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Abstract. This research investigates the potential usefulness of the transmuted modified Weibull
distribution for modelling lifetime data. We attain the diagnostic shapes of the density and hazard
functions. We formulate the expressions for the moments, incomplete moments, Rnyi entropy
and q- entropy. We estimate the mean, variance, coefficient of variation, coefficient of skewness
and coefficient of kurtosis based on moment approach. The method of maximum likelihood is
used for estimating the model parameters. We illustrate the use of transmuted modified Weibull
distribution with an application to survival data.
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1. Introduction

A considerable literature discussing the transmuting approach for developing a new
family of lifetime distributions by using the baseline model. Shaw and Buckley [14] in-
troduced the the quadratic rank transmutation map (QRTM) approach for adding a new
parameter to an existing distribution. According to this approach a random variable X is
said to have a transmuted distribution if its cumulative distribution function (cdf) satisfies
the following relationship.

F (x) = (1 + λ) G(x)− λ G(x)2, |λ| ≤ 1 (1)

and
f(x) = g(x) {(1 + λ)− 2λ G(x)} , (2)
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where G(x) is the cdf of the base distribution, g(x) and f(x) are the corresponding proba-
bility density functions (pdf) associated with G(x) and F (x), respectively. Recently Khan
and King [5] proposed and studied the transmuted modified Weibull distribution as an
important competitive model with eleven lifetime distributions as special sub-models and
discussed some of its properties. This research investigates the potential usefulness of the
transmuted modified Weibull distribution for modelling lifetime data and formulate some
of its theoretical properties. The modified Weibull (mw) distribution was pioneered by
Sarhan and Zaindiu [13] and the cdf of the mw distribution is given by

G(x) = 1− exp
{
−αx− ηxβ

}
, x > 0 (3)

where β > 0 is the shape parameters and α, η > 0 are the scale parameters. The probability
density function corresponding to (3) is given by

g(x) =
(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}
, (4)

A significant amount of work has been attributed towards developing the new trans-
muted family of lifetime distribution and provides more flexibility comparing with baseline
model. Aryal and Tsokos [1] studied the transmuted Weibull distribution to analyse re-
liability data. More recently Khan et al. [8] proposed the transmuted Chen distribution
and investigated various structural properties with application. Recently Khan et al. [5],
[6], [7] proposed the transmuted modified Weibull distribution and the transmuted inverse
Weibull distribution with applications. Merovci [9] proposed and studied the transmuted
Rayleigh distribution among several other distributions using qrtm technique.

The rest of the article is organized as follows, In Section 2, we present the analytical
shapes of the probability density and hazard functions of the tmw model. Some structural
properties are considered in Section 2, such as moments and incomplete moments. Rnyi
entropy and q-entropy are formulated in Section 3. Maximum likelihood estimates (mle)
of the unknown parameters are discussed in Section 4. Application to the real data set is
illustrated in Section 5. In Section 6, concluding remarks are addressed.

2. Transmuted Modified Weibull Distribution

The transmuted modified Weibull distribution (TMWD) was recently proposed by
Khan and King [5] by using qrtm technique for modeling reliability data and discussed
some theoretical properties of this distribution. The TMWD with four parameters α, η, β >
0 and |λ| ≤ 1, is given by

f(x) =
(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}{
1− λ+ 2λ exp

{
−αx− ηxβ

}}
, (5)

The cdf corresponding to (5) is given by

F (x) =
[
1− exp

{
−αx− ηxβ

}]{
1 + λ exp

{
−αx− ηxβ

}}
, (6)
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respectively. where α and η are the scale parameters, β is the shape parameter and λ is the
transmuted parameter. We obtain the baseline model when the transmuting parameter
λ = 0. This distribution has nice relationship with some other well-known distributions
such as transmuted extreme value family, transmuted additive weibull, transmuted linear
failure rate, transmuted Weibull, transmuted Rayleigh and transmuted exponential distri-
butions. An important feature of the TMWD is that its hazard function has increasing,
decreasing and constant hazard function. The motivation of this study is to investigate
the potential usefulness of the TMW distribution which has a bathtub shaped hazard
function. If x is a random variable with density function (5), we write this model as
x ∼ tmw(x;α, β, η, λ).
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Figure 1: Plots of the tmw pdf for some parameter values.

Figure 1 shows the plots of the transmuted modified Weibull distribution for some
selected values of parameters. The reliability and hazard functions of the transmuted
modified Weibull distribution are given by

R(x) = 1−
[
1− exp

{
−αx− ηxβ

}]{
1 + λ exp

{
−αx− ηxβ

}}
. (7)

and

h(x) =

(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}{
1− λ+ 2λ exp

{
−αx− ηxβ

}}
1− [1− exp {−αx− ηxβ}] {1 + λ exp {−αx− ηxβ}}

, (8)

Plots of the tmw hazard function for some selected values of parameters are displayed
in Figure 2. This figure also illustrate the effect of the shape parameter β and the trans-
muted parameter λ for hazard rate function.

This section presents the kth moments and incomplete moments and discuss the mean,
variance, coefficient of variation, skewness and kurtosis measures.
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Figure 2: Plots of the tmw hf for some parameter values.

Theorem 1.

If X has the tmw(x;α, β, η, λ) with |λ| ≤ 1, then the kth moment of X, µ́k is given as
follows

µ́k =
∞∑
i=0

(−1)iηi

i!

[
(1− λ)

(
αΓ(iβ + k + 1)

αiβ+k+1
+
βηΓ(β(i+ 1) + k)

αβ(i+1)+k

)]

+2λ
∞∑
i=0

(−1)i(2η)i

i!

[(
αΓ(iβ + k + 1)

(2α)iβ+k+1
+
βηΓ(β(i+ 1) + k)

(2α)β(i+1)+k

)]
.
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Proof: By defination

µ́k =

∫ ∞
0

xk
(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}{
1− λ+ 2λ exp

{
−αx− ηxβ

}}
dx.

The above expression reduces to

µ́k = (1− λ)

∫ ∞
0

xk
(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}
dx

+2λ

∫ ∞
0

xk
(
α+ ηβxβ−1

)
exp

{
−2αx− 2ηxβ

}
dx.

The above integral reduces to

µ́k = (1− λ)α

∞∑
i=0

(−1)i ηi

i!

∫ ∞
0

xk+iβ exp(−αx)dx

+(1− λ)βη

∞∑
i=0

(−1)i ηi

i!

∫ ∞
0

xk+iβ+β−1 exp(−αx)dx

+2αλ
∞∑
i=0

(−1)i (2η)i

i!

∫ ∞
0

xk+iβ exp(−2αx)dx

+2λβη
∞∑
i=0

(−1)i (2η)i

i!

∫ ∞
0

xk+iβ+β−1 exp(−2αx)dx

Hence, it follows that

µ́k =

∞∑
i=0

(−1)iηi

i!

[
(1− λ)

(
αΓ(iβ + k + 1)

αiβ+k+1
+
βηΓ(β(i+ 1) + k)

αβ(i+1)+k

)]

+2λ

∞∑
i=0

(−1)i(2η)i

i!

[(
αΓ(iβ + k + 1)

(2α)iβ+k+1
+
βηΓ(β(i+ 1) + k)

(2α)β(i+1)+k

)]
. (9)

The important features and characteristics of the tmw distribution can be studied
through moments. The mean, variance, coefficient of variation, skewness and kurtosis
measures can be calculated using well-known relationships. The computations of the
moments are performed using the R language for some selected choices of parameters are
displayed in Tables 1 and 2.

Theorem 2.

If X has the tmw(x;α, β, η, λ) with |λ| ≤ 1, then the incomplete moment is given as
follows

µ́(k,x)(z) =
∞∑
i=0

(−1)iηi

i!

[
(1− λ)

(
αγ(iβ + k + 1, αz)

αiβ+k+1
+
βηγ(β(i+ 1) + k, αz)

αβ(i+1)+k

)]
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+2λ

∞∑
i=0

(−1)i(2η)i

i!

[(
αγ(iβ + k + 1, 2αz)

(2α)iβ+k+1
+
βηγ(β(i+ 1) + k), 2αz

(2α)β(i+1)+k

)]
.

Proof: By defination

µ́(k,x)(z) =

∫ z

0
xk
(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}{
1− λ+ 2λ exp

{
−αx− ηxβ

}}
dx.

The above expression reduces to

µ́(k,x)(z) = (1− λ)

∫ z

0
xk
(
α+ ηβxβ−1

)
exp

{
−αx− ηxβ

}
dx

+2λ

∫ z

0
xk
(
α+ ηβxβ−1

)
exp

{
−2αx− 2ηxβ

}
dx.

The above integral reduces to

µ́(k,x)(z) = (1− λ)α
∞∑
i=0

(−1)i ηi

i!

∫ z

0
xk+iβ exp(−αx)dx

+(1− λ)βη
∞∑
i=0

(−1)i ηi

i!

∫ z

0
xk+iβ+β−1 exp(−αx)dx

+2αλ
∞∑
i=0

(−1)i (2η)i

i!

∫ z

0
xk+iβ exp(−2αx)dx

+2λβη
∞∑
i=0

(−1)i (2η)i

i!

∫ z

0
xk+iβ+β−1 exp(−2αx)dx

Hence, it follows that

µ́(k,x)(z) =
∞∑
i=0

(−1)iηi

i!

[
(1− λ)

(
αγ(iβ + k + 1, αz)

αiβ+k+1
+
βηγ(β(i+ 1) + k, αz)

αβ(i+1)+k

)]

+2λ
∞∑
i=0

(−1)i(2η)i

i!

[(
αγ(iβ + k + 1, 2αz)

(2α)iβ+k+1
+
βηγ(β(i+ 1) + k), 2αz

(2α)β(i+1)+k

)]
. (10)

The incomplete moments are useful for finding the mean deviations, mean residual life,
the Bonferroni and Lorenz curves. These curves are very useful in econometrics, reliability
engineering, actuarial sciences and medical sciences.
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Table 1: Moments values of the tmw distribution

(α, β, η) λ µ́1 µ́2 µ́3 µ́4
1, 0.75, 0.5 −1 1.0201 1.7267 4.1720 13.267

−0.5 0.8429 1.3488 3.1871 10.037
0.5 0.4885 0.5930 1.2173 3.5744
1 0.3113 0.2151 0.2324 0.3433

1, 1.5, 0.75 −1 0.8422 0.9755 1.4235 2.4906
−0.5 0.7130 0.7776 1.1034 1.9028
0.5 0.4545 0.3818 0.4631 0.7270
1 0.3252 0.1839 0.1430 0.1392

2, 2, 1 −1 0.5471 0.4056 0.3703 0.3960
−0.5 0.4630 0.3238 0.2877 0.3033
0.5 0.2948 0.1603 0.1226 0.1179
1 0.2106 0.0786 0.0400 0.0252

2, 3, 2 −1 0.5106 0.3259 0.2393 0.1944
−0.5 0.4364 0.2637 0.1885 0.1507
0.5 0.2880 0.1394 0.0869 0.0634
1 0.2139 0.0772 0.0360 0.0197

3. Entropies

The Rényi [11] introduced the entropy denoted as, IR(ρ), for X is a measure of variation
of uncertainty and is defined as

IR(ρ) =
1

1− ρ
log

{∫ ∞
0

f(x)ρdx

}
, (11)

where ρ > 0 and ρ 6= 1. The integral in IR(ρ) for the tmw(x;α, β, η, λ) can be defined by
substituting (5) in (11) as

IR(ρ) =
1

1− ρ
log

{∫ ∞
0

(
α+ ηβxβ−1

)ρ
exp

{
−αρx− ηρxβ

}
{1− λ+ 2λ exp {−αx− ηxβ}}−ρ

dx

}
,

the above integral reduces to

IR(ρ) =
1

1− ρ
log


∞∑

i,j=0

uα,β,η,ρ,λ,i,j

∫ ∞
0

xj(β−1) exp
{
−αx(i+ ρ)− ηxβ(i+ ρ)

}
dx

 ,

where

uα,β,η,ρ,λ,i,j = αρ
(
ρ
i

)(
ρ
j

)(
βη

α

)j ( 2λ

1− λ

)i
(1− λ)ρ.
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Table 2: Moments based measures of the tmw distribution

(α, β, η) λ Mean Var CV CS CK

1, 0.75, 0.5 −1 1.0201 0.6861 0.8119 1.7786 8.0213
−0.5 0.8429 0.6383 0.9478 1.9101 8.6557
0.5 0.4885 0.3544 1.2186 2.7561 14.9233
1 0.3113 0.1182 1.1043 2.2605 10.7958

1, 1.5, 0.75 −1 0.8422 0.2662 0.6126 1.1179 4.7603
−0.5 0.7130 0.2692 0.7277 1.1814 4.8621
0.5 0.4545 0.1752 0.9210 1.7762 7.4997
1 0.3252 0.0781 0.8596 1.4818 5.9482

2, 2, 1 −1 0.5471 0.1063 0.5958 0.9265 4.0087
−0.5 0.4630 0.1094 0.7145 1.0068 4.0996
0.5 0.2948 0.0734 0.9189 1.6129 6.3601
1 0.2106 0.0342 0.8787 1.4234 5.5582

2, 3, 2 −1 0.5106 0.0652 0.5000 0.3801 2.7151
−0.5 0.4364 0.0732 0.6202 0.4783 2.6403
0.5 0.2880 0.0564 0.8250 1.0611 3.7732
1 0.2139 0.0314 0.8290 1.0820 3.8540

Finally we obtain the tmw Rényi entropy as

IR(ρ) =
ρ

1− ρ
logα+

ρ

1− ρ
log(1− λ) +

1

1− ρ

log


∞∑

i,j=0

∞∑
m=0

(
ρ
i

)(
ρ
j

)(
βη

α

)j ( 2λ

1− λ

)i (−1)m

m!
Vj,β,m

 ,

where

Vj,β,m =
ηm(i+ ρ)m

(α(i+ ρ))β(m+j)−j+1
.Γ (β(m+ j)− j + 1)

The q-entropy was introduced by Havrda and Charvat [4], and is defined as

IH(q) =
1

q − 1

{
1−

∫ ∞
0

f(x)qdx

}
, (12)

where q > 0 and q 6= 1. Suppose X has the tmw distribution then by substituting (5) in
(12), we obtain

IH(q) =
1

q − 1

{
1−

∫ ∞
0

(
α+ ηβxβ−1

)q
exp

{
−αqx− ηqxβ

}
{1− λ+ 2λ exp {−αx− ηxβ}}−q

dx

}
,
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the above integral yields the tmw q-entropy as

IH(q) =
1

q − 1

1−
∞∑

i,j=0

∞∑
m=0

zα,β,η,λ,i,j,mη
m(i+ q)m

(α(i+ q))β(m+j)−j+1
.Γ (β(m+ j)− j + 1)

 ,

where

zα,β,η,λ,i,j,m = αq
(
q
i

)(
q
j

)(
βη

α

)j ( 2λ

1− λ

)i
(−1)m(1− λ)q.

Table 3 lists the values of Rényi entropy and q-entropy of the tmw distribution for
some selected values of parameters.

Table 3: Rényi entropy and q-entropy for some selected values of parameters

(α, β, η) λ IR(ρ = 0.5) IH(q = 0.5) IR(ρ = 1.5) IH(q = 1.5)

1, 0.75, 0.5 −1 0.5299 1.6810 0.2985 0.5816
−0.5 0.4754 1.4574 0.1233 0.2646
0.5 0.2791 0.7580 -0.3692 -1.0594
1 0.0159 0.0370 -0.5986 -1.9840

1, 1.5, 0.75 −1 0.3326 0.9332 0.1100 0.2380
−0.5 0.2863 0.7810 0.0168 0.0384
0.5 0.1054 0.2580 -0.3217 -0.8966
1 -0.1408 -0.2992 -0.5065 -1.5834

2, 2, 1 −1 0.0912 0.2214 -0.0912 -0.2214
−0.5 0.0588 0.1400 -0.1396 -0.3486
0.5 -0.0926 -0.2022 -0.3927 -1.1432
1 -0.3010 -0.5858 -0.5509 -1.7712

2, 3, 2 −1 0.0078 0.0180 -0.1043 -0.2552
−0.5 0.0010 0.0024 -0.1016 -0.2482
0.5 -0.0960 -0.2092 -0.2570 -0.6886
1 -0.2394 -0.4818 -0.3842 -1.1128

4. Parameter Estimation

Consider the random samples x1, x2, ..., xn consisting of n observations from the trans-
muted modified Weibull distribution with parameter vector Θ = (α, β, η, λ) then the
log-likelihood function ` (Θ)=lnL of (5) is given by

` (Θ) =
n∑
i=1

ln(α+βηxβ−1i )−α
n∑
i=1

xi−η
n∑
i=1

xβi +
n∑
i=1

ln(1−λ+2λ exp(−αxi−ηxβi )) (13)
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By setting the first partial derivatives of (13) with respect to α, β, η and λ then equating
it to zero, we obtain the components of score vector U(Θ) are given by

∂` (Θ)

∂α
=

n∑
i=1

(α+ βηxβ−1i )−1 −
n∑
i=1

xi −
n∑
i=1

2λxi exp(−αxi − ηxβi )

(1− λ+ 2λ exp(−αxi − ηxβi ))
,

∂` (Θ)

∂β
=

n∑
i=1

xβ−1i (1 + β ln(xi))

(α+ βηxβ−1i )
−

n∑
i=1

xβi ln(xi)−
n∑
i=1

2λ exp(−αxi − ηxβi )xβi ln(xi)

(1− λ+ 2λ exp(−αxi − ηxβi ))
,

∂` (Θ)

∂η
=

n∑
i=1

βxβ−1i

(α+ βηxβ−1i )
−

n∑
i=1

xβi −
n∑
i=1

2λxi exp(−αxi − ηxβi )xβi

(1− λ+ 2λ exp(−αxi − ηxβi ))
,

and

∂` (Θ)

∂λ
=

n∑
i=1

2 exp(−αxi − ηxβi )− 1

(1− λ+ 2λ exp(−αxi − ηxβi ))
.

respectively, by solving the non-linear system of equations simultaneously we can obtain
the parameters of the TMWD. The asymptotic variance covariance matrix of MLEs for
the parameter vector Θ = (α, β, η, λ)T can be considered as the multivariate normal with
the variance covariance matrix and its inverse of the expected information matrix is given
by (

(α̂− α) , (β̂ − β), (η̂ − η), (λ̂− λ)
)
∼ N4

{
0,K(Θ)−1

}
,

where K(Θ)−1 is the variance covariance matrix of the unknown parameters. The multi-
variate normal distribution can be used to obtain an approximate 100(1− γ)% confidence
intervals for the parameters α, β, η and λ can be determined as

α̂± Z γ
2

√
V̂11, β̂ ± Z γ

2

√
V̂22, η̂ ± Z γ

2

√
V̂33, λ̂± Z γ

2

√
V̂44,

where Z γ
2

is the upper γth percentile of the standard normal distribution.

5. Application

In this section, we present analysis for illustrative proposes using the nicotine cigarettes
data. The data set consist of 396 observations of nicotine content in milligrams in cigarettes
of several brands of cigarettes in 1995. The data have been obtained from the Federal trade
commission (FTC), which is an independent agency of the US government, whose main
mission is the promotion of consumer protection. The report entitled ” Tar, Nicotine and
Carbon Monoxide of the Smoke of 1249 varieties of domestic cigarettes for the Year 1995”
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and the data is freely available at http : //w.w.w.ftc.gov/reports/.
We fitted the (transmuted modified Weibull) TMW, Generalized Power Weibull (GPW),
modified Weibull (MW) and Weibull (W) distributions by the method of maximum likeli-
hood. The required numerical evaluations are implemented using R language. The MLEs
for the four fitted models are displayed in Table 4. Table 4 gives the MLEs of the
unknown parameters (with their corresponding standard errors) with AIC goodness of-fit
measure. The goodness of fit measure shows that the transmuted modified Weibull distri-
bution provides a better fit among four fitted models. We also evaluate the performance of
these models by using the Cramr-von Mises test (W) and Anderson-Darling (A) goodness
of-fit measures are listed in Table 5. The lowest values of Cramr-von Mises test (W) and
Anderson-Darling (A) goodness of-fit statistics shows the better fit among these consid-
ered models in this paper. Therefore the transmuted modified Weibull distribution could
be chosen as the best model for fitting survival data.

Table 4: MLEs of the Parameters for the nicotine cigarettes data, the Corresponding SE (given in parenthe-
ses)with the AIC measures

Model α η β λ AIC

TMW 0.0465 1.0964 3.2884 0.5511 140.015
(0.0253) (0.2036) (0.1656) (0.2526)

GPW 0.8930 0.9101 2.7583 - 143.950
(0.1261) (0.2410) (0.2311)

MW 0.0548 1.5208 3.0107 - 140.467
(0.0370) (0.0883) (0.1503)

W - 1.5844 2.83432 - 142.085
(0.0796) (0.1108)

Table 5: Goodness of-fit statistics

Model W A

TMW 0.6680 3.5621
GPW 0.7484 3.9707
MW 0.7199 3.7843
W 0.7407 3.9543

6. Conclusion

This paper discussed the performance of the transmuted modified Weibull distribution.
Some statistical properties have been derived and discussed with application to survival
data. We have compared the transmuted modified Weibull distribution with Generalized
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Figure 3: Fitted models for the nicotine cigarettes data.

Power Weibull (GPW), modified Weibull (MW) and Weibull (W) distributions by the
method of maximum likelihood. It is observed that based on three goodness of fit mea-
sures the transmuted modified Weibull distribution provides the better fit than the other
three lifetime distributions. The tmw distribution has increasing, decreasing and constant
hazard function for survival data. We have calculated the values of raw moments and also
calculated the mean, variance, coefficient of variation, coefficient of skewness and coeffi-
cient of kurtosis. The application of nicotine cigarettes data shown that the transmuted
modified Weibull distribution fits the data very well than the other three distributions.
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