Estimates for Resonant Frequencies Under Boundary Deformation in Multi-dimensional Space

Abdessatar Khelifi* and M. Nour. Shamma

Department of mathematics & Faculty of Sciences & Arts, Al-Gassim University, Al-Rass Province, Kingdom of Saudi Arabia

Abstract. In multi-dimensional space, we address the integral equation method to investigate the interplay between the geometry, boundary conditions and the properties of the resonant frequencies and their associated eigenfunctions under boundary variations of domain. We provide a rigorous derivation of asymptotic expansions for eigenfunctions and we establish error estimations for both resonant frequencies and eigenfunctions of the Helmholtz eigenvalue problem.

2000 Mathematics Subject Classifications: 35C15, 35P05, 45C05

Key Words and Phrases: Resonant frequencies, Boundary integral equation, Error estimates

1. Introduction

The resonant frequencies may evolve under shape deformation, as separated, distinct eigenvalues of the Helmholtz eigenvalue problem. But, the main difficulty in solving eigenvalue problems relates to the continuation of multiple eigenvalues of the unperturbed configuration. The properties of eigenvalue problems under shape deformation have been the subject of comprehensive studies \[9, 22\] and the area continues to carry great importance to this day \[4, 7, 6, 8, 12, 13, 14, 15\]. A substantial portion of these investigations relate to properties of smoothness and analyticity of eigenvalues and eigenfunctions with respect to perturbations. Bruno and Reitich have presented in \[4, \text{ Theorem 2, p.172 and Section 3, pp.180-183}\] some explicit constructions of high-order boundary perturbation expansions for eigenelements in two dimensions. Their algorithm is based on certain properties of joint analytic dependence on the boundary perturbations and spatial variables of the eigenfunctions. In a series of papers \[19]-[21], Ozawa derived the leading-order term in the asymptotic expansions of simple eigenvalues in domain with a specific geometry. Nevertheless, in our paper we remove the condition that eigenvalue is simple and provide more accurate asymptotic expansions for eigenfunctions in domain with more general shape. Recently, Lanza de Cristoforis

*Corresponding author.

Email addresses: abdessatar.khelifi@fsb.rnu.tn (A. Khelifi), shammam01@yahoo.com (M. Shamma)

http://www.ejpam.com 282 © 2010 EJPAM All rights reserved.
and Lamberti have developed in [13] some preliminary abstract results for the dependence of the eigenvalues upon perturbation. Their applications to the Dirichlet eigenvalue problem for the Laplace operator appear clearly in Section 3 of their paper and in Theorem 3.21 when they justify the analyticity result for some symmetric functions of eigenvalues. Our analysis and uniform asymptotic formulas of the eigenfunctions, which are represented by the single-layer potential involving the Green function, are considerably different from those in [12, 13, 10].

Next, our method differs, essentially, from the classical methods used to study the analytic dependence of the eigenfunctions of a real or complex parameter and used to give the asymptotic formulae for the eigenvalues.

The main goal of this paper is to justify and to give formulae for the convergence estimates for both resonant frequencies and eigenfunctions associated to Helmholtz eigenvalue problem. Compared to papers in this field [15, 17, 18], one can notice that our results in Section 4, are important and give an idea to evaluate the speed of convergence.

The paper is organized as follows. In Section 2 we describe the central problem in this work, and we remember some well-known results concerning the analyticity of the eigenvalues with respect to ε. In Section 3 we develop a boundary integral formulation for solving the eigenvalue problem (2). From results found in [11] in two dimensional space, we end this Section by presenting the main theorem which gives the analyticity and the uniform asymptotic expansion for the eigenfunctions. Section 4 contains the main results of our paper which are deeply based on the Osborn’s theorem. We then prove some error estimates for the convergence of resonant frequencies.

2. Problem Description

Let Ω be a bounded domain in \mathbb{R}^d, $d \geq 2$, with a connected Lipschitz boundary $\partial \Omega$ and ν denotes the unit outward normal to $\partial \Omega$. Let $T_i > 0$, for all $i \in \{1, \ldots, d-1\}$ and let $\gamma(t), \quad \beta(t) : t = (t_1, \cdots, t_{d-1}) \in [0, T_1] \times \cdots \times [0, T_{d-1}] \to \mathbb{R}^d$, be two analytic, T_i-periodic (in each composite t_i) functions and satisfying the following assumption:

$$\langle \gamma'(t), \beta(t) \rangle = 0, \quad \text{for all } t = (t_1, \cdots, t_{d-1}) \in [0, T_1] \times \cdots \times [0, T_{d-1}]. \quad (1)$$

where $\langle ., . \rangle$ denotes the usual product scalar in \mathbb{R}^d. We introduce,

$$\gamma_\varepsilon(t) = \gamma(t) + \varepsilon \beta(t), \quad \varepsilon \in \mathbb{R}.$$

With this definition, $(t, \varepsilon) \mapsto \gamma_\varepsilon(t)$ is an analytic function on $[0, T_1] \times \cdots \times [0, T_{d-1}] \times \mathbb{R}$, T_i-periodic in each composite t_i.

We consider the bounded domain Ω_ε in \mathbb{R}^d with smooth boundary $\partial \Omega_\varepsilon$ parameterized by the function $\gamma_\varepsilon(t)$:

$$\partial \Omega_\varepsilon = \{\gamma_\varepsilon(t), \quad t = (t_1, \cdots, t_{d-1}) \in [0, T_1] \times \cdots \times [0, T_{d-1}]\}.$$

Let μ_0 and ε_0 denote the permeability and the permittivity of the background medium $\Omega \equiv \Omega_{\varepsilon=0}$, and assume that $\mu_0 > 0$ and $\varepsilon_0 > 0$ are positive constants. Let $\mu_1 > 0$ and $\varepsilon_1 > 0$
denote the permeability and the permittivity of $\Omega_e \setminus \Omega_0$. Introduce the piecewise-constant electric permittivity
\[\varepsilon_e(x) = \begin{cases} \varepsilon_0, & x \in \Omega_0, \\ \varepsilon_1, & x \in \Omega_e \setminus \Omega_0. \end{cases} \]

If we allow the degenerate case $\varepsilon = 0$, then the function $\varepsilon_0(x)$ equals the constant ε_0. The piecewise constant magnetic permeability, $\mu_e(x)$ is defined analogously.

In this paper, we deal with the asymptotic behavior associated with the following Helmholtz eigenvalue problem:
\[div\left(\frac{1}{\mu_e} \nabla u(\varepsilon) \right) + \omega^2(\varepsilon) \varepsilon u(\varepsilon) = 0 \quad \text{in} \quad \Omega_\varepsilon, \quad \text{and} \quad u(\varepsilon) = 0 \quad \text{on} \quad \partial \Omega_\varepsilon, \quad (2) \]

where the function u represents some electric field or magnetic field (or rather, the transversal strength) and $\omega^2(\varepsilon)$ is the perturbed resonant frequency (eigenfrequency) associated to the above problem (2). The eigenfunction u_0, in the absence of any deformation, satisfies the following equations:
\[-\Delta u_0(x) = \omega_0^2(\varepsilon_0 \mu_0) u_0(x), \quad x \in \Omega, \quad \text{and} \quad u_0(x) = 0, \quad x \in \partial \Omega, \quad (3) \]

It is well known that the operator $-\Delta$ on $L^2(\Omega_\varepsilon)$ with domain $H^2(\Omega_\varepsilon) \cap H^1_0(\Omega_\varepsilon)$ is self-adjoint with compact resolvent. Consequently, its spectrum consists entirely of isolated, real and positive eigenvalues with finite multiplicity, and there are corresponding eigenfunctions which make up an orthonormal basis of $L^2(\Omega_\varepsilon)$. By extending our approach for treating the eigenvalue problem (3) we will investigate the splitting of the eigenvalues and derive their asymptotic expansions under boundary perturbations.

Let $\omega_0^2 > 0$ denote an eigenfrequency of the eigenvalue problem (3) for $\varepsilon = 0$ with geometric multiplicity m in the domain $\Omega \equiv \Omega_0$. There exists a small constant $r_0 > 0$ such that ω_0^2 is the unique eigenfrequency of (3) for $\varepsilon = 0$ in the set $\{ \omega^2, \omega \in D_{r_0}(\omega_0) \}$, where $D_{r_0}(\omega_0)$ is a disk of center ω_0 and radius r_0. Let us call the ω_0-group the totality of the perturbed eigenfrequencies of (3) for $\varepsilon > 0$ generated by splitting from ω_0^2 and chosen to be an increasing family. The following analyticity result is well-known [9]-[22].

Theorem 1. (Kato [12, §VII.6], Rellich [25, §§II.2 and II.6]) There exits $\varepsilon_0 > 0$ such that for $|\varepsilon| < \varepsilon_0$, the ω_0-group consists of m- eigenfrequencies, $\omega_j^2(\varepsilon), j = 1, \ldots, m$ (repeated according to their multiplicity). Moreover, they are analytic functions with respect to ε satisfying $\omega_j^2(0) = \omega_0^2, j = 1, \ldots, m$. The normalized eigenfunctions associated to the ω_0-group of eigenfrequencies are analytic and their values at 0 ($\{u_0^j\}_{1 \leq j \leq m}$) are m linearly independent solutions of the unperturbed eigenvalue problem.

Classical regularity results and the previous theorem imply that the eigenfunctions associated to the ω_0-group of eigenvalues are separately analytic in the small parameter ε and the spatial variable x. By an integral equation technique we also established [13, Thm. 5.4, p.1219] the joint analytic dependence of these functions with respect to (x, ε).
We will develop a boundary integral formulation for solving the eigenvalue problem \((2) \). The integral equations applying to this problem will be obtained from a study of the layer potentials for the Helmholtz equation. For \(\lambda > 0 \), a fundamental solution \(\Gamma_\lambda(x) \) to the Helmholtz operator \(\Delta + \lambda^2 \) in \(\mathbb{R}^d \), \(d = 2, 3 \), is given by

\[
\Gamma_\lambda(x) = \begin{cases}
-\frac{i}{\pi} \mathcal{H}_0^{(1)}(\lambda||x||), & d = 2, \\
-\frac{e^{i\lambda||x||}}{4\pi||x||}, & d = 3,
\end{cases}
\]

for \(x \neq 0 \), where \(\mathcal{H}_0^{(1)} \) is the Hankel function of the first kind of order 0.

Suppose that \(G(x, y) = \Gamma_{\omega(e)\sqrt{\mu_\varepsilon}}(x - y) \). The singularity of this function has the form:

\[
G(x, y) \sim \begin{cases}
\frac{1}{2\pi} \log ||x - y|| + \cdots & \text{as } x \to y \quad d = 2, \\
\frac{1}{4\pi ||x - y||} + \cdots & \text{as } x \to y \quad d = 3.
\end{cases}
\]

The following operator is well defined \([2, 16]\)

\[
S(\omega) : H^{-1/2}(\partial \Omega_\varepsilon) \to H^{1/2}(\partial \Omega_\varepsilon)
\]

where

\[
S(\omega) : g \to \int_{\partial \Omega_\varepsilon} G(\cdot, y) g(y) d\sigma(y).
\]

For such \(g \) and every \(x \in \partial \Omega_\varepsilon \), we denote by \(g_+(x) \) and \(g_-(x) \) the limits of \(g(y) \) as \(y \to x \), from \(y \in \Omega_\varepsilon \) and \(y \in \mathbb{R}^d \setminus \overline{\Omega}_\varepsilon \), respectively, when these limits exist. It is a well-known classical result that, for \(x \in \partial \Omega_\varepsilon \),

\[
S(\omega) g(x) = (Sl(\omega)g)_+(x) = (Sl(\omega)g)_-(x)
\]

where the operator \(Sl(\omega) \) called single-layer potential (see \([5, 16]\)) and \(S(\omega) \) is pseudo-differential operator of order \(-1\).

Throughout this paper, we use for simplicity the notation \(H^\cdot([0, T_1[\times \cdots \times]0, T_{d-1}[) = H^\cdot([0, T_1[\times \cdots \times]0, T_{d-1}[), \) for \(\zeta \in \mathbb{R}, \) where

\[
H^\cdot([\mathbb{R}^d-1]/0, T_1[\times \cdots \times]0, T_{d-1}[), \) denotes the classical Sobolev \(H^\cdot \)-space on the quotient \(\mathbb{R}^d-1)/0, T_1[\times \cdots \times]0, T_{d-1}[\) (Adams \([1]\)).

Using change of variables and integral equations, the following result immediately holds (see \([23]\)).

Proposition 1. Let \(A_\varepsilon(\omega) : H^{-1/2}_\varepsilon([0, T_1[\times \cdots \times]0, T_{d-1}[) \to H^{1/2}_\varepsilon([0, T_1[\times \cdots \times]0, T_{d-1}[) \) be defined as follows:

\[
A_\varepsilon(\omega)f(t) = (S(\omega)f(\gamma_\varepsilon^{-1}))(\gamma_\varepsilon(t))
\]

\[
= \int_{[0,T_1[\times \cdots \times]0,T_{d-1}[} G(\gamma_\varepsilon(t), \gamma_\varepsilon(s)) |\nabla \gamma_\varepsilon(s)| f(s) ds \quad \text{for } f \in H^{-1/2}_\varepsilon([0, T_1[\times \cdots \times]0, T_{d-1}[).\]
Then the operator-valued function \(A_\varepsilon(\omega) \) is Fredholm analytic with index 0 in \(C \setminus i\mathbb{R}^- \). Moreover, \(A_\varepsilon^{-1}(\omega) \) is a meromorphic function and its poles are in \(\{ \Im(z) \leq 0 \} \), where \(\Im(z) \) means the imaginary part of \(z \) and \(\Re(z) \) is the real part.

Using the properties of the operator-valued function \(A_\varepsilon \) given by Proposition 1 and using the Lemma 5.3 found in [11], we can easily prove the following results.

Theorem 2. Let \(\mathcal{K}_0 \) be a bounded neighborhood of \(\overline{\mathcal{K}}_0 \) in \(\mathbb{R}^d \). Then there exists a constant \(\varepsilon_1 > 0 \) smaller than \(\varepsilon_0 \) such that an orthonormal basis of eigenfunctions \((u_j(\varepsilon))_j \) corresponding to the \(\omega_0 \)-group, \((\omega_j^2(\varepsilon))_j \), in \(H_0^1(\Omega_\varepsilon) \) can be chosen to depend holomorphically in \((x, \varepsilon) \in \mathcal{K}_0 \times] - \varepsilon_1, \varepsilon_1 [\). Moreover these eigenfunctions satisfy the following uniform expansion: for \(x \in \mathcal{K}_0 \),

\[
 u_j(\varepsilon) = u_0^j + \sum_{n \geq 1} u_n^{(j)} \varepsilon^n,
\]

where the family \(u_0^j \) builds a basis of eigenfunctions of (3) associated to \(\omega_0^2 \) and normalized in \(L^2(\Omega_0) \). The terms \(u_n^{(j)} \) are computed from the Taylor coefficients of the normal derivatives.

3. Convergence Estimate

In this Section we are in a position to use the Theorems 1 and 2 in order to establish certain estimates for the convergence of the eigenfunctions \(u_j(\varepsilon) \) and the corresponding eigen-frequencies \(\omega_j^2(\varepsilon) \), for all \(j = 1, \cdots, m \). Let \(\alpha_1 > 0 \) be the smaller positive constant such that \(\Omega_0 \subset \Omega_\varepsilon \) and \(\partial \Omega_\varepsilon \cap \partial \Omega_0 = \emptyset \), for \(0 < \varepsilon < \alpha_1 \) and define the open, bounded domain \(\Omega_\varepsilon \equiv \Omega_\varepsilon \setminus \overline{\mathcal{K}}_0 \).

Lemma 1. Let the functions \(u_j(\varepsilon) \) and \(u_0^j \), for \(j = 1, \cdots, m \), be given by Theorem 2. Then, there exist some positive constants \(\varepsilon_2 < \varepsilon_1 \) and \(C_j \), such that

\[
\| \nabla(u_j(\varepsilon) - u_0^j) \|_{L^2(\Omega_\varepsilon)} \leq C_j |\Omega_\varepsilon \setminus \Omega_0|^{1/2},
\]

for \(0 < \varepsilon < \varepsilon_2 \). The constant \(C_j \) depends on \(\omega_0 \) and \(u_0^j \), but is otherwise independent of \(\varepsilon \).

Proof. Define the function \(U(\varepsilon) = u_j(\varepsilon) - u_0^j \), for \(0 < \varepsilon < \inf(\varepsilon_1, \alpha_1) \) where \(\varepsilon_1 \) is given by Theorem 2 and combine the equations (2) and (3) and let for simplicity \(\omega = \omega_j(\varepsilon)\sqrt{\mu_\varepsilon \varepsilon_0} \), we compute that \(U(\varepsilon) \) solves:

\[
-\Delta U = \omega^2 U + (\omega^2 - \omega_0^2 \varepsilon_0 \mu_0)u_0^j \quad \text{in } \Omega_\varepsilon.
\]

(4)

For \(z \in \mathbb{R} \), we define the function \(\vartheta \) by

\[
\vartheta(z) = \omega^2 z + (\omega^2 - \omega_0^2 \varepsilon_0 \mu_0)\|u_0^j\|_{L^\infty(\Omega_\varepsilon)}.
\]

Then, we trivially remark,

\[
|\vartheta(z)| \leq |\vartheta(0)| + \omega^2 |z|, \quad \forall z \in \mathbb{R},
\]
and consequently,
\[|\vartheta(U(\varepsilon))| \leq |\vartheta(0)| + \omega^2|U(\varepsilon)|. \] (5)

The fact that \(u_j(\varepsilon) \to u_j^i \) implies that there exists \(0 < \alpha_2 < \inf(\varepsilon_1, \alpha_1) \) such that for \(0 < \varepsilon < \alpha_2 \),
\[|U(\varepsilon)(x)| \leq 2\|u_j^i\|_{L^\infty(\Omega_\varepsilon)}, \text{ for } x \in \Omega_\varepsilon. \] (6)

Moreover, we remember that \(\omega^2(\varepsilon) = \omega_0^2\varepsilon_0\mu_0 \), then there exists \(\alpha_3 \geq 0 \) such that: \(\omega^2 \leq \omega_0^2\varepsilon_0\mu_0 + \frac{1}{3} \), for \(0 \leq \varepsilon \leq \alpha_3 \).

Now, it is useful to introduce the following function:
\[\tilde{\vartheta}(U) = \omega^2U + (\omega^2 - \omega_0^2\varepsilon_0\mu_0)u_j^i, \]
where \(U \) is the solution of (4). If we examine each term on the right hand side of (5) separately, we find out that the first term is bounded by
\[|\vartheta(0)| \leq \frac{1}{3}\|u_j^i\|_{L^\infty(\Omega_\varepsilon)}, \text{ for } 0 < \varepsilon < \alpha_3. \]

The second term is bounded by
\[\omega^2|U(\varepsilon)| \leq 2(\omega_0^2\varepsilon_0\mu_0 + \frac{1}{3})\|u_j^i\|_{L^\infty(\Omega_\varepsilon)}, \text{ for } 0 < \varepsilon < \alpha_2 = \inf(\alpha_2, \alpha_3). \]

These estimates give
\[\|\tilde{\vartheta}(U(\varepsilon))\|_{L^\infty(\tilde{\Omega}_\varepsilon)} \leq (1 + 2\omega_0^2\varepsilon_0\mu_0)\|u_j^i\|_{L^\infty(\Omega_\varepsilon)}, \text{ for } 0 < \varepsilon < \alpha_2. \] (7)

Next, the relation (4) implies
\[-\Delta U(\varepsilon) = \tilde{\vartheta}(U(\varepsilon)), \quad \text{in} \tilde{\Omega}_\varepsilon. \]

By integrating by parts in \(\tilde{\Omega}_\varepsilon \), we find that the function \(U(\varepsilon) \) is solution to the following problem:
\[\forall v \in H^1(\tilde{\Omega}_\varepsilon), \quad \int_{\tilde{\Omega}_\varepsilon} \nabla U(\varepsilon) \nabla v dx = \int_{\tilde{\Omega}_\varepsilon} \tilde{\vartheta}(U(\varepsilon))v dx + \int_{\partial\tilde{\Omega}_\varepsilon} \frac{\partial U}{\partial v} \tilde{v} ds(x). \] (8)

On the other hand, it is not hard to see that (Trace Theorem),
\[\left| \int_{\partial\tilde{\Omega}_\varepsilon} \frac{\partial U}{\partial v} \tilde{v} ds(x) \right| \leq |\tilde{\Omega}_\varepsilon|^{1/2} \sup_{z \in \partial\tilde{\Omega}_\varepsilon} \left| \frac{\partial U(z)}{\partial v} \right| \|v\|_{L^2(\tilde{\Omega}_\varepsilon)}. \]

But, the relation (6) implies that \(\sup_{z \in \partial\tilde{\Omega}_\varepsilon} \left| \frac{\partial U(z)}{\partial v} \right| \) is a positive constant \(c_* \), independent of \(\varepsilon \). If we choose \(v = U(\varepsilon) \) and if we consider relations (7) and (8) we deduce that,
\[\|\nabla U\|^2_{L^2(\tilde{\Omega}_\varepsilon)} \leq [c_* + (1 + 2\omega_0^2\varepsilon_0\mu_0)\|u_j^i\|_{L^\infty(\Omega_\varepsilon)}]|\tilde{\Omega}_\varepsilon|^{1/2}\|U\|_{L^2(\tilde{\Omega}_\varepsilon)}. \] (9)
By Poincare’s inequality, there exists some positive constant \(C(\tilde{\Omega}_\varepsilon) \) such that
\[
\|U\|_{L^2(\tilde{\Omega}_\varepsilon)} \leq C(\tilde{\Omega}_\varepsilon)\|\nabla U\|_{L^2(\tilde{\Omega}_\varepsilon)}.
\]
The fact \(U \) and \(\nabla U \) are uniformly bounded on \(\Omega_\varepsilon \) implies there exists some constant \(C_0 \) independent of \(\varepsilon \) (e.g.\([13, p.33]) such that
\[
C(\tilde{\Omega}_\varepsilon) \leq C_0,
\]
and therefore the relation (9) becomes
\[
\|\nabla U\|_{L^2(\tilde{\Omega}_\varepsilon)} \leq C_0[c_\ast + (1 + 2\omega_0^2\varepsilon_0\mu_0)]\|u_0^j\|_{L^\infty(\Omega_0)}]\tilde{\varepsilon}_\varepsilon^{1/2}.
\]
We take \(C_j = C_0[c_\ast + (1 + 2\omega_0^2\varepsilon_0\mu_0)]\|u_0^j\|_{L^\infty(\Omega_0)} \) which concludes the proof.

The following main result holds.

Theorem 3. Let \(\gamma, \beta \) and \(\Omega_\varepsilon \) be defined as in Section 2 and let the functions \(u_j(\varepsilon) \) and \(u_0^j \), for \(j = 1, \ldots, m \), be given by Theorem 2. Then, there exist some constant \(0 < \varepsilon_3 \leq 1/M \), \(M = \max_{t \in [0, T_1] \times \cdots \times [0, T_{d-1}]} |\beta(t)| \) and some positive constant \(\kappa_j \) dependent on \(\omega_0, u_0^j, |\gamma| \) and \(M \) but otherwise independent of \(\varepsilon \) such that,
\[
\|u_j(\varepsilon) - u_0^j\|_{L^2(\tilde{\Omega}_\varepsilon)} \leq \kappa_j \varepsilon^{1/2},
\]
for \(0 < \varepsilon < \varepsilon_3 \).

Proof. For simplicity we can suppose that \(\Omega_0 \) is a disk with radius \(\varrho_0 > 0 \) in \(\mathbb{R}^2 \). It then follows that \(|\gamma(t)| = \varrho_0 \). The proof is simple if we calculate the area \(|\tilde{\Omega}_\varepsilon| \) of the domain \(\tilde{\Omega}_\varepsilon \). But it is not hard to see that, in polar coordinates \((\varrho, \theta)\), there exists a regular function \(\Upsilon : [0, 2\pi] \rightarrow \mathbb{R}_+ \), \(\Upsilon(\theta) = |\beta(\theta)| \) such that the boundary \(\partial \Omega_\varepsilon \) can be re-parameterized by
\[
\varrho = \varrho(\varepsilon, \theta) = \varrho_0 + \varepsilon \Upsilon(\theta); \quad \theta \in [0, 2\pi].
\]
Therefore
\[
|\tilde{\Omega}_\varepsilon| = \int_0^{2\pi} \int_{\varrho_0}^{\varrho_0 + \varepsilon \Upsilon(\theta)} \varrho d\varrho \ d\theta = \frac{1}{2} \int_0^{2\pi} [\varepsilon^2 \Upsilon^2(\theta) + 2\varepsilon \varrho_0 \Upsilon(\theta)] d\theta. \tag{11}
\]
For \(\varepsilon < \varepsilon_3 = \inf(\varepsilon_2, 1/M) \), we can write: \(\varepsilon^2 \leq \varepsilon/M \); which implies
\[
\varepsilon^2 M^2 \leq \varepsilon M.
\]
Consequently the equality (11) gives
\[
|\tilde{\Omega}_\varepsilon| \leq \pi M(1 + 2\varrho_0)\varepsilon. \tag{12}
\]
By Poincare’s inequality and Lemma 1 we write,
\[
\|u_j(\varepsilon) - u_0^j\|_{L^2(\tilde{\Omega}_\varepsilon)} \leq C(\tilde{\Omega}_\varepsilon)C_j|\tilde{\Omega}_\varepsilon|^{1/2}.
\]
Finally, we obtain the desired result if we consider the relations (10) and (12) and if we choose the constant \(\kappa_j = C_jC_0 \sqrt{\pi \rho(1 + 2\bar{\rho}_0)}. \)

To derive the corresponding formulae for the eigenvalues we will use an idea close to the theorem of Osborn [18] which gives estimates for the convergence of the eigenvalues of a sequence of compact operators. For our case we consider the Hilbert space \(L^2(\Omega_\varepsilon) \) with the standard inner product \(\langle ., . \rangle \).

For any \(\varphi \in L^2(\Omega_\varepsilon) \), define the operator \(T_\varepsilon \varphi = v_\varepsilon \), where \(v_\varepsilon \) is the solution to the problem

\[
\begin{cases}
-\Delta v_\varepsilon = \varphi & \text{in } \Omega_\varepsilon, \\
v_\varepsilon = 0 & \text{on } \partial \Omega_\varepsilon.
\end{cases}
\]

and we define the operator \(T_0 \varphi = v_0 \), where \(v_0 \) is the solution to the problem

\[
\begin{cases}
-\Delta v_0 = \varphi & \text{in } \Omega_0, \\
v_0 = 0 & \text{on } \partial \Omega_0.
\end{cases}
\]

The function \(\varphi \mapsto (-\Delta)^{-1} \varphi \) is continuous from \(L^2(\Omega_\varepsilon) \) to \(H^1_0(\Omega_\varepsilon) \). Clearly \(T_\varepsilon \) and \(T_0 \) are compact operators from \(L^2(\Omega_0) \) to \(L^2(\Omega_0) \). From the standard \(H^1 \) estimates for \(v_\varepsilon \) which are independent of \(\varepsilon \), we see that the set \(\{ T_\varepsilon \} \) is collectively compact. Hence all hypotheses hold for the theorem of Osborn. Now if we set,

\[
\lambda_0 = \frac{1}{\omega_0^2} \quad \text{and} \quad \lambda_j(\varepsilon) = \frac{1}{\omega_j^2(\varepsilon)},
\]

then according to the problem (13)(resp. (14)) we can see that \((\lambda_j(\varepsilon), u_j(\varepsilon))\) (resp.\((\lambda_0, u_0^j))\) is eigenpairs of \(T_\varepsilon \) (resp. of \(T_0 \)) with \(\varphi = \frac{1}{\omega_j^2(\varepsilon)} u_j(\varepsilon) \). We remember that \(\omega_0^2 \) is an eigenfrequency of multiplicity \(m \) with a corresponding set of orthonormal eigenfunctions \(\{ u_0^j \} \) and then \(R(P(0)) \) is just the \(m \)-dimensional subspace generated by \(\{ u_0^j \} \) (where \(P(0) \) means the spectral projection associated with \(T_0 \) and means the projection onto the space associated to \(\{ u_0^j \} \)).

Although each of the eigenvalues \(\lambda_1(\varepsilon), \ldots, \lambda_m(\varepsilon) \) are close to \(\lambda_0 \), their arithmetic mean is generally a closer approximation [3]. Thus we define

\[
\hat{\lambda}(\varepsilon) = \frac{1}{m} \sum_{j=1}^m \frac{1}{\omega_j^2(\varepsilon)}.
\]

In the terminology of [9] this is the weighted mean of the \(\lambda_0 \)-group. The next Lemma gives an estimate for \(\lambda_0 - \hat{\lambda}(\varepsilon) \) which will be useful to prove our main result.

Lemma 2. Let \(\varepsilon_3 \) be the positive constant given by Theorem 3. Then there exists a positive constant \(K_1 \) such that for \(\varepsilon < \varepsilon_3 \),

\[
|\lambda_0 - \hat{\lambda}(\varepsilon)| \leq K_1 \varepsilon^{1/2}.
\]
Lemma 3. There exist some constants in such a way that

\[
\| T_\epsilon u_j^j - T_0 u_j^j \|_{L^2(\tilde{\Omega}_\epsilon)} = \| T_\epsilon u_j(\epsilon) + T_\epsilon u_j^j - T_\epsilon u_j(\epsilon) - T_0 u_j^j \|_{L^2(\tilde{\Omega}_\epsilon)}
\]

\[
\leq \left\| \frac{1}{\omega^2_\epsilon(j)} u_j(\epsilon) - \frac{1}{\omega_0^2} u_0 \right\|_{L^2(\tilde{\Omega}_\epsilon)} + \| T_\epsilon u_j^j - T_\epsilon u_j(\epsilon) \|_{L^2(\tilde{\Omega}_\epsilon)}. \tag{16}
\]

If we set \(z_j(\epsilon) = \frac{1}{\omega^2_\epsilon(j)} u_j(\epsilon) \) and \(z_0^j = \frac{1}{\omega_0^2} u_0 \), we see that \(z_j(\epsilon) \) and \(z_0^j \) are solutions to the problems (3) and (2) respectively and \(z_j(\epsilon) \to z_0^j \) as \(\epsilon \) tends to 0. Therefore, Theorem 3 gives for \(\epsilon < \epsilon_3 \),

\[
\| z_j(\epsilon) - z_0^j \|_{L^2(\tilde{\Omega}_\epsilon)} \leq \kappa_j \epsilon^{1/2}.
\]

In other words, for reasons of compactness of \(T_\epsilon \) and according to Theorem 3 we have

\[
\| T_\epsilon u_j^j - T_\epsilon u_j(\epsilon) \|_{L^2(\tilde{\Omega}_\epsilon)} = \| T_\epsilon (u_j^j - u_j(\epsilon)) \|_{L^2(\tilde{\Omega}_\epsilon)} \leq K \| u_j^j - u_j(\epsilon) \|_{L^2(\tilde{\Omega}_\epsilon)} \leq K \kappa_j \epsilon^{1/2}.
\]

Then, the relation (16) becomes

\[
\| T_\epsilon u_j^j - T_0 u_j^j \|_{L^2(\tilde{\Omega}_\epsilon)} \leq \kappa_j (1 + K) \epsilon^{1/2}. \tag{17}
\]

Inserting all this information into the theorem of Osborn [21, Thm.3], we obtain

\[
\frac{1}{\omega_0^2} - \frac{1}{\omega_0^2} \sum_{j=1}^m \omega^2_\epsilon(j) = \frac{1}{m} \sum_{j=1}^m \| (T_0 - T_\epsilon) u_j^j, u_j^j \| + \epsilon^{1/2} O(1).
\]

The proof follows by reconsidering again relation (17).

Next, to estimating \(|\omega_0^2 - \omega^2_\epsilon(j)| \) we may, firstly, estimate \(|\lambda_0 - \lambda_j(\epsilon)| \) for each \(j \).

Lemma 3. There exist some constants \(0 < \epsilon_4 \leq \epsilon_3 \) and \(k_j^{(1)} \) such that for all \(j = 1, \ldots, m \),

\[
|\lambda_0 - \lambda_j(\epsilon)|^m \leq k_j^{(1)} \epsilon^{5/2}, \quad \text{for} \ 0 \leq \epsilon \leq \epsilon_4.
\]

Proof. Let \(T_\epsilon(y_\epsilon) = \lambda_j(\epsilon)y_\epsilon \) such that \(\| y_\epsilon \| = 1 \). We can then choose \(\sigma^* \in Ker((\lambda_0 - T_0^*)^m) \) in such a way that \(\langle y_\epsilon, \sigma^* \rangle = 1 \). Then,

\[
\langle (\lambda_0 - T_0^*)^m \sigma^*, y_\epsilon \rangle = 0
\]

and therefore,

\[
|\langle (\lambda_0 - \lambda_j(\epsilon))^m \sigma^*, y_\epsilon \rangle| = |\langle (\lambda_0 - \lambda_j(\epsilon))^m \sigma^*, y_\epsilon \rangle - \langle (\lambda_0 - T_0^*)^m \sigma^*, y_\epsilon \rangle|
\]

\[
= | - \sum_{l=0}^{m-1} (\lambda_0 - \lambda_j(\epsilon))^l (\lambda_0 - T_0^*)^{m-1-l}(\lambda_j(\epsilon) - T_0^*) \sigma^*, y_\epsilon \rangle|. \tag{18}
\]
Now we prove that $|\lambda_0 - \lambda_p(e)| \leq |\lambda_0 - \hat{\lambda}(e)|$, for each positive integer p. But, the relation,

$$
\lambda_0 - \hat{\lambda}(e) - (\lambda_0 - \lambda_p(e)) = \lambda_p(e) - \frac{1}{m} \sum_{j=1}^{m} \hat{\lambda}_j(e)
$$

implies that, for p and q the integers such that $\lambda_p = \sup_{1 \leq j \leq m} |\lambda_j(e)|$ and $\lambda_q = \inf_{1 \leq j \leq m} |\lambda_j(e)|$, the following relation holds (the family (ω^2_j) is increasing):

$$
|\lambda_0 - \hat{\lambda}(e)| \geq \sup(|\lambda_0 - \lambda_p(e)|, |\lambda_0 - \lambda_q(e)|)
$$

which gives that $|\lambda_0 - \lambda_j(e)| \leq |\lambda_0 - \hat{\lambda}(e)|$ for $1 \leq j \leq m$. Therefore, the fact that $\lambda_0 - \hat{\lambda}(e) \to 0$ implies that there exists $\delta_1 > 0$ such that for all $0 \leq l \leq m - 1$,

$$
|\lambda_0 - \lambda_j(e)|^l \leq |\lambda_0 - \hat{\lambda}(e)|, \quad \text{for } 0 < \epsilon < \delta_1. \quad \text{(19)}
$$

Next, if we insert the relation (19) into (18) we obtain the following inequality

$$
|\lambda_0 - \lambda_j(e)|^m \leq |\lambda_0 - \hat{\lambda}(e)| \sum_{l=0}^{m-1} \|\lambda_0 - T_0^n\|^{m-1-l} \max_{\|\psi\|^2=1} \|\langle (\lambda_j(e) - T_0 y_\epsilon, \psi^* \rangle\|, \quad \text{for } 0 < \epsilon < \delta_1. \quad \text{(20)}
$$

For any $\psi^* \in R(P(0)^*)$, with $\|\psi^*\| = 1$, and the fact that $P_j(e)^{-1} P_j(e)$ is the identity on $R(P(0))$ (where $P_j(e)$ means the spectral projection associated with T_ϵ and is a projection onto the direct sum of the spaces of the eigenvectors corresponding to T_ϵ) we write,

$$
|\langle (\lambda_j(e) - T_0) y_\epsilon^*, \psi^* \rangle| = |\langle (P_j(e)^{-1} P_j(e)) (T_\epsilon - T_0) y_\epsilon, \psi^* \rangle| = |\langle (T_\epsilon - T_0) y_\epsilon, (P_j(e)^{-1} P_j(e))^* \psi^* \rangle|.
$$

Due to the estimate (4.10) found in [21, p.722], we obtain

$$
|\langle (T_\epsilon - T_0) y_\epsilon, (P_j(e)^{-1} P_j(e))^* \psi^* \rangle| \leq c e^2 \|y_\epsilon\| \|P_j(e)^{-1} P_j(e))^* \psi^*\| \|L^2\|, \quad \text{for } 0 < \epsilon < \delta_1,
$$

where c is a positive constant. Then,

$$
|\langle (T_\epsilon - T_0) y_\epsilon, (P_j(e)^{-1} P_j(e))^* \psi^* \rangle| \leq c e^2 \|y_\epsilon\| \|L^2\| \|P_j(e)^{-1} \| \|P_j(e)\| \|\psi^*\| \|L^2\|.
$$

The norm $\|P_j(e)\|$ is bounded in ϵ since $P_j(e) \to P(0)$ pointwise. In other words, for ϵ small enough and for $f \in R(P(0))$ with $\|f\| = 1$, we have

$$
1 - \|P_j(e)f\| = \|P(0)f\| - \|P_j(e)f\| \leq \|P(0) - P_j(e)\| f \| \leq \frac{1}{2}
$$

and hence $\|P(e)f\| \geq \frac{1}{2}$ which implies $\|P(e)^{-1}\| \leq 2$ for ϵ small enough, say for $0 \leq \epsilon \leq \delta_2$ where δ_2 is a positive constant. Then the relation (20) becomes,

$$
|\lambda_0 - \lambda_j(e)|^m \leq c' e^2 |\lambda_0 - \hat{\lambda}(e)|. \quad \text{(21)}
$$

The proof is achieved if we use Lemma 2 and we take $\epsilon_4 = \inf (\epsilon_3, \delta_1, \delta_2)$ and $k_1^{(1)} = c' K_1$.

The main estimate will be given in the following theorem which its proof follows easily by Lemma 3.
Theorem 4. Let $\omega_0^2 > 0$ be the eigenfrequency of the problem (2) with geometric multiplicity m, and $\omega_j^2(\varepsilon)$ for $j = 1, \cdots, m$ given by Theorem 1. Then, there exist some positive constants $\varepsilon_5 < \varepsilon_4$ and $k_j^{(2)}$ such that

$$|\omega_0^2 - \omega_j^2(\varepsilon)| \leq k_j^{(2)}\varepsilon^{\frac{5}{m}},$$

for $0 < \varepsilon \leq \varepsilon_5$.

Proof. It is not hard to see that for all $j = 1, \cdots, m$,

$$|\lambda_0 - \lambda_j(\varepsilon)| = \left|\frac{\omega_j^2(\varepsilon) - \omega_0^2}{(\omega_0 \omega_j(\varepsilon))^2}\right|$$

But the fact $\omega_j^2(\varepsilon) \to \omega_0^2$ as ε tends to 0 implies that there exists some constant $\delta_3 > 0$ such that $|(\omega_j(\varepsilon) \omega_0)^2| < \frac{3}{2} \omega_0^4$, for $0 < \varepsilon < \delta_3$.

The relation (22) implies,

$$|\omega_j^2(\varepsilon) - \omega_0^2| \leq \frac{3}{2} \omega_0^4|\lambda_0 - \lambda_j(\varepsilon)|, \quad \text{for } 0 < \varepsilon < \delta_3.$$

The theorem follows immediately by considering Lemma 3, we take $\varepsilon_5 = \inf(\delta_3, \varepsilon_4)$ and we choose $k_j^{(2)} = \frac{3}{2} \omega_0^4(k_1^{(1)})^{1/m}$.

References

