.

Theorem 11. For a subset A of a space X the following are equivalent:

(i) A is clopen

(ii) A is \(\delta \)-open, Q-set and \(\delta gb \)-closed

(iii) A is open, Q-set and b-closed.

Proof: (i)→(ii): Let A be clopen then by Theorem 10 we have A = \(int(cl(A))=cl(int(A)) \). Hence A is Q-set. Again by Theorem 10, A is \(\delta \)-open and \(\delta \)-closed. Since every \(\delta \)-closed set is \(\delta gb \)-closed. Therefore (ii) holds.

(ii)→(iii): Follows from the Theorem 7.

(iii)→(i): Let A be an open, Q-set and b-closed set then by Lemma 3, A is regular open. Since A is Q-set, then A = \(int(cl(A))=cl(int(A)) \) which implies A is regular closed. Hence by Theorem 10, A is clopen.
Theorem 12. The following statements are equivalent for a function \(f: X \rightarrow Y \):

(i) \(f \) is perfectly continuous
(ii) \(f \) is \(\delta^* \)-continuous, Q-continuous and contra \(\delta gb \)-continuous
(iii) \(f \) is continuous, Q-continuous and contra \(b \)-continuous.

Definition 7. A space \(X \) is called locally \(\delta gb \)-indiscrete if every \(\delta gb \)-open set is closed in \(X \).

Theorem 13. If \(f:X \rightarrow Y \) is a contra \(\delta gb \)-continuous and \(X \) is locally \(\delta gb \)-indiscrete space then \(f \) is continuous.

Proof: Let \(G \) be a closed set in \(Y \). Since \(f \) is contra \(\delta gb \)-continuous and \(X \) is locally \(\delta gb \)-indiscrete space then \(f^{-1}(G) \) is a closed set in \(X \). Hence \(f \) is continuous.

Definition 8. [11] A space \(X \) is called locally indiscrete if every open set is closed in \(X \).

Theorem 14. If \(f:X \rightarrow Y \) is a contra \(\delta gb \)-continuous preclosed surjection and \(X \) is \(T_{\delta gb} \)-space then \(Y \) is locally indiscrete.

Proof: Let \(V \) be an open set in \(Y \). Since \(f \) is contra \(\delta gb \)-continuous and \(X \) is \(T_{\delta gb} \)-space then \(f^{-1}(G) \) is closed in \(X \). Also \(f \) is preclosed then \(V \) is preclosed in \(Y \). Now we have \(\text{cl}(V)=\text{cl}(\text{int}(V)) \subseteq V \). This means \(V \) is closed in \(Y \) and hence \(Y \) is indiscrete.

Theorem 15. Suppose that \(\delta GBC(X) \) is closed under arbitrary intersections. If \(f:X \rightarrow Y \) is contra \(\delta gb \)-continuous and \(Y \) is Urysohn then \(G(f) \) is contra \(\delta gb \)-closed in \(X \times Y \).

Proof: Let \((x,y) \in \text{(X×Y)}-G(f) \), then \(y \neq f(x) \) and there exist open sets \(A \) and \(B \) such that \(f(x) \in A, y \in B \) and \(\text{cl}(A) \cap \text{cl}(B)=\phi \). Since \(f \) is contra \(\delta gb \)-continuous then there exists \(U \in \delta gbO(X,x) \) such that \(f(U) \subseteq \text{cl}(A) \). Therefore we obtain \(f(U) \cap \text{cl}(B)=\phi \). This shows that \(G(f) \) is contra \(\delta gb \)-closed.
Theorem 18. If $f:X \to Y$ is δgb-continuous and Y is T_1 then $G(f)$ is contra δgb-closed in $X \times Y$.

Proof: Let $(x,y) \in (X \times Y)-G(f)$ then $y \neq f(x)$ and there exists open set U such that $f(x) \in U$ and $y \notin U$. Since f is δgb-continuous, then there exists $V \in gbO(X,x)$ such that $f(V) \subseteq U$. Therefore we obtain $f(V) \cap (Y-U) = \phi$ and $Y-U \in C(Y,y)$. This shows that $G(f)$ is contra δgb-closed.

Theorem 19. Let $f:X \to Y$ be a function and $g:X \to X \times Y$ be the graph function of f defined by $g(x) = (x,f(x))$ for each $x \in X$. If g is contra δgb-continuous then f is contra δgb-continuous.

Proof: Let U be an open set in Y then $X \times U$ is an open set in $X \times Y$. Since g is contra δgb-continuous. It follows that $f^{-1}(U) = g^{-1}(X \times U)$ is δgb-closed in X. Thus f is contra δgb-continuous.

Theorem 20. If $f:X \to Y$ is contra δgb-continuous then for each $x \in X$ and for each closed set V in Y with $f(x) \in V$ there exists a δgb-open set U containing x such that $f(U) \subseteq V$.

Proof: Let $x \in X-K$. Then $f(x) \neq g(x)$. Since Y is Urysohn there exist open sets U and V such that $f(x) \in U, g(x) \in V$ and $cl(U) \cap cl(V) = \phi$. Since f and g are contra δgb-continuous, $f^{-1}(cl(U))$ and $g^{-1}(cl(V))$ are δgb-open sets in X. Let $A=f^{-1}(cl(U))$ and $B=g^{-1}(cl(V))$. Then A and B are δgb-open sets containing x. Set $C=A \cap B$, then C is δgb-open set in X. Hence $f(C) \cap g(C) = f(A \cap B) \cap g(A \cap B) \subseteq f(A) \cap g(B) = cl(U) \cap cl(V) = \phi$. Therefore $C \cap K = \phi$.

By Theorem 5, $x \notin gbcl(K)$. Hence K is δgb-closed in X.

Definition 11. A space X is called δgb-connected provided that X is not the union of two disjoint nonempty δgb-open sets.

Theorem 24. If $f:X \to Y$ is a contra δgb-continuous function from a δgb-connected space X onto any space Y then Y is not a discrete space.
Proof: Since \(f \) is contra \(\delta_{gb} \)-continuous and \(X \) is \(\delta_{gb} \)-connected space. Suppose \(Y \) is a discrete space. Let \(V \) be a proper non empty open and closed subset of \(Y \). Then \(f^{-1}(V) \) is proper nonempty \(\delta_{gb} \)-open and \(\delta_{gb} \)-closed subset of \(X \), which contradicts the fact that \(X \) is \(\delta_{gb} \)-connected space. Hence \(Y \) is not a discrete space.

Theorem 25. If \(f:X \to Y \) is a contra \(\delta_{gb} \)-continuous surjection and \(X \) is \(\delta_{gb} \)-connected space then \(Y \) is connected.

Proof: Let \(f:X \to Y \) is a contra \(\delta_{gb} \)-continuous and \(X \) is \(\delta_{gb} \)-connected space. Suppose \(Y \) is not connected. Then there exist disjoint open sets \(U \) and \(V \) in \(Y \) such that \(Y=U\cup V \). Therefore \(U \) and \(V \) are clopen in \(Y \). Since \(f \) is contra \(\delta_{gb} \)-continuous \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\delta_{gb} \)-open sets in \(X \). Further \(f \) is surjective implies, \(f^{-1}(U) \) and \(f^{-1}(V) \) are non empty disjoint and \(X = f^{-1}(U) \cup f^{-1}(V) \). This contradicts the fact that \(X \) is \(\delta_{gb} \)-connected space. Therefore \(Y \) is connected.

Theorem 26. Let \(X \) be a \(\delta_{gb} \)-connected and \(Y \) be \(T_1 \)-space. If \(f:X \to Y \) is contra \(\delta_{gb} \)-continuous then \(f \) is constant.

Proof: Since \(Y \) is \(T_1 \)-space, \(U=\{f^{-1}(y): y \in Y \} \) is a disjoint \(\delta_{gb} \)-open partition of \(X \). If \(|U| \geq 2 \) then \(X \) is the union of two nonempty \(\delta_{gb} \)-open sets. This contradicts the fact that \(X \) is \(\delta_{gb} \)-connected. Therefore \(|U|=1 \) and hence \(f \) is constant.

Definition 12. [4] A topological space \(X \) is said to be \(\delta_{gb} \)-\(T_2 \) space if for any pair of distinct points \(x \) and \(y \) there exist disjoint \(\delta_{gb} \)-open sets \(G \) and \(H \) such that \(x \in G \) and \(y \in H \).

Theorem 27. Let \(X \) and \(Y \) be topological spaces. If

(i) for each pair of distinct points \(x \) and \(y \) in \(X \) there exists a function \(f:X \to Y \) such that \(f(x) \neq f(y) \),

(ii) \(Y \) is Urysohn space and

(iii) \(f \) is contra \(\delta_{gb} \)-continuous at \(x \) and \(y \). Then \(X \) is \(\delta_{gb} \)-\(T_2 \).

Proof: Let \(x \) and \(y \) be any distinct points in \(X \) and \(f \) is a function such that \(f(x) \neq f(y) \). Let \(a=f(x) \) and \(b=f(y) \) then \(a \neq b \). Since \(Y \) is an Urysohn space there exist open sets \(V \) and \(W \) in \(Y \) containing \(a \) and \(b \) respectively such that \(cl(V) \cap cl(W) = \emptyset \). Since \(f \) is contra \(\delta_{gb} \)-continuous at \(x \) and \(y \) then there exist \(\delta_{gb} \)-open sets \(A \) and \(B \) in \(X \) containing \(x \) and \(y \) respectively such that \(f(A) \subseteq cl(V) \) and \(f(B) \subseteq cl(W) \). We have \(A \cap B \subseteq f^{-1}(cl(V)) \cap f^{-1}(cl(W)) = f^{-1}(\emptyset) = \emptyset \). Hence \(X \) is \(\delta_{gb} \)-\(T_2 \).

Corollary 2. Let \(f:X \to Y \) be a contra \(\delta_{gb} \)-continuous injective function from a space \(X \) into Urysohn space \(Y \) then \(X \) is \(\delta_{gb} \)-\(T_2 \).

Definition 13. [14] A topological space \(X \) is called Ultra Hausdorff space if for every pair of distinct points \(x \) and \(y \) in \(X \) there exist disjoint clopen sets \(U \) and \(V \) in \(X \) containing \(x \) and \(y \) respectively.
Theorem 28. If \(f: X \to Y \) be contra \(\delta gb \)-continuous injective function from space \(X \) into a Ultra Hausdorff space \(Y \) then \(X \) is \(\delta gb-T_2 \).

Proof: Let \(x \) and \(y \) be any two distinct points in \(X \). Since \(f \) is injective \(f(x) \neq f(y) \) and \(Y \) is Ultra Hausdorff space implies there exist disjoint clopen sets \(U \) and \(V \) of \(Y \) containing \(f(x) \) and \(f(y) \) respectively. Then \(x \in f^{-1}(U) \) and \(y \in f^{-1}(V) \) where \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint \(\delta gb \)-open sets in \(X \). Therefore \(X \) is \(\delta gb-T_2 \).

Definition 14. [14] A space \(X \) is called Ultra normal space if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 15. [4] A topological space \(X \) is said to be \(\delta gb \)-normal if each pair of disjoint closed sets can be separated by disjoint \(\delta gb \)-open sets.

Theorem 29. If \(f: X \to Y \) be contra \(\delta gb \)-continuous closed injection and \(Y \) is ultra normal then \(X \) is \(\delta gb \)-normal.

Proof: Let \(E \) and \(F \) be disjoint closed subsets of \(X \). Since \(f \) is closed and injective \(f(E) \) and \(f(F) \) are disjoint closed sets in \(Y \). Since \(Y \) is ultra normal there exists disjoint clopen sets \(U \) and \(V \) in \(Y \) such that \(f(E) \subseteq U \) and \(f(F) \subseteq V \). This implies \(E \subseteq f^{-1}(U) \) and \(F \subseteq f^{-1}(V) \). Since \(f \) is contra \(\delta gb \)-continuous injection, \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint \(\delta gb \)-open sets in \(X \). This shows \(X \) is \(\delta gb \)-normal.

Remark 3. The composition of two contra-\(\delta gb \)-continuous functions need not be contra-\(\delta gb \)-continuous as seen from the following example.

Example 3. Let \(X=Y=Z=\{a,b,c\}, \tau=\{X,\phi,\{a\},\{b\},\{a,b\}\}, \sigma=\{Y,\phi,\{a\}\} \) and \(\eta=\{Z,\phi,\{b,c\}\} \) be topologies on \(X, Y \) and \(Z \) respectively. Then the identity function \(f: X \to Y \) and a function \(g: Y \to Z \) defined by \(g(a)=b, g(b)=c \) and \(g(c)=a \) are contra \(\delta gb \)-continuous but \(g \circ f: X \to Z \) is not contra \(\delta gb \)-continuous, since there exists a open set \(\{b,c\} \) in \(Z \) such that \((g \circ f)^{-1}(b,c)=\{a,b\} \) is not \(\delta gb \)-closed in \(X \).

Theorem 30. Let \(f: X \to Y \) and \(g: Y \to Z \) be any two functions.

(i) If \(f \) is contra \(\delta gb \)-continuous and \(g \) is continuous then \(g \circ f \) is contra \(\delta gb \)-continuous.

(ii) If \(f \) is contra \(\delta gb \)-continuous and \(g \) is contra continuous then \(g \circ f \) is \(\delta gb \)-continuous.

(iii) If \(f \) is \(\delta gb \)-continuous and \(g \) is contra continuous then \(g \circ f \) is contra \(\delta gb \)-continuous.

(iv) If \(f \) is \(\delta gb \)-irresolute and \(g \) is contra \(\delta gb \)-continuous then \(g \circ f \) is contra \(\delta gb \)-continuous.

Proof: (i) Let \(h=g \circ f \) and \(V \) be an open set in \(Z \). Since \(g \) is continuous, \(g^{-1}(V) \) is open in \(Y \). Therefore \(f^{-1}(g^{-1}(V))=h^{-1}(V) \) is \(\delta gb \)-closed in \(X \) because \(f \) is contra \(\delta gb \)-continuous.

Hence \(g \circ f \) is contra \(\delta gb \)-continuous.

The proofs of (ii),(iii) and (iv) are similar to (i).

Theorem 31. Let \(f: X \to Y \) be contra \(\delta gb \)-continuous and \(g: Y \to Z \) be \(\delta gb \)-continuous. If \(Y \) is \(T_{\delta gb} \)-space, then \(g \circ f: X \to Z \) is contra \(\delta gb \)-continuous.

Proof: Let \(V \) be any open set in \(Z \). Since \(g \) is \(\delta gb \)-continuous \(g^{-1}(V) \) is \(\delta gb \)-open in \(Y \) and since \(Y \) is \(T_{\delta gb} \)-space, \(g^{-1}(V) \) open in \(Y \). Since \(f \) is contra \(\delta gb \)-continuous, then \(f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V) \) is \(\delta gb \)-closed set in \(X \). Therefore \(g \circ f \) is contra \(\delta gb \)-continuous.
Acknowledgements

The authors are grateful to the University Grants Commission, New Delhi, India for financial support under UGC SAP DRS-III: F-510/3/DRS-III/2016(SAP-I) dated 29th Feb 2016 to the Department of Mathematics, Karnataka University, Dharwad, India.

References

