Modules that Have a δ-supplement in Every Extension

Esra Öztürk Sözen1,*, Şenol Eren1

1 Ondokuz Mayıs University, Faculty of Science and Arts
Department of Mathematics, Turkey

Abstract. Let R be a ring and M be a left R-module. In this paper, we define modules with the properties $(\delta-E)$ and $(\delta-EE)$, which are generalized version of Zöschinger’s modules with the properties (E) and (EE), and provide various properties of these modules. We prove that the class of modules with the property $(\delta-E)$ is closed under direct summands and finite direct sums. It is shown that a module M has the property $(\delta-EE)$ if and only if every submodule of M has the property $(\delta-E)$. It is a known fact that a ring R is perfect if and only if every left R-module has the property (E). As a generalization of this, we prove that if R is a δ-perfect ring then every left R-module has the property $(\delta-E)$. Moreover, the converse is also true on δ-semiperfect rings.

2010 Mathematics Subject Classifications: 16D10, 16D90

Key Words and Phrases: Supplement, δ-supplement, δ-perfect ring, δ-semiperfect ring, module extension

1. Introduction

In this paper R is an associative ring with identity and all modules are unital left R-modules. Let M be a module $X \leq M$ means that X is a submodule of M or M is an extension of X. Recall that a submodule $N \leq M$ is called small, denoted by $N \ll M$, if $N + L \neq M$, for all proper submodules L of M. We call T a supplement of N in M if $M = T + N$ and $T \cap N$ is small in T. A module M is called supplemented if every submodule of M has a supplement in M [14]. $L \leq M$ is said to be essential in M, denoted by $L \leq M$, if $L \cap K \neq 0$ for each nonzero submodule $K \leq M$. The singular submodule of a module M (denoted by $Z(M)$) is $Z(M) = \{x \in M \mid Ix = 0 \text{ for some ideal } I \leq R\}$. A module M is called singular if $Z(M) = M$. Every submodule and every factor module of a singular module is singular. We refer to [6] for the further properties of singular modules.

In [15], Zhou introduced the concept of δ-small submodules as a generalization of small submodules. A submodule N of M is said to be δ-small in M (denoted by $N \ll_{\delta} M$) if whenever $M = N + K$ and K is singular, we have $M = K$. And we denote the sum of all δ-small submodules of M by $\delta(M)$. A submodule L of M is called a δ-supplement of...

*Corresponding author.

Email addresses: esraozturk55@hotmail.com (E. Ö. Sözen), seren@omu.edu.tr (Ș. Eren)
N in M if $M = N + L$ and $N \cap L \ll \delta L$ and M is called \textit{δ-supplemented} in case every submodule of M has a \textit{δ-supplement} in M \cite{7}.

For a module M consider the following conditions:

- $(E) : M$ has a supplement in every extension.
- $(EE) : M$ has ample supplements in every extension.

The concept of these modules with these properties was first introduced by Zöschinger \cite{16}. Adapting his concept in \cite{4}, Çalışçı and Türkmen introduced modules with the properties (CE) and (CEE) as a generalization of the properties (E) and (EE). In addition, in \cite{9} the authors worked on modules that have a weak supplement in every extension and in \cite{5} Eryılmaz introduced modules that have a \textit{δ-supplement} in every torsion extension.

In this paper we investigate the structure of modules with the properties $(\delta$-$E)$ and $(\delta$-$EE)$ as a generalization of Zöschinger’s modules with the properties (E) and (EE). We prove that a module has the property $(\delta$-$EE)$ if and only if every submodule has the property $(\delta$-$E)$. We show that every direct summand and δ-small cover of M with the property $(\delta$-$E)$ has the property $(\delta$-$E)$. Using the property $(\delta$-$E)$, we present a relation between δ-perfect rings and modules with the property $(\delta$-$E)$, which are a generalization of perfect rings, that is, R is a δ-perfect ring, then every left R-module has the property $(\delta$-$E)$. Moreover we obtain that if every left R-module has the property $(\delta$-$E)$, then R is a δ-semiperfect ring.

2. Preliminaries

In this section, we begin by stating the following lemmas and theorems for the completeness.

2.1. δ-Small Submodules

\textbf{Lemma 1. (\cite[Lemma 1.2]{15})}. Let N be a submodule of M. The following are equivalent:

1. $N \ll \delta M$.
2. If $X + N = M$, then $M = X \oplus Y$ for a projective semisimple submodule Y with \[\begin{array}{c}
Y \subseteq N.
\end{array} \]
3. If $X + N = M$ with \[\begin{array}{c}
\frac{M}{X} \text{ Goldie torsion, then } X = M.
\end{array} \]

\textbf{Lemma 2. (\cite[Lemma 1.3]{15})}. Let M be a module.

1. For submodules N, K, L of M with $K \subseteq N$, we have

 (a) $N \ll \delta M$ if and only if $K \ll \delta M$ and \[\frac{N}{K} \ll \delta \frac{M}{K}. \]
 (b) $N + L \ll \delta M$ if and only if $N \ll \delta M$ and $L \ll \delta M$.

2. If $K \ll \delta M$ and $f : M \rightarrow N$ is a homomorphism, then $f(K) \ll \delta N$.

In particular, if $K \ll \delta M \subseteq N$, then $K \ll \delta N$.

3. Let \(K_1 \subseteq M_1 \subseteq M, K_2 \subseteq M_2 \subseteq M \) and \(M = M_1 \oplus M_2 \). Then \(K_1 \oplus K_2 \ll_\delta M_1 \oplus M_2 \) if and only if \(K_1 \ll_\delta M_1 \) and \(K_2 \ll_\delta M_2 \).

2.2. \(\delta \)-Supplemented Modules

Lemma 3. ([7, Prop.2.7]). Let \(U \) and \(V \) be submodules of a module \(M \). Assume that \(V \) is a \(\delta \)-supplement of \(U \) in \(M \). Then

1. If \(W + V = M \) for some \(W \subseteq U \), then \(V \) is a \(\delta \)-supplement of \(W \) in \(M \).
2. If \(K \ll_\delta M \), then \(V \) is a \(\delta \)-supplement of \(U + K \) in \(M \).
3. For \(K \ll_\delta M \) we have \(K \cap V \ll_\delta V \) and so \(\delta(V) = V \cap \delta(M) \).
4. For \(L \subseteq U, \frac{V + L}{L} \) is a \(\delta \)-supplement of \(\frac{U}{L} \) in \(\frac{M}{L} \).
5. If \(\delta(M) \ll_\delta M \), or \(\delta(M) \subseteq U \) and if \(p : M \rightarrow \frac{M}{\delta(M)} \) is the canonical projection, then \(\frac{M}{\delta(M)} = p(U) \oplus p(V) \).

In [7], a projective module \(P \) is called a projective \(\delta \)-cover of a module \(M \) if there exists an epimorphism \(f : P \rightarrow M \) with \(\Ker(f) \ll_\delta M \), and a ring \(R \) is called \(\delta \)-perfect (resp., \(\delta \)-semiperfect) if every \(R \)-module (resp., every simple \(R \)-module) has a projective \(\delta \)-cover. In addition, a module \(M \) is called \(\delta \)-lifting if for any \(N \leq M \), there exists a decomposition \(M = A \oplus B \) such that \(A \leq N \) and \(N \cap B \) is \(\delta \)-small in \(B \) since \(B \) is a direct summand of \(M \).

Theorem 4. [7, Theorem3.3]. The following are equivalent for a ring \(R \):

1. \(R \) is \(\delta \)-semiperfect.
2. Every finitely generated module is \(\delta \)-supplemented.
3. Every finitely generated projective module is \(\delta \)-supplemented.
4. Every finitely generated projective module is \(\delta \)-lifting.
5. Every left ideal of \(R \) has a \(\delta \)-supplement in \(R \).

Theorem 5. [7, Theorem 3.4]. The following statements are equivalent for a ring \(R \):

1. \(R \) is \(\delta \)-perfect.
2. Every module is \(\delta \)-supplemented.
3. Every projective module is \(\delta \)-supplemented.
4. Every projective module is \(\delta \)-lifting.
3. Modules with the Properties \((\delta\text{-}E)\) and \((\delta\text{-}EE)\)

In this section, we define the concept of modules with the properties \((\delta\text{-}E)\) and \((\delta\text{-}EE)\).

Definition 1. A module \(M\) has the property \((\delta\text{-}E)\) if it has a \(\delta\)-supplement in each module in which it is contained as a submodule.

Definition 2. A module \(M\) has the property \((\delta\text{-}EE)\) if it has ample \(\delta\)-supplements in each module in which it is contained as a submodule, where \(U \leq M\) has ample \(\delta\)-supplements in \(M\) if for every \(V \leq M\) with \(U + V = M\), there is a \(\delta\)-supplement \(V'\) of \(U\) with \(V' \leq V\).

It is clear that every module with the property \((E)\) has the property \((\delta\text{-}E)\). Also there exists the same relation between modules with the properties \((EE)\) and \((\delta\text{-}EE)\). At the end of this section, we shall give an example of a module which has the property \((\delta\text{-}E)\) but not \((E)\).

Zöschinger proved in [16] that a module has the property \((EE)\) if and only if every submodule has the property \((E)\). We give an analogous characterization of our modules with the following proposition.

Proposition 1. A module \(M\) has the property \((\delta\text{-}EE)\) if and only if every submodule of \(M\) has the property \((\delta\text{-}E)\).

Proof. Let \(M\) be a module and \(N\) be any extension of \(M\). Suppose that for a submodule \(X \leq N\), \(X + M = N\). By hypothesis, the submodule \(X \cap M\) of \(M\) has a \(\delta\)-supplement \(V\) in \(X\), that is, \((X \cap M) + V = X\) and \((X \cap M) \cap V \ll_{\delta} V\). Then, \(N = M + X = M + [(X \cap M) + V] = M + V\) and \(M \cap V = M \cap (V \cap X) = (X \cap M) \cap V \ll_{\delta} V\). Hence, \(V\) is a \(\delta\)-supplement of \(M\) in \(N\) such that \(V \leq X\).

Conversely, let \(U\) be a submodule of \(M\) and \(N\) be any module containing \(U\). Then we can draw the following pushout:

\[
\begin{array}{ccc}
M & \xrightarrow{\alpha} & F \\
\downarrow{i_1} & & \uparrow{\beta} \\
U & \xleftarrow{i_2} & N
\end{array}
\]

\(i_1\) and \(i_2\) are inclusion homomorphisms in this diagram. Additionally \(\alpha : M \rightarrow F\) and \(\beta : N \rightarrow F\) are monomorphisms by the properties of push out (see, for example, [11, Exercise 5.10]). Let \(\alpha(M) = M' \subseteq F\) and \(\beta(N) = N' \subseteq F\). Then it can be easily shown
that $F = M' + N'$. So by using hypothesis, $M' \cong M$ has a δ-supplement V in F such that $V \leq N'$, that is, $M' + V = F$ and $M' \cap V \ll_\delta V$. Hence,

\[(M' \cap N') + V = (N' \cap M') + V = N' \cap (M' + V) = N' \cap F = N', \quad \text{and} \]

\[(M' \cap N') \cap V = M' \cap (N' \cap V) = M' \cap V \ll_\delta V.\]

So V is a δ-supplement of $M' \cap N'$ in N'. Now we will show that $\beta^{-1}(V)$ is a δ-supplement of U in N. We have an isomorphism $\tilde{\beta} : N \rightarrow N'$ defined as $\beta(x) = \beta(x)$ for all $x \in N$, since β is a monomorphism. Using this, we obtain $\beta^{-1}(V)$ is a δ-supplement of $\beta^{-1}(M' \cap N')$ in $\beta^{-1}(N')$ since V is a δ-supplement of $M' \cap N'$ in N'. It can be seen that $\beta^{-1}(V) = \beta^{-1}(V)$, $\beta^{-1}(N') = N$ and $\beta^{-1}(M' \cap N') = U$. Thus $\beta^{-1}(V)$ is a δ-supplement of U in N.

Corollary 1. A module with the property $(\delta$-$EE)$ has the property $(\delta$-$E)$ and it is also δ-supplemented.

Recall that R is a (right) δ-V ring if for any right R-module M, $\delta(M) = 0$ (see, [13]).

Proposition 2. Let R be δ-V ring and M be an R-module. Then the following statements are equivalent:

1. M has the property $(\delta$-$E)$.
2. M is injective.

Proof. (1) \implies (2) : Suppose that M has the property $(\delta$-$E)$. Let N be any extension of M. So, there exists a δ-supplement V of M in N, that is, $M + V = N$ and $M \cap V \ll_\delta V$ and so $M \cap V \leq \delta(V)$. Since R is a δ-V ring, $\delta(V) = 0$. So, $N = M \oplus V$. Therefore, M is injective.

(2) \implies (1) : is clear.

Now we show that the property $(\delta$-$E)$ is preserved by direct summands in the following proposition:

Proposition 3. Every direct summand of any module with the property $(\delta$-$E)$ has the property $(\delta$-$E)$.

Proof. Let M be a module with the property $(\delta$-$E)$, U be a direct summand of M and N be any extension of U. Then there exists a submodule A of M such that $M = U \oplus A$. By hypothesis, M has a δ-supplement V in $A \oplus N$ such that $(A \oplus U) + V = A \oplus N$ and $(A \oplus U) \cap V \ll_\delta V$. Let $g : A \oplus N \rightarrow N$ be the projection onto N. Then

\[N = g(A \oplus N) = g((A \oplus U) + V) = g(A \oplus U) + g(V) = U + g(V), \quad \text{and} \]

\[g((A \oplus U) \cap V) = U \cap g(V) \ll_\delta g(V).\]

Hence, $g(V)$ is a δ-supplement of U in N.
Corollary 2. If M_1 and M_2 have the property $(\delta\cdot E)$, so does $M_1 \oplus M_2$.

Proof. Let $0 \to M_1 \to M_1 \oplus M_2 \to M_2 \to 0$ be a short exact sequence. Result follows by Proposition 4.

Proposition 5. Let $0 \to K \to M \to L \to 0$ be a short exact sequence. If K and L have the property $(\delta\cdot E)$, so does M. If the sequence splits the converse is also true.

Proof. Let N be any extension of M. So $\frac{N}{K}$ is an extension of $\frac{M}{K}$ and is is a well known fact that $\frac{M}{K} \cong L$. Then there exists a δ-supplement $\frac{V}{K}$ for $\frac{M}{K}$ in $\frac{N}{K}$, that means $\frac{M}{K} + \frac{V}{K} = \frac{N}{K}$ and $\frac{M}{K} \cap \frac{V}{K} \cong \frac{V}{K}$ for some $\frac{V}{K} \le \frac{N}{K}$. Since $K \le V$ and K has the property $(\delta\cdot E)$, $V = K$ and by the modular law $(K + K') \cap M + T = V$. Following this, $V \cap M + T = V$ is obtained. It can be easily seen written that $\frac{V \cap M}{K} + \frac{T + K}{K} = \frac{V}{K}$, additionally, $\frac{V}{T + K}$ is singular since,

$$\frac{V}{T + K} = \frac{K + K'}{T + K} = \frac{T + K'}{T + K} \cong \frac{K'}{T + (K \cap K')} \le \frac{K'}{T}$$

and $\frac{M}{K} \cap \frac{V}{K} \cong \frac{V}{K}$ and of course $T + K = V$. $(T + K') \cap M + T = V$ can be seen and by the modular law, $(T + K') \cap K' = K'$ is obtained. This provides $T = K'$ since $K \cap K' \cong K'$ and $\frac{K'}{T}$ is singular. Moreover, suppose that the sequence splits, then K and L have the property $(\delta\cdot E)$ by corollary 2.

Corollary 3. Let $M_i (i = 1, 2, ..., n)$ be any finite collection of modules and $M = M_1 \oplus M_2 \oplus ... \oplus M_n$. Then M has the property $(\delta\cdot E)$ if and only if M_i has the property $(\delta\cdot E)$ for each $i = 1, 2, ..., n$.

Proof. It can be proved easily for $n = 2$ by using the previous theorem and can be generalized on n.

We give the following known lemma for the completeness.
Lemma 6. Every simple submodule S of a module M is either a direct summand of M or small in M (see in [10])

Proposition 6. Every simple module has the property $(\delta\cdot E)$.

Proof. Let S be a simple module and N be any extension of S. Then by Lemma 4, $S \ll N$ and so $S \ll_\delta N$ or $S \oplus S' = N$ for a submodule $S' \leq N$. If $S \ll_\delta N$, then N is a δ-supplement of S in N or if S is a direct summand of N then S' is a δ-supplement of S in N. So in each case S has a δ-supplement in N. This means that S has the property $(\delta\cdot E)$.

Theorem 7. Every module with composition series has the property $(\delta\cdot E)$.

Proof. Let $0 = M_0 \leq M_1 \leq \ldots \leq M_{n-1} \leq M_n = M$ be any composition series of a module M. We shall prove the theorem by induction on $n \in \mathbb{N}$. If $n = 1$, then $M = M_1$ is simple, and so M has the property $(\delta\cdot E)$ by Proposition 6. Assume that this is true for each $k \leq n - 1$. Then M_{n-1} has the property $(\delta\cdot E)$. Since M_{n-1} has the property $(\delta\cdot E)$ as a simple module, M has the property $(\delta\cdot E)$ by Proposition 4.

Corollary 4. A finitely generated semisimple module has the property $(\delta\cdot E)$.

In the following proposition we will prove that modules with the property $(\delta\cdot E)$ are closed under factor modules, under a special condition.

Proposition 7. Let $A \leq B \leq C$ with C_A injective. If B has the property $(\delta\cdot E)$, so does B_A.

Proof. Let N be any extension of B_A. So we have the following commutative diagram with exact rows since C_A is injective, (see in [10]).

Since h is monic and B has the property $(\delta\cdot E)$, $B \cong h(B)$ has a δ-supplement V in P, that is, $h(B) + V = P$ and $h(B) \cap V \ll_\delta V$. We claim that $g(V)$ is a δ-supplement of B_A in N.

$$
\frac{B}{A} + g(V) = (f\sigma)(B) + g(V) = g(h(B)) + g(V) = g(P) = N, \text{ and } \frac{B}{A} \cap g(V) = f(\sigma(B)) \cap g(V) = g[h(B) \cap N] \ll_\delta g(V)
$$
since \(h(B) \cap V \ll_\delta V \) and \(g \) is a homomorphism.

A ring \(R \) is left perfect if and only if every left \(R \)-module has the property \((E)\) (see [16]). Now we show only one side of this fact is valid for \(\delta \)-perfect rings.

Proposition 8. If \(R \) is a \(\delta \)-perfect ring, then every left \(R \)-module has the property \((\delta-E)\).

Proof. Suppose that a ring \(R \) is \(\delta \)-perfect. Let \(M \) be an \(R \)-module and \(N \) be any extension of \(M \). \(N \) is \(\delta \)-supplemented since \(R \) is \(\delta \)-perfect. So \(M \) has a \(\delta \)-supplemented in \(N \) as a submodule of \(N \). Hence, \(M \) has the property \((\delta-E)\).

Proposition 9. Let \(R \) be a ring. If every left \(R \)-module has the property \((\delta-E)\), then \(R \) is a \(\delta \)-semiperfect ring.

Proof. Since every left \(R \)-module has the property \((\delta-E)\), every ideal of \(R \) also has the property \((\delta-E)\) as a submodule of \(R \). So every ideal of \(R \) has a \(\delta \)-supplement in \(R \). Hence \(R \) is \(\delta \)-semiperfect by [6, Theorem 3.3].

Example 1. Let \(F \) be a field, \[
I = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}, \quad R = \{(x_1, \ldots, x_n, x, x, \ldots) \mid n \in \mathbb{N}, \ x_i \in M_2(F), \ x \in I\}
\]
with component-wise operations, \(R \) is a ring. By Example 4.3 in [15], \(R \) is a \(\delta \)-perfect ring that is not perfect. And so \(R \) is an example of a module that has the property \((\delta-E)\) but not have the property \((E)\).

Acknowledgements

The authors sincerely thank the reviewers for the valuable suggestions and comments.

References

REFERENCES

