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Abstract. A topological space X is called C-Tychonoff if there exist a one-to-one function f from
X onto a Tychonoff space Y such that the restriction fjx : K — f(K) is a homeomorphism
for each compact subspace K C X. We discuss this property and illustrate the relationships
between C-Tychonoffness and some other properties like submetrizability, local compactness, L-
Tychonoffness, C-normality, C-regularity, epinormality, o-compactness, pseudocompactness and
zero-dimensional.
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1. Introduction

We define a new topological property called C-Tychonoff. Unlike C-normality[2], we
prove that C-Tychonoffness is a topological property which is multiplicative and hered-
itary. We show that C-Tychonoff and C-normal are independent. Also we investigate
the function witnesses the C-Tychonoffness when it is continuous and when it is not. We
introduce the notion of L-Tychonoffness. Throughout this paper, we denoted of the set of
positive integers by N, and an order pair by (z,y). An ordinal + is the set of all ordinal «,
with a < =, we denoted the first infinite ordinal by wg and the first uncountable ordinal
by wi. A T3 space is a T regular space, a Tychonoff (7 1 ) space is a T completely regular
space, and a Ty space is a 17 normal space. For a subset B of a space X, intB denote
the interior of B and B denote the closure of B. A space X is locally compact if for each
y € X and each open neighborhood U of y there exists an open neighborhood V of y such
that y € V C V C U and V is compact, we do not assume 75 in the definition of local
compactness.
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2. C-Tychonoftness

Definition 1. A topological space X is called C-Tychonoff if there exist a one-to-one
function f from X onto a Tychonoff space Y such that the restriction f|, : K — f(K)
is a homeomorphism for each compact subspace K C X.

Recall that a topological space (X ,7) is called submetrizable if there exists a metric
d on X such that the topology T4 on X generated by d is coarser than 7, i.e., T4 C T,
see [10].

Theorem 1. Every submetrizable space is C-Tychonoff.

Proof. Let T' be a metrizable topology on X such that 7/ C7. Then (X ,7") is Ty-
chonoff and the identity function idx : (X ,7) — (X ,7’) is a bijective and continuous.
If K is any compact subspace of ( X ,7 ), then idx (K) is Hausdorff being a subspace of the
metrizable space (X ,7), and the restriction of the identity function on K onto idx (K)
is a homeomorphism by [8, 3.1.13].

Since any Hausdorff locally compact space is Tychonoff, then we have the following
theorem.

Theorem 2. Every Hausdorff locally compact space is C-Tychonoff.

The converse of Theorem 1 is not true in general. For example, the Tychonoff Plank
((w1+1) x (wo+ 1)) \ {{w1,wo)} is C-Tychonoff being Hausdorff locally compact, but it is
not submetrizabl, because if it was, then (w1 +1) x {0} C ((w1 +1) X (wo+1)) \ {{w1,wo)}
is submetrizabl, because submetrizablity is hereditary, but ((w; + 1) x {0} 2wy + 1 and
w1 + 1 is not submetrizabl.

The converse of Theorem 2 is not true in general as the Dieudonné Plank [16] is Tychonoff,
hence C-Tychonoff but not locally compact. Hausdorffness is essential in Theorem 2. Here
is an example of a locally compact space which is neither C-Tychonoff nor Hausdorff.

Example 1. The particular point topology T 5 on R, see [16], is not C-Tychonoff. It is
well-known that (R,T ) is neither 71 nor Tychonoff. If B C R, then {{z, V2}:x € B}
is an open cover for B, thus a subset B of R is compact if and only if it is finite. To
show that (R,T s5) is not C-Tychonoff, suppose that (R,T ) is C-Tychonoff. Let Z
be a Tychonoff space and f : R — Z be a bijective function such that the restriction
Jiw K — f (K) is a homeomorphism for each compact subspace K of (R,T ﬂ) Take
K = {x,\/i}, such that  # v/2, hence K is a compact subspace of (R, 7‘\/5). By
assumption fj, : K — f(K) = {f(z), f(v2)} is a homeomorphism. Because f(K) is
a finite subspace of Z and Z is T, then f(K) is discrete subspace of Z. Therefore,we
obtain that f), is not continuous and this a contradiction as f|, is a homeomorphism.
Thus (R,T ) is not C-Tychonoff. B
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By the definition, it is clear that a compact C-Tychonoff space must be Tychonoff see
Theorem 3 below. Obviously, any Tychonoff space is C-Tychonoff, just by taking ¥ = X
and f to be the identity function, but the converse is not true in general. For example, the
Half-Disc space [16] is C-Tychonoff which is not Tychonoff. It is C-Tychonoff because it is
submetrizable. C-Tychonoffness does not imply Tychonoffness even with first countability.
For example, Smirnov’s deleted sequence topology [16] is first countable and C-Tychonoff
being submetrizabl but not Tychonoff.

Theorem 3. If X is a compact non-Tychonoff space, then X cennot be C-Tychonoff.

We conclude that from the above theorem, R with the finite complement topology is
not C-Tychonoff.

Theorem 4. If X is a Tj-space such that the only compact subspace are the finite sub-
space, then X is C-Tychonoff.

Proof. Let Y = X and consider Y with the discrete topology. Then the identity
function from X onto Y is a bijective function. If K is any compact subspace of ( X ,7),
then by assumption K is a finite subspace. Because any finite set in a Tj-space is discrete,
hence the restriction of the identity function on K onto K is a homeomorphism since both
of the domain and the codomain are discrete and have the same cardinality.

If X is C-Tychonoff and f : X — Y is a witness of the C-Tychonoffness of X, then
f may not be continuous. Here is an example.

Example 2. Consider R with the countable complement topology CC [16]. Since the only
compact subspace are the finite subspaces and (R, CC) is T1, then the compact subspace
are discrete. Hence R with the discrete topology and the identity function will give the
C-Tychonoffness, see Theorem 4. Observe that the identity function in this case is not
continuous. H

Recall that a space X is Fréchet if for any subset B of X and any = € B there exist a
sequence (b, )nen of points of B such that b, — z, see [8].

Theorem 5. If X is C-Tychonoff and Fréchet, then any function witnesses its C-Tychonoffness
is continuous.

Proof. Let X be C-Tychonoff and Fréchet. Let f : X — Y be a witness of the
C-Tychonoffness of X. Take B C X and pick y € f(B). There is a unique z € X such
that f(z) = y, thus z € B. Since X is Fréchet, then there exists a sequence (b,) C B
such that b, — . The sequence K = {z} U {b, : n € N} of X is compact since it is
a convergent sequence with its limit, thus f|, : K — f(K) is a homeomorphism. Let
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W C Y be any open neighborhood of y. Then W N f(K) is open in the subspace f(K)
containing y. Since f({b, : n € N}) C f(K) N f(B) and W N f(K) # 0, then we have

W N f(B)# 0. Hence y € f(B) and f(B) C f(B). Thus f is continuous.

Since any first countable space is Fréchet [8], we conclude the following corollary:

Corollary 1. If X is C-Tychonoff first countable and f : X — Y witnessing the C-
Tychonoffness of X, then f is continuous.

Corollary 2. Any C-Tychonoff Fréchet space is Urysohn.

Proof. Let (X, T) be any C-Tychonoff Fréchet space. We may assume that X has
more than one element. Pick a Tychonoff space (Y, 77) and a bijection function f : ( X,
T) — (Y, T') such that fj, : A — f(A) is a homeomorphism for each compact
subspace A of X. Since X is Fréchet, then f is continuous. Define a topology 7* on X
as follows: 7* = { f~Y(U) : U € T'}. It clear that T* is a topology on X coarser that
T such that f: (X, 7%) — (Y, T') is continuous. If W € T*, then W is of the form
W = f~YU) where U € T'. So, f(W) = f(f~*(U)) = U which gives that f is open,
hence homeomorphism. Thus (X, 7*) is Tychonoff. Pick distinct a,b € X. Using T» of
(X, 7*%), choose G, H € T* such that a € G,b € H, and G N H = (). Using regularity of
(X, T*), choose U,V € T* suchthataEUQUT* QGandbEVQVT* C H. We have

that U,V € T and since B' C B for any B C X, we get U NV’ = . Therefore, (X,
T ) is Urysohn.

So, we conclude that any first countable C-Tychonoff space is Hausdorff.

Recall that a space X is a k-space if X is T» and it is a quotient image of a locally
compact space [8]. By the theorem: “ a function f from a k-space X into a space Y is
continuous if and only if f|, : Z — Y is continuous for each compact subspace Z of X7,
[8, 3.3.21]. We conclude the following:

Corollary 3. If X is a C-Tychonoff k-space and f : X — Y witnessing the C-
Tychonoffness of X, then f is continuous.

Recall that a topological space X is called C-normal if there exist a one-to-one func-
tion f from X onto a normal space Y such that the restriction f|, : K — f(K) is a
homeomorphism for each compact subspace K C X|2].

Theorem 6. Every C-Tychonoff Fréchet Lindelof space is C-normal.
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Proof. Let X be any C-Tychonoff Fréchet Lindelof space. Pick a Tychonoff space
Y and a bijective function f : X — Y such that the restriction f|, : K — f(K) is
a homeomorphism for each compact subspace K C X. By Theorem 5, f is continuous.
Since the continuous image of a Lindeldf space is Lindeldf [8, 3.8.7], we conclude that Y
is Lindeldf, hence normal as any regular Lindelof space is normal [8, 3.8.2]. Therefore, X
is C'-normal.

C-normality and C-Tychonoffness are independent from each other. Here is an example
of a C-normal which is not C-Tychonoff.

Example 3. Consider R with its right ray topology R [16]. So, R = {0,R} U { (x,0) :
x € R}. Since any two non-empty closed sets must intersect, then (R, R) is normal,
hence C-normal [2]. Now, suppose that (R, R ) is C-Tychonoff. Pick a Tychonoff space
Y and a bijective function f : R — Y such that the restriction f|, : K — f(K) is a
homeomorphism for each compact subspace K C R. It is well-known that a subspace K of
(R, R) is compact if and only if K has a minimal element. Thus [2, c0) is compact, hence
flpooy © [2,00) — f([2,00)) C Y is a homeomorphism. i.e. f([2,00)) as a subspace of
(R, R) is regular which is a contradiction as [2, 3] is closed in [2,00) and 5 ¢ [2, 3] and any
non-empty open sets in [2,00) must intersect. Therefore, (R, R ) cannot be C-Tychonoff.
|

Here is an example of a C-Tychonoff space which is not C-normal.

Example 4. Consider the infinite Tychonoff product space G = D“' =[] acw, Ds where
D = {0,1} considered with the discrete topology. Let H be the subspace of G consisting
of all points of G with at most countably many non-zero coordinates. Put M = G x H.
Raushan Buzyakova proved that M cannot be mapped onto a normal space Z by a bijective
continuous function [7]. Using Buzyakova’s result and the fact that M is a k-space, we
conclude that M is a Tychonoff space which is not C-normal [13]. Since M is Tychonoff,
then it is C-Tychonoff. W

Theorem 7. C-Tychonoffness is a topological property.

Proof. Let X be a C-Tychonoff space and X 2 Y. Let Z be a Tychonoff space and let
f X — Z be a bijective function such that the restriction f|, : K — f(K) is a home-
omorphism for each compact subspace K C X. Let h : Y — X be a homeomorphism.
Then Z and foh:Y — Z satisfies the requirement.

Theorem 8. C-Tychonoffness is an additive property.
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Proof. Let X, be a C-Tychonoff space for each s € S. We prove that their sum ®zcg.X;
is C-Tychonoff. For each s € 5, pick a Tychonoff space Y; and a bijective function fs :
X5 — Y, such that fs‘ : Ky — fs(Ks) is a homeomorphism for each compact subspace
K of X,. Because Y is Tychonoff for each s € S, then the sum @4cg5Y; is Tychonoff,
[8, 2.2.7]. Consider the function sum [8, 2.2.E| f = @secsfs : DsesXs — DsesYs defined
by f(z) = fs(x) if 2 € X4, € S. A subspace K C @yep X, is compact if and only
if the set Sp = {s € S : KN X; # 0} is finite and K N X, is compact in X, for each
s € Sp. If K C ®y4esXs is compact. then (Psesfs),. is a homeomorphism since fs‘ Kx.

a homeomorphism for each s € ..

|k

Theorem 9. C-Tychonoffness is a multiplicative property.

Proof. Let X, be a C-Tychonoff space for each s € S. Pick a Tychonoff space Yy and
a bijective function fs : Xs — Y, such that fs‘ : Ks — fs(Ks) is a homeomorphism
for each compact subspace K of Xs. Since Y is Tychonoff for each s € S, then the
Cartesian product [[,.g Ys is Tychonoff [8, 2.3.11]. Define f : [[,cq Xs — [lseg Y5
by f((zs : s € 5)) = (fs(xzs) : s € 5) for each s € S, then f is bijective. Let K g
[I,cs Xs be any compact subspace and let ps be the usual projection, then ps(K) C X,
is compact. Now, K C []..q ps(K) = K* is compact, by the Tychonoff theorem. Hence
Jler = [Lscs fs 5 is a homeomorphism. Thus f|, is a homeomorphism, because the
restriction of a homeomorphism is a homeomorphism.

Theorem 10. C-Tychonoffness is a hereditary property.

Proof. Let A be any non empty subspace of C-Tychonoff space X. Pick a bijective
function f from X onto a Tychonoff space Y such that fj, : K — f(K) is a homeomor-
phism for each compact subspace K C X. Let B = f(A) CY. Then B is Tychonoff being
a subspace of a Tychonoff space Y. Now, we have f|, : A — B is a bijective function.
Since any compact subspace of A is compact in X and f| Al = J|s» we conclude that A is

C-Tychonoff.

Frome Theorem 9 and Theorem 10, we conclude the following corollary.

Corollary 4. [[,.¢ X5 is C-Tychonoff if and only if X is C-Tychonoff Vs € S.

seS

3. L-Tychonoffness and Other Properties

We introduce another new topological property called L-Tychonoff .
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Definition 2. A topological space X is called L-Tychonoff if there exist a one-to-one
function f from X onto a Tychonoff space Y such that the restriction f|, : L — f(L) is
a homeomorphism for each Lindel6f subspace L C X.

By the definition it is clear that a Lindel6f L-Tychonoff space must be Tychonoff. Since
any compact space is Lindelof, then any L-Tychonoff space is C-Tychonoff. The converse
is not true in general. Obviously, no Lindel6f non-Tychonoff space is L-Tychonoff. So,
no countable complement topology on uncountable set X is L-Tychonoff, but it is C-
Tychonoff, see Example 2. An example of an L-Tychonoff space which is not Tychonoff.

Example 5. Consider ws, the successor cardinal number of the cardinal number w;. Let
X = wo U{i,j} where {i,j} Nwo =0, so i & wy and j € wy. Generate a topology on
X as follows: Each a € wy is isolated. A basic open neighborhood of 7 is of the form
U= {i} U (w2 \ E) where E C wy with |E| = w;. Similarly, a basic open neighborhood
of j is of the form V = {j} U (w2 \ F') where F' C wy with |F| = w;. Then X is not T
as 7 and j cannot be separated by disjoint open sets. X is not Lindel6f as the open cover
{{i} U (w2 \w1), {7} U (w2 \w1),{a} : @ € w1} of X has no countable subcover. Also, if C
is any countable subspace of X, then C is discrete as a subspace because if i € C, then
U={i}U(w2\ (w1 U(C\{j}))) is an open neighborhood of 7 in X such that UNC = {i}.
Similarly, if j € C. It is clear that if C' is countable, then C' is Lindelof. Assume that C is
uncountable. Then |C| > w;. Suppose that {i,j} C C. Partition C into three partitions
(4, Cy, and Cj such that ¢ € Cy with |C}| = wy, j € Cy with |Cy] = w1, and |C3| > w;. The
open cover {{i}U(w2\((C1UC2)\{,5})), {7} U(w2\((C1UC2)\{1,7}))), {a} : v € C1UC,}
of C has no countable subcover. If C contains either i or j, we do the same idea but for
just two partitions. Thus a subspace C' of X is Lindelof if and only if C' is countable.
Thus X is L-Tychonoff which is not Tychonoff.

A function f: X — Y witnessing the L-Tychonoffness of X need not be continuous.
But it will be if X is of countable tightness. Recall that a space X is of countable tightness
if for each subset B of X and each x € B, there exists a countable subset By of B such
that = € By [8].

Theorem 11. If X is L-Tychonoff and of countable tightness and f : X — Y is a
witness of the L-Tychonoffness of X, then f is continuous.

Proof. Let A be any non-empty subset of X. Let y € f( A) be arbitrary. Let x € X
be the unique element such thatf(z) = y. Then # € A. Pick a countable subset Ag C A
such that z € Ag. Let B = {2} U Ap; then B is a Lindeldf subspace of X and hence
fis : B — f(B) is a homeomorphism. Now, let V' C Y be any open neighborhood of y;
then V N f(B) is open in the subspace f(B) containing . Thus f~!(V)N B is open in the
subspace B containing . Thus (f~(V)NB)N Ay # 0. So (f~1(V)NB)N A # 0. Hence
04 f((fFFYUV)NB)NA) C f(f " (V)NA) =V f(A). Thus y € f(A). Therefore, f is

continuous.
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Recall that if (z,,)nen is a sequence in a topological space X, then the convergency set
of (xy,) is defined by C(z,) = {x € X : z, — =} and a topological space X is sequential
if for any A C X we have that A is closed if and only if C(x,) C A for any sequence
(xn) C A, see [8]. We have the following implications, see [8, 1.6.14, 1.7.13].

First countability = Fréchet = Sequential = Countable tightness.

Corollary 5. If X is L-Tychonoff and first countable (Fréchet, Sequential ) and f : X —
Y is a witness of the L-Tychonoffness of X, then f is continuous.

Theorem 12. L-Tychonoffness is a topological property.

Theorem 13. L-Tychonoffness is an additive property.

Theorem 14. L-Tychonoffness is a multiplicative property.

Theorem 15. L-Tychonoffness is a hereditary property.

Theorem 16. If any countable subspace of a space X is discrete and the only Lindelof
subspaces are the countable subspaces, then X is L-Tychonoff.

Proof. Let Y = X and consider Y with the discrete topology. Then the identity
function from X onto Y is a bijective function. If K is any Lindel6f subspace of X, then,
by assumption, K is countable and discrete, hence the restriction of the identity function
on K onto K is a homeomorphism.

Theorem 17. If X is C-Tychonoff space such that each Lindel6f subspace is contained
in a compact subspace, then X is L-Tychonoff.

Proof. Assume that X is C-Tychonoff and if L is any Lindel6f subspace of X, then
there exists a compact subspace K with L C K. Let f be a bijective function from X
onto a Tychonoff space Y such that the restriction fic : C — f(C') is a homeomorphism
for each compact subspace C' of X. Now, let L be any Lindeltf subspace of X. Pick a
compact subspace K of X where L C K, then fjx : K — f(K) is a homeomorphism,
thus f|, : L — f(L) is a homeomorphism as (fix)|, = f|, -

Now, we study some relationships between C-Tychonoffness and some other properties.
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Recall that a topological space X is called C-regular if there exist a one-to-one function
f from X onto a regular space Y such that the restriction f|, : K — f(K) is a home-
omorphism for each compact subspace K C X [5]. Any C-Tychonoff space is C-regular
space, but the converse is not true in general. For example, any indiscrete space which
has more than one element is an example of C-regular space which is not C-Tychonoff by
Theorem 3.

Recall that a topological space ( X , T ) is called epinormal if there is a coarser topology
7' on X such that (X, 7") is Ty [3]. By a similar proof as that of Theorem 1 above, we
can prove the following corollary:

Corollary 6. Any epinormal space is C-Tychonoff.

R with the countable complement topology CC [16], is an example of C-Tychonoff space
which is not epinormal because (R, CC) is not T5 and any epinormal space is 15 [3].

Let X be any Hausdorff non-k-space. Let kX = X. Define a topology on kX as
follows: a subset of kX is open if and only if its intersection with any compact subspace
C of the space X is open in C'. kX with this topology is Hausdorff and k-space such that
X and kX have the same compact subspace and the same topology on these subspace [6],
we conclude the following;:

Theorem 18. If X is Hausdorff but not k-space, then X is C-Tychonoff if and only if
kX is C-Tychonoff.

C-Tychonoffness and o-compactness are independent from each other. For example the
rational sequence space [16] is C-Tychonoff being Tychonoff, but not o-compact. R with
the finite complement topology is not C-Tychonoff by Theorem 3, but it is o-compact being
compact. Any pseudocompact is C-Tychonoff being Tychonoff, but the converse is not
true, for example Sorgenfrey line square topology [16], it is C-Tychonoff being Tychonoff
but not pseudocompact. Also any zero-dimensional space is C-Tychonoff, but the converse
is not true, for example Niemytzki’s tangent disc topology [16], it is C-Tychonoff being
Tychonoff but not zero-dimensional because it is connected.

Let X be any topological space. Let X' = X x {a}. Note that X N X’ = ). Let
A(X) = X U X'. For simplicity, for an element z € X, we will denote the element (z, a)
in X’ by 2/ and for a subset E C X let B/ = {2/ : v € E} = E x {a} C X'. For
each 2/ € X' let B(z') = {{2'}}. For each x € X, let B(x) = {UU U\ {2'}) : U
is open in X with z € U}. Let T denote the unique topology on A(X) which has
{B(z) : x € X} U{B(a') : 2’ € X'} as its neighborhood system. A(X) with this topology
is called the Alexandroff Duplicate of X. Similar proof as in [2], we get the following
theorem.
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Theorem 19. If X is C-Tychonoff, then its Alexandroff Duplicate A(X) is also C-
Tychonoff.

Also a similar proof as in [15], we get the following theorem.

Theorem 20. If X is L-Tychonoff, then its Alexandroff Duplicate A(X) is also L-
Tychonoff.
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