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On semilattice congruences on hypersemigroups and on
ordered hypersemigroups

Niovi Kehayopulu

Abstract. We prove that if H is an hypersemigroup (resp. ordered hypersemigroup) and σ is a
semilattice congruence (resp. complete semilattice congruence) on H, then there exists a family
A of proper prime ideals of H such that σ is the intersection of the semilattice congruences σI ,
I ∈ A (σI is the known relation defined by aσIb⇔ a, b ∈ I or a, b /∈ I). Furthermore, we study the
relation between the semilattices of an ordered semigroup and the ordered hypersemigroup derived
by the hyperoperations a ◦ b = {ab} and a ◦ b := {t ∈ S | t ≤ ab}. We introduce the concept of
a pseudocomplete semilattice congruence as a semilattice congruence σ for which ≤⊆ σ and we
prove, among others, that if (S, ·,≤) is an ordered semigroup, (S, ◦,≤) the hypersemigroup defined
by t ∈ a ◦ b if and only if t ≤ ab and σ is a pseudocomplete semilattice congruence on (S, ·,≤),
then it is a complete semilattice congruence on (S, ◦,≤). Illustrative examples are given.
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1. Introduction

Filters play an essential role in studying the structure of semigroups or ordered semi-
groups. For a semigroup S –especially for decompositions of a semigroup S– an important
role is played by the relation N which is the least semilattice congruence on S and leads
to several important results concerning the structure of semigroups (cf. [13]). Using our
computer program, we have proved in [11] that for an ordered semigroup S, N is not the
least semilattice congruence on S in general, we introduced the concept of the complete
semilattice congruence and proved that N is the least complete semilattice congruence
on S. We always use the terms “prime”, “weakly prime” instead of “completely prime”,
“prime” considered by Petrich in [13]. The present paper is based on our papers in [3, 11]
and its aim is to show how we pass from semigroups (ordered semigroups) to hypersemi-
groups (ordered hypersemigroups). The main result is that if H is an hypersemigroup
(resp. ordered hypersemigroup) and σ a semilattice congruence (resp. complete semilat-
tice congruence) on H, then there exists a family A of proper prime ideals of H such
that σ =

⋂
I∈A

σI, σI is the relation on H defined by aσI ⇔ a, b ∈ I or a, b /∈ I. Then
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we prove, among others, that if (S, ·,≤) is an ordered groupoid, and (S, ◦,≤) the ordered
hypergroupoid defined by a ◦ b = {ab}, then σ is a semilattice (resp. complete semilat-
tice) congruence on (S, ·,≤) if and only if it is a semilattice (resp. complete semilattice)
congruence on (S, ◦,≤). As an immediate consequence, in an hypersemigroup H, the
complete semilattice congruence N defined by xN y ⇔ N(x) = N(y) (where N(x) is the
filter generated by the element x of H) cannot be the least semilattice congruence on H
in general. For an ordered groupoid (S, ·,≤) we consider the hypergroupoid on S with the
hyperoperation defined by a ◦ b =: {t ∈ S | t ≤ ab} and we prove that if σ is a semilattice
congruence on (S, ◦,≤), then it is a semilattice congruence on (S, ·,≤) but the converse
statement does not hold in general. In addition, if σ is a complete semilattice congruence
on (S, ◦,≤), then it is a complete semilattice congruence on (S, ·,≤). It is natural to ask
if there are semilattice congruences on an ordered groupoid (S, ·,≤) that are semilattice
congruences on (S, ◦,≤) as well. On this purpose, we introduce the concept of pseudocom-
plete semilattice congruences as the semilattice congruences σ such that ≤⊆ σ, and we
prove that the pseudocomplete semilattice congruences on an ordered groupoid (S, ·,≤)
are complete semilattice congruences on (S, ◦,≤). We could finally mention the following:
If (S, ·) is a groupoid and “◦” the hyperoperation on S defined by a ◦ b := {ab}, then F
is a filter of (S, ·) if and and only if it is a filter of (S, ◦); for an ordered groupoid (S, ·,≤)
with the same hyperoperation, the filters of (S, ·,≤) and the filters of (S, ◦,≤) are also
the same. If (S, ·,≤) is an ordered groupoid and “◦” the hyperoperation on S defined
by t ∈ a ◦ b ⇔ t ≤ ab, the filters of (S, ◦,≤) are also filters of (S, ·,≤) but the converse
statement does not hold in general.

An hypergroupoid is a nonempty set H with an hyperoperation
◦ : H ×H → P∗(H) | (a, b)→ a ◦ b on H and an operation
∗ : P∗(H) × P∗(H) → P∗(H) | (A,B) → A ∗ B on P∗(H) (induced by the operation

of H) such that A ∗ B =
⋃

(a,b)∈A×B
(a ◦ b) for every A,B ∈ P∗(H) (P∗(H) denotes the

set of nonempty subsets of H). A nonempty subset A of H is called a subgroupoid of H
if A ∗ A ⊆ A, equivalently if, for any a, b ∈ A, we have a ◦ b ⊆ A. The following two
properties, though clear, play an essential role in the theory of hypergroupoids:

(1) if x ∈ A ∗B, then x ∈ a ◦ b for some a ∈ A, b ∈ B and

(2) if a ∈ A and b ∈ B, then a ◦ b ⊆ A ∗B.

Moreover, we have {x}∗{y} = x◦y for any x, y ∈ H. An hypergroupoid (H, ◦, ∗) is called
hypersemigroup if {x} ∗ (y ◦ z) = (x ◦ y) ∗ {z} for every x, y, z ∈ H.

2. Some results on hypergroupoids

If S is a groupoid or an ordered groupoid, an equivalence relation σ on S is called right
(resp. left) congruence on S if (a, b) ∈ σ implies (ac, bc) ∈ σ (resp. (ca, cb) ∈ σ) for every
c ∈ S. It is called a congruence on S if it is both a right and a left congruence on S. A
congruence σ on S is called semilattice congruence if (a2, a) ∈ σ and (ab, ba) ∈ σ for any
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a, b ∈ S [3,13]. These concepts can be naturally transferred to hypergroupoids by replacing
the multiplication “·” of the groupoid by the hyperoperation “◦” of the hypergroupoid.
But while for a groupoid ac is an element, in case of an hypergroupoid where a ◦ c is a
set, we have to declare what the (a ◦ c, b ◦ c) ∈ σ means. We can define it as “for every
u ∈ a ◦ c and every v ∈ b ◦ c we have (u, v) ∈ σ” or “for every u ∈ a ◦ c there exists
v ∈ b ◦ c such that (u, v) ∈ σ” and get two different definitions of the left congruence,
two different definitions for the right congruence; and so two different definitions of a
congruence or a semilattice congruence. Although there is one between them that implies
the other (it can be easily proved) and so they could be named differently (like congruence–
weak congruence; complete congruence–congruence; strong congruence–congruence, for
example), we will define as “congruence” both of them and, according to our investigation
it will be clear which of them we use. This have been said, we give the Definitions 2.2 and
2.3 below. We first have to introduce the following notation:

Notation 2.1. If H is an hypergroupoid, σ an equivalence relation on H and A,B two
nonempty subsets of H, then we write (A,B) ∈ σ if for every a ∈ A and every b ∈ B, we
have (a, b) ∈ σ.
We write (A, b) instead of (A, {b}) and (a,B) instead of ({a}, B). So (A, b) means that,
for every a ∈ A, we have (a, b) ∈ σ. If it is convenient we write, for short, A ∗ c instead of
A ∗ {c} (A ⊆ H, c ∈ H).

Definition 2.2. Let H be an hypergroupoid. An equivalence relation σ on H is called
right congruence if (a, b) ∈ σ implies (a ◦ c, b ◦ c) ∈ σ for every c ∈ H. It is called left
congruence if (a, b) ∈ σ implies (c ◦ a, c ◦ b) ∈ σ for every c ∈ H. By a congruence on H
we mean a relation on H which is both a right and a left congruence on H.

Definition 2.3. Let H be an hypergroupoid. A congruence σ on H is called semilattice
congruence if, for any a, b ∈ H, we have

(a ◦ a, a) ∈ σ and (a ◦ b, b ◦ a) ∈ σ.

If (S, ·) is a groupoid, a nonempty subset F of S is called a filter of S [13] if the following
assertions are satisfied: (1) if a, b ∈ F , then ab ∈ F and (2) if a, b ∈ S such that ab ∈ F ,
then a ∈ F and b ∈ F ; in other words, if it is a subgroupoid of S satisfying the property
(2). A nonempty subset A of S is called an ideal of S [13] if AS ⊆ A and SA ⊆ A, that
is if a ∈ A and s ∈ S implies as ∈ A and sa ∈ A. If (S, ·,≤) is an ordered groupoid, a
subset F of S is called a filter of S if it is a filter of (S, ·) and, in addition if a ∈ F and
S ∈ b ≥ a implies b ∈ F [1]; it is called an ideal of (S, ·,≤) if it is an ideal of (S, ·) and, in
addition if a ∈ A and S 3 b ≤ a implies b ∈ A [2]. A subset T of a groupoid (or ordered
groupoid) S is said to be prime [3,13] if a, b ∈ S such that ab ∈ T implies a ∈ T or b ∈ T .
It is well known that a nonempty subset F of a groupoid (or an ordered groupoid) S is
a filter of S if and only if the complement of F to S is either empty or a prime ideal of
S [3,13] and, when we pass from groupoids to hypergroupoids the corresponding result
should be satisfied. To manage it, a new condition should be added to the corresponding
conditions of the filter and of prime ideals of groupoids we already have. And the concept
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of the filter of groupoids can be naturally transferred to hypergroupoids in the definition
below; the prime subsets can be defined in a similar way –adding a new condition.

Definition 2.4. (cf. also [7]) Let H be an hypergroupoid. A nonempty subset F of H is
called a filter of H if the following assertions are satisfied:

(1) if x, y ∈ F , then x ◦ y ⊆ F ;
(2) if x, y ∈ H such that x ◦ y ⊆ F , then x ∈ F and y ∈ F ; and
(3) for any x, y ∈ H, we have x ◦ y ⊆ F or (x ◦ y) ∩ F = ∅.

That is, a filter of H is a subgroupoid of H satisfying the relations (2) and (3).

Definition 2.5. Let H be an hypergroupoid. A nonempty subset T of H is called a prime
subset of H if the following assertions are satisfied:

(1) if a, b ∈ H such that a ◦ b ⊆ T, then a ∈ T or b ∈ T and
(2) for every a, b ∈ H, we have a ◦ b ⊆ T or (a ◦ b) ∩ T = ∅.
As we see, we keep the definitions of filters and prime subsets of groupoids in which we

add condition (3) in case of filters and condition (2) in case of prime subsets. If a subset
T of an hypergroupoid satisfies only the condition (2) of Definition 2.5, then we call it half
prime subset of H.

Remark 2.6. If H is an hypergroupoid, I a half prime subset of H and a, c /∈ I, then
a ◦ c * I. So a /∈ I implies a ◦ a * I.

As in groupoids, for an element x of H, we denote by N(x) the filter of H generated
by x, and by N the equivalence relation on H defined by

N := {(x, y) ∈ H ×H | N(x) = N(y)}.

Using the Definitions 2.4 and 2.5, with the usual changes we pass from groupoids to
hypergroupoids. In an ordered semigroup S, the relation N is a semilattice congruence
on S [3], and the same holds for groupoids as well. By a modification of that proof, we
have the following proposition; for the sake of completeness we will give its proof.

Proposition 2.7. (see also [3; the Proposition]) If H is an hypergroupoid, then the
equivalence relation N is a semilattice congruence on H.

Proof. Let (x, y) ∈ N and z ∈ H. Then (z ◦ x, z ◦ y) ∈ N . In fact: Let u ∈ z ◦ x
and v ∈ z ◦ y. Then (u, v) ∈ N . Indeed: Since u ∈ N(u) and u ∈ z ◦ x, we have
(z ◦ x) ∩ N(u) 6= ∅. Since N(u) is a filter of H, we have z ◦ x ⊆ N(u), and z, x ∈ N(u).
Since x ∈ N(u), we have N(x) ⊆ N(u), then y ∈ N(u). Since z, y ∈ N(u), we have
z ◦ y ⊆ N(u), then v ∈ N(u), and N(v) ⊆ N(u). By symmetry, we get N(u) ⊆ N(v), so
we have N(u) = N(v), and (u, v) ∈ N . Thus N is a left congruence on H. In a similar
way we prove that N is a right congruence on H, so N is a congruence on H. Let x ∈ H.
Then (x ◦ x, x) ∈ N . In fact: Let u ∈ x ◦ x. Then (u, x) ∈ N . Indeed: Since u ∈ N(u),
we have (x ◦ x) ∩ N(u) 6= ∅. Since N(u) is a filter of H, we have x ◦ x ⊆ N(u), then
x ∈ N(u), and N(x) ⊆ N(u). On the other hand, since x ∈ N(x) and N(x) is a filter of
H, we have x ◦ x ⊆ N(x). Then u ∈ N(x), so N(u) ⊆ N(x). Thus we have N(u) = N(x),
and (u, x) ∈ N . Let x, y ∈ H. Then (x ◦ y, y ◦x) ∈ N . In fact: Let u ∈ x ◦ y and v ∈ y ◦x.
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Then (u, v) ∈ N . Indeed: Since u ∈ N(u), we have (x ◦ y)∩N(u) 6= ∅, then x ◦ y ⊆ N(u),
x, y ∈ N(u), and y ◦ x ⊆ N(u). Then v ∈ N(u), and N(v) ⊆ N(u). By symmetry, we get
N(u) ⊆ N(v), then N(u) = N(v), and (u, v) ∈ N . �

Notation 2.8. For a subset I of H, we denote by σI the equivalence relation on H defined
by:

σI := {(a, b) ∈ H ×H | a, b ∈ I or a, b /∈ I}

(i.e. a, b both belong to I or a, b both do not belong to I).

If S is a semigroup or an ordered semigroup and I a prime ideal of S, then the
relation σI is a semilattice congruence on S [3,13] (and the same holds if we replace
the work “semigroup” by “groupoid”). Recall that for ordered groupoids the semilattice
congruences are defined exactly as in groupoids. In an attempt to show the way we pass
from semigroups to Γ-semigroups, we transferred this result to Γ-semigroups in [5]. Here
we do the same for hypergroupoids using the following proposition.

Proposition 2.9. Let H be an hypergroupoid, a, b, c ∈ H and I ⊆ H. Then we have the
following:

(1) if a ◦ c, b ◦ c ⊆ I, then (a ◦ c, b ◦ c) ∈ σI .
Suppose now that, for every a, b ∈ H, we have a ◦ b ⊆ I or (a ◦ b) ∩ I = ∅ (∗)
Then the following two conditions are satisfied:

(2) if a ◦ c, b ◦ c * I, then (a ◦ c, b ◦ c) ∈ σI .
(3) if a /∈ I and a ◦ a * I, then (a, a ◦ a) ∈ σI .

Proof. (1) Let a ◦ c, b ◦ c ⊆ I, u ∈ a ◦ c and v ∈ b ◦ c. Then u, v ∈ I, so (u, v) ∈ σI .
(2) Let a ◦ c, b ◦ c * I, u ∈ a ◦ c and v ∈ b ◦ c. If u, v ∈ I, then (u, v) ∈ σI . If u /∈ I,

then v /∈ I. Indeed, if v ∈ I, then v ∈ (b ◦ c) ∩ I. Since (b ◦ c) ∩ I 6= ∅, by (∗), we have
b ◦ c ⊆ I which is impossible. So u, v /∈ I, and (u, v) ∈ σI . If v /∈ I, in a similar way we
get u /∈ I, so again (u, v) ∈ σI .

(3) Let a /∈ I, a ◦ a * I and u ∈ a ◦ a. If u ∈ I, then (a ◦ a) ∩ I 6= ∅ and, by (∗),
a ◦ a ⊆ I which is impossible. Thus we have u 6∈ I. Since a, u /∈ I, we have (a, u) ∈ σI . �

If H is an hypergroupoid, a nonempty subset A of H is called an ideal of H if A∗H ⊆ A
and H ∗ A ⊆ A, equivalently if a ∈ A and h ∈ H, then a ◦ h ⊆ A and h ◦ a ⊆ A [8]. By a
prime ideal of H we clearly mean an ideal of H which is at the same time a prime subset
of H.

Corollary 2.10. (cf. also [3] and [5; Proposition 2.2]) Let H be an hypergroupoid and I a
prime ideal of H. Then the equivalence relation σI is a semilattice congruence on H.

Proof. Let (a, b) ∈ σI and c ∈ H. Then (a ◦ c, b ◦ c) ∈ σI . In fact: Since (a, b) ∈ σI , we
have a, b ∈ I or a, b /∈ I. Let a, b ∈ I. Since I is an ideal of H, we have a ◦ c, b ◦ c ⊆ I.
Then, by Proposition 2.9(1), we have (a ◦ c, b ◦ c) ∈ σI . Let a, b /∈ I. If c ∈ I then, since
I is an ideal of H, we have a ◦ c, b ◦ c ⊆ I, then (a ◦ c, b ◦ c) ∈ σI . Let c /∈ I. Since
a, b, c /∈ I, by Remark 2.6, we have a ◦ c, b ◦ c * I. Then, by Proposition 2.9(2), we have
(a ◦ c, b ◦ c) ∈ σI . Thus σI is a right congruence on H. In a similar way we can prove
that σI is a left congruence on H and so it is a congruence on H. Let a ∈ H. Then
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(a ◦ a, a) ∈ σI . In fact: Let u ∈ a ◦ a. If a ∈ I then, since I is an ideal of H, we have
a◦a ⊆ I, then u ∈ I; since u, a ∈ I, we have (u, a) ∈ σI . If a /∈ I, then a◦a * I. Then, by
Proposition 2.9(3), we have (a, a ◦ a) ∈ σI . Let a, b ∈ H. Then (a ◦ b, b ◦ a) ∈ σI . Indeed:
if a ◦ b ⊆ I then, since I is a prime ideal of H, we have a ∈ I or b ∈ I. Since I is an ideal
of H, we have b ◦ a ⊆ I. Since a ◦ b, b ◦ a ⊆ I, by Lemma 2.9(1), we have (a ◦ b, b ◦ a) ∈ σI .
If a ◦ b * I then b ◦ a * I. This is because if b ◦ a * I then, since I is a prime ideal of H,
we have b ∈ I or a ∈ I and, since I is an ideal of H, we have a ◦ b ⊆ I which is impossible.
Since a ◦ b, b ◦ a * I, by Proposition 2.9(2), we have (a ◦ b, b ◦ a) ∈ σI . �

We have the following:

(1) if (x,A) ∈ σ and ∅ 6= B ⊆ A, then (x,B) ∈ σ;

(2) if (A,B) ∈ σ, then (B,A) ∈ σ;

(3) if (A,B) ∈ σ, (B,C) ∈ σ and B 6= ∅, then (A,C) ∈ σ; indeed, let a ∈ A, c ∈ C.
Take an element b ∈ B (B 6= ∅). Since (a, b) ∈ σ and (b, c) ∈ σ, we have (a, c) ∈ σ.

Proposition 2.11. Let H be an hypergroupoid, σ a congruence on H and A,B,C,D
nonempty subsets of H. If (A,B) ∈ σ and (C,D) ∈ σ, then (A ∗ C,B ∗ D) ∈ σ and
(C ∗A,D ∗B) ∈ σ.

Proof. Let (A,B) ∈ σ, u ∈ A ∗ C and v ∈ B ∗ D. We have u ∈ a ◦ c for some a ∈ A,
c ∈ C and v ∈ b ◦ d for some b ∈ B, d ∈ D. Since a ∈ A, b ∈ B and (A,B) ∈ σ, we
have (a, b) ∈ σ and, since σ is a right congruence on H, we have (a ◦ c, b ◦ c) ∈ σ. Since
(C,D) ∈ σ, c ∈ C and d ∈ D, we have (c, d) ∈ σ and, since σ is a left congruence on H,
we have (b ◦ c, b ◦ d) ∈ σ. By the transitivity relation, we have (a ◦ c, b ◦ d) ∈ σ. Since
u ∈ a ◦ c and v ∈ b ◦ d, we have (u, v) ∈ σ. Similarly we get (C ∗A,D ∗B) ∈ σ. �

Lemma 2.12. Let H be an hypergroupoid, A,B nonempty subsets of H and c ∈ H. If σ
a right congruence on H and (A,B) ∈ σ, then (A ∗ c,B ∗ c) ∈ σ.

Proof. Since c ∈ H and σ is a reflexive relation on H, we have ({c}, {c}) ∈ σ. Since
(A,B) ∈ σ and ({c}, {c}) ∈ σ, by Proposition 2.11, we have (A ∗ c,B ∗ c) ∈ σ.
An independent proof is the following: Let u ∈ A ∗ c and v ∈ B ∗ c. Then u ∈ a ◦ c for
some a ∈ A and v ∈ b ◦ c for some b ∈ B. Since a ∈ A, b ∈ B and (A,B) ∈ σ, we have
(a, b) ∈ σ. Since σ is a right congruence on H, we have (a ◦ c, b ◦ c) ∈ σ. Since u ∈ a ◦ c
and v ∈ b ◦ c, we get (u, v) ∈ σ and so (A ∗ c,B ∗ c) ∈ σ. �

In a similar way we have the following lemma.

Lemma 2.13. Let H be an hypergroupoid, A,B nonempty subsets of H and c ∈ H. If σ
a left congruence on H and (A,B) ∈ σ, then (c ∗A, c ∗B) ∈ σ.

As in groupoids, the following proposition holds and one can prove it as a modification
of the proof of the corresponding result in [3].

Proposition 2.14. (cf. also [3; the Lemma]) Let H be an hypergroupoid. If H is a filter
of H, then the property (∗) is satisfied:
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(∗) either H\F = ∅ or H\F is a prime ideal of H.
In particular, any nonempty subset F of H satisfying (∗) is a filter of H.

An ideal I of H is called proper if I 6= H.

3. Main result

Theorem 3.1. Let H be an hypersemigroup and σ be a semilattice congruence on H. Then
there exists a family A of proper prime ideals of H such that

σ =
⋂
I∈A

σI.

Proof. Let x ∈ H. We consider the set

Ax := {y ∈ H | (x, x ◦ y) ∈ σ}.

The set Ax is a filter of H. Indeed: Since x ∈ H and σ is a semilattice congruence on H,
we have (x, x ◦ x) ∈ σ, thus x ∈ Ax and Ax is a nonempty subset of H.

Let y, z ∈ Ax. Then y ◦ z ⊆ Ax. In fact: Let u ∈ y ◦ z. Then u ∈ Ax, that is
(x, x ◦ u) ∈ σ. Indeed: Let v ∈ x ◦ u. Since y ∈ Ax, we have (x, x ◦ y) ∈ σ. Then, by

Lemma 2.12, we have
(
x ◦ z, (x ◦ y) ∗ {z}

)
∈ σ. Since z ∈ Ax, we have (x, x ◦ z) ∈ σ and,

by the transitivity relation, we have
(
x, {x} ∗ (y ◦ z)

)
∈ σ. Since v ∈ x ◦ u ⊆ {x} ∗ (y ◦ z),

we have (x, v) ∈ σ.
Let y, z ∈ H such that y ◦ z ⊆ Ax. Then y ∈ Ax and z ∈ Ax. In fact:

Since y ◦ z ⊆ Ax, we have
(
x, {x} ∗ (y ◦ z)

)
∈ σ (1)

Indeed: if u ∈ {x} ∗ (y ◦ z), then u ∈ x ◦ t for some t ∈ y ◦ z ⊆ Ax. Since t ∈ Ax, we have
(x, x ◦ t) ∈ σ. Then, since u ∈ x ◦ t, we obtain (x, u) ∈ σ, so property (1) is satisfied.

By (1) and Lemma 2.12, we have
(
x ◦ z, {x} ∗ (y ◦ z) ∗ {z}

)
∈ σ (2)

On the other hand, since (z, z ◦ z) ∈ σ, we have
(

(x ◦ y) ∗ {z}, (x ◦ y) ∗ (z ◦ z)
)
∈ σ (3)

In fact: Since (z, z ◦ z) ∈ σ, by Lemma 2.13, we have
(
y ◦ z, {y} ∗ (z ◦ z

)
∈ σ; again by

Lemma 2.13, we have
(
{x} ∗ (y ◦ z), (x ◦ y) ∗ (z ◦ z)

)
∈ σ and (3) holds.

By (1),(2) and (3), we obtain (x, x◦z) ∈ σ, and so z ∈ Ax. It remains to prove that y ∈ Ax.

Since z ∈ Ax, we have (x, x ◦ z) ∈ σ. By Lemma 2.12, we have
(
x ◦ y, (x ◦ z) ∗ {y}

)
∈ σ.

Since (y ◦ z, z ◦ y) ∈ σ, by Lemma 2.13, we have
(
{x} ∗ (y ◦ z), {x} ∗ (z ◦ y)

)
∈ σ. Then,

by (1), we get (x, x ◦ y) ∈ σ, and so y ∈ Ax.
Let y, z ∈ H. Then y ◦ z ⊆ Ax or (y ◦ z) ∩Ax = ∅. In fact:

Let y ◦ z * Ax and (y ◦ z)∩Ax 6= ∅. Let u ∈ y ◦ z such that u /∈ Ax, v ∈ y ◦ z and v ∈ Ax.
Then we have

u ∈ y ◦ z, (x, x ◦ u) /∈ σ, v ∈ y ◦ z, (x, x ◦ v) ∈ σ.
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On the other hand,

(x, x ◦ v) ∈ σ and v ∈ y ◦ z implies
(
x, {x} ∗ (y ◦ z)

)
∈ σ.

Indeed: Let a ∈ {x} ∗ (y ◦ z). Then a ∈ x ◦ d for some d ∈ y ◦ z. Since (y ◦ z, y ◦ z) ∈ σ,
v ∈ y ◦ z and d ∈ y ◦ z, we have (v, d) ∈ σ, then (x ◦ v, x ◦ d) ∈ σ. Since (x, x ◦ v) ∈ σ and
(x ◦ v, x ◦ d) ∈ σ, we have (x, x ◦ d) ∈ σ. Since a ∈ x ◦ d, we have (x, a) ∈ σ.

We have x ◦ u ⊆ {x} ∗ (y ◦ z) and
(
x, {x} ∗ (y ◦ z)

)
∈ σ, thus we have (x, x ◦ u) ∈ σ which

is impossible.
Since Ax is a filter of H, by Proposition 2.14, we have H\Ax = ∅ or H\Ax is a prime

ideal of H. Then H\Ax = ∅ or H\Ax is a proper prime ideal of H (indeed, if H\Ax = H
then, since Ax ⊆ H, we have Ax = ∅ which is not possible).
We consider the set

{H\Az | z ∈ H, H\Az proper prime ideal of H}.

We have σ =
⋂

z∈H
σH\Az

. In fact: Let (x, y) ∈ σ and z ∈ H. Then (x, y) ∈ σH\Az
. Indeed:

Since x ∈ H, we have x ∈ H\Az or x /∈ H\Az.
(a) If x /∈ H\Az, then x ∈ Az, so (z, z◦x) ∈ σ. Since (x, y) ∈ σ, we have (z◦x, z◦y) ∈ σ.

Then (z, z ◦ y) ∈ σ, and y ∈ Az, so y /∈ H\Az.
(b) Let x ∈ H\Az. If y /∈ H\Az, then in a similar way as in (a), we prove that

x /∈ H\Az which is impossible. Thus we have y ∈ H\Az.
Since both x and y belong toH\Az or both do not belong toH\Az, we have (x, y) ∈ σH\Az

.
Let now (x, y) ∈ σH\Az

for every z ∈ H. Then (x, y) ∈ σ. Indeed: Since x ∈ Ax,
we have x /∈ H\Ax and, since (x, y) ∈ σH\Ax

, we have y /∈ H\Ax, so y ∈ Ax, that is
(x, x ◦ y) ∈ σ. Since y ∈ Ay, we have y /∈ H\Ay, then x /∈ H\Ay, so x ∈ Ay, thus
(y, y ◦ x) ∈ σ. Since σ is a semilattice congruence on H, we have (x ◦ y, y ◦ x) ∈ σ. Since
(x, x ◦ y) ∈ σ, (x ◦ y, y ◦ x) ∈ σ and (y ◦ x, y) ∈ σ, we have (x, y) ∈ σ. �

The following proposition holds for hypergroupoids and its proof is exactly the same
as the proof of the corresponding result in [3] (no change is needed).

Proposition 3.2. (cf. also [3; the Proposition]) Let H be an hypergroupoid and I(H) the
set of prime ideals of H. Then we have

N =
⋂

I∈I(H)

σI .

Corollary 3.3. If H is an hypersemigroup, then the relation N is the least semilattice
congruence on H.

Proof. Let σ be a semilattice congruence on H. Then N ⊆ σ. In fact: By Theorem 3.1,
there exists a family A of proper prime ideals of H such that σ =

⋂
I∈A

σI. By Proposition

3.2, N =
⋂

I∈I(H)

σI , where I(H) is the set of prime ideals of H. On the other hand,
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I∈A

σI ⊇
⋂

I∈I(H)

σI. Indeed, if (x, y) ∈ σI for every prime ideal of H, then clearly (x, y) ∈ σI

for every proper prime ideal of H, and so for the elements of A as well. Hence we obtain
N ⊆ σ. �

Proposition 3.4. Let (S, ·) be a groupoid and “◦” the hypergroupoid with the hyperoper-
ation “◦” defined by

◦ : S × S → P∗(S) | (a, b)→ a ◦ b := {ab}.

Then F is a filter of (S, ·) if and only if it is a filter of (S, ◦).

Proof. =⇒. Let F be a filter of (S, ·). If a, b ∈ F and x ∈ a ◦ b, then x = ab ∈ F and so
a ◦ b ⊆ F . If a, b ∈ S such that a ◦ b ⊆ F , then ab ∈ a ◦ b ⊆ F , ab ∈ F and so a ∈ F and
b ∈ F . Let (a ◦ b) ∩ F 6= ∅, u ∈ a ◦ b and u ∈ F . Then u = ab and u ∈ F , then ab ∈ F ,
then a ◦ b = {ab} ⊆ F and so a ◦ b ⊆ F .
⇐=. Let F be a filter of (S, ◦). If a, b ∈ F , then {ab} = a ◦ b ⊆ F , thus ab ∈ F . If a, b ∈ S
such that ab ∈ F , then a ◦ b = {ab} ⊆ F , so a ◦ b ⊆ F , then a ∈ F and b ∈ F and so F is
a filter of (S, ·). �

4. Complete semilattice congruences on ordered hypersemigroups

Let us consider now the case of ordered hypergroupoids. For the necessary definitions
and notations on ordered hypergroupoids we refer to [6] and [9]. For an ordered hyper-
groupoid, the semilattice congruence is defined exactly as in hypergroupoids. The concept
of complete semilattice congruences of ordered groupoids introduced by Kehayopulu and
Tsingelis in [11] can be naturally transferred to ordered hypergroupoids by the following
definition.

Definition 4.1. If (S, ◦,≤) is an ordered hypergroupoid, a semilattice congruence σ on
S is called complete if, for every a, b ∈ S, the relation a ≤ b implies (a, a ◦ b) ∈ σ.

Proposition 4.2. Let (S, ·,≤) be an ordered groupoid and “◦” the hyperoperation on
S defined by a ◦ b := {ab}. Then (S, ◦,≤) is an ordered hypergroupoid. The relation σ
is a semilattice (resp. complete semilattice) congruence on (S, ·,≤) if and only if it is
semilattice (resp. complete semilattice) congruence on (S, ◦,≤). If (S, ·,≤) is an ordered
semigroup, then (S, ◦,≤) is an ordered hypersemigroup as well.

Proof. If (S, ·,≤) is an ordered groupoid, a ≤ b, c ∈ S and u ∈ a ◦ c, then u = ac ≤ bc, so
for the element v := bc ∈ b ◦ c we have u ≤ v; similarly c ◦ a � c ◦ b and so (S, ◦,≤) is an
ordered hypergroupoid. Let σ be a semilattice congruence on (S, ·,≤). If (a, b) ∈ σ and
c ∈ S, then (a ◦ c, b ◦ c) ∈ σ. Indeed, if u ∈ a ◦ c and v ∈ b ◦ c, then u = ac, v = bc and
(ac, bc) ∈ σ, so (u, v) ∈ σ. Similarly σ is a left congruence on (S, ◦,≤). Let a, b ∈ S. Then
(a ◦ a, a) ∈ σ. Indeed, if u ∈ a ◦ a, then u = a2 and (a2, a) ∈ σ, thus we get (u, a) ∈ σ.
We have (a ◦ b, b ◦ a) ∈ σ. Indeed, if u ∈ a ◦ b and v ∈ b ◦ a, then u = ab, v = ba and
(ab, ba) ∈ σ, thus we get (u, v) ∈ σ and so σ is a semilattice congruence on (S, ◦,≤). Let
σ be a complete semilattice congruence on (S, ·,≤), a ≤ b, and u ∈ a◦ b. Since u = ab and
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a ≤ b, we have (a, ab) ∈ σ, then (a, u) ∈ σ and so σ is a complete semilattice congruence
on (S, ◦,≤).

Let σ be a semilattice congruence on (S, ◦,≤). If (a, b) ∈ σ and c ∈ S then, since
(a ◦ c, b ◦ c) ∈ σ, ac ∈ a ◦ c and bc ∈ b ◦ c, we have (ac, bc) ∈ σ. Similarly σ is a left
congruence on (S, ·,≤). If a ∈ S, then (a ◦ a, a) ∈ σ and, since a2 ∈ a ◦ a, we have
(a2, a) ∈ σ. If a, b ∈ S, then (a ◦ b, b ◦ a) ∈ σ and, since ab ∈ a ◦ b and ba ∈ b ◦ a, we have
(ab, ba) ∈ σ. Hence σ is a semilattice congruence on (S, ·,≤). Let now σ be a complete
semilattice congruence on (S, ◦,≤) and a ≤ b. Since (a, a ◦ b) ∈ σ and ab ∈ a ◦ b, we have
(a, ab) ∈ σ, so σ is a complete semilattice congruence on (S, ·,≤).

Let now (S, ·,≤) be an ordered semigroup, a, b, c ∈ S and x ∈ {a} ∗ (b ◦ c). Then
x ∈ a ◦ u for some u ∈ b ◦ c, then x = au and u = bc. Then we have

x = a(bc) ∈ {a(bc)} = {(ab)c} = (ab) ◦ c ⊆ {ab} ∗ {c} = (a ◦ b) ∗ {c},

then {a} ∗ (b ◦ c) ⊆ (a ◦ b) ∗ {c}. Similarly (a ◦ b) ∗ {c} ⊆ {a} ∗ (b ◦ c) and so (S, ◦,≤) is an
ordered hypersemigroup. �

Definition 4.3. Let (S, ◦,≤) be an ordered hypergroupoid. A subset F of S is called a
filter of (S, ◦,≤) if it is a filter of the hypergroupoid (S, ◦) and, in addition,

if a ∈ F and S 3 b ≥ a implies b ∈ F.

By Proposition 3.4, we have the following

Proposition 4.4. Let (S, ·,≤) be an ordered groupoid and “◦” the hyperoperation on S
defined by a◦b := {ab}. Then F is a filter of (S, ·,≤) if and only if it is a filter of (S, ◦,≤).

Remark 4.5. According to Proposition 4.4, if the hyperoperation “◦” is defined by
a ◦ b = {ab}, then the filters of the groupoid (S, ·,≤) and the filters of the hypergroupoid
(S, ◦,≤) are the same. Also, by Proposition 4.2, the semilattice congruences on (S, ·,≤)
and the semilattice congruences on (S, ◦,≤) are the same. As we have seen in [11], in an
ordered hypersemigroup S, the relation N is not the least semilattice congruence on S in
general, so according to Proposition 4.2, in an ordered hypersemigroup, the relation N
cannot be the least semilattice congruence as well, in general. Let us see it in the following
example.

Example 4.6. We get the ordered semigroup defined in [11] with the following table and
figure.

· a b c d f g

a b b a d a a

b b b b d b b

c a b c d c c

d d d d d d d

f a b c d c c

g a b c d f g

Table 1.
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d

gf

c

ba

Figure 1.

For this semigroup,

N(a) = N(b) = {a, b, c, f, g}, N(c) = N(f) = N(g) = {c, f, g} and N(d) = S.

We consider the semilattice congruences on S. They are eight and they are the following:

σ1 = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, f), (d, d), (f, c), (f, f), (g, g)}.
σ2 = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, f), (c, g), (d, d), (f, c), (f, f),

(f, g), (g, c), (g, f), (g, g)} = N .
σ3 = {(a, a), (a, b), (a, d), (b, a), (b, b), (b, d), (c, c), (c, f), (d, a), (d, b),

(d, d), (f, c), (f, f), (g, g)}.
σ4 = {(a, a), (a, b), (a, c), (a, f), (b, a), (b, b), (b, c), (b, f), (c, a), (c, b),

(c, c), (c, f), (d, d), (f, a), (f, b), (f, c), (f, f), (g, g)}.
σ5 = {(a, a), (a, b), (a, d), (b, a), (b, b), (b, d), (c, c), (c, f), (c, g), (d, a),

(d, b), (d, d), (f, c), (f, f), (f, g), (g, c), (g, f), (g, g)}.
σ6 = {(a, a), (a, b), (a, c), (a, d), (a, f), (b, a), (b, b), (b, c), (b, d), (b, f),

(c, a), (c, b), (c, c), (c, d), (c, f), (d, a), (d, b), (d, c), (d, d), (d, f),

(f, a), (f, b), (f, c), (f, d), (f, f), (g, g)}.
σ7 = {(a, a), (a, b), (a, c), (a, f), (a, g), (b, a), (b, b), (b, c), (b, f), (b, g),

(c, a), (c, b), (c, c), (c, f), (c, g), (d, d), (f, a), (f, b), (f, c), (f, f),

(f, g), (g, a), (g, b), (g, c), (g, f), (g, g)}.
σ8 = S × S.

σ1 is the least semilattice congruence on S, the relations σ2, σ5, σ7, σ8 are complete
semilattice congruences on S, N (= σ2) ⊆ σ5, σ7, σ8, that is N is the least complete
semilattice congruence on S and σ1 6= N .

According to Proposition 4.2, the ordered hypersemigroup (S, ◦,≤) defined by the table
below and the same Figure 1 is an ordered hypersemigroup and the semilattice congruences
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on (S, ·,≤) and on (S, ◦,≤) are the same, so σ1 is the least semilattice congruence on
(S, ◦,≤), N is the least complete semilattice congruence on (S, ◦,≤) and N is different
than σ1.

◦ {a} {b} {c} {d} {f} {g}
a {b} {b} {a} {d} {a} {a}
b {b} {b} {b} {d} {b} {b}
c {a} {b} {c} {d} {c} {c}
d {d} {d} {d} {d} {d} {d}
f {a} {b} {c} {d} {c} {c}
g {a} {b} {c} {d} {f} {g}

Table 2.

In the above example the ordered semigroup has been found using our computer pro-
gram. Let us give another example which is easier to check by hand.

Example 4.7. (cf. [4; Example 1]) The ordered semigroup given by the multiplication
“·” and the figure below is an example of an ordered semigroup for which the relation N
is not the least semilattice congruence on S.

· a b c d e

a b a a a a

b a b b b b

c a b b b b

d a b b d d

e a b c d e

Table 3.

c e

a

b d

Figure 2.

We have N(a) = N(b) = N(c) = S and N(d) = N(f) = {d, e}.

We give all the semilattice congruences on S. They are four and they are the following:

σ1 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c),
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(d, d), (e, e)}.
σ2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d)

(d, e), (e, d), (e, e)} = N .
σ3 = {(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b),

(c, c), (c, d), (d, a), (d, b), (d, c), (d, d), (e, e)}.
σ4 = S × S.

The relation σ1 is the least semilattice congruence on S, the relationN is the least complete
semilattice congruence on S, and σ1 6= N .

According to Proposition 4.2, the ordered semigroup (S, ·,≤) with the operation “◦”
on S defined by a◦b := {ab} is an ordered hypersemigroup and the semilattice congruences
on (S, ·,≤) and on (S, ◦,≤) coincide. In other words, the set S with the multiplication
given by the table

◦ a b c d e

a {b} {a} {a} {a} {a}
b {a} {b} {b} {b} {b}
c {a} {b} {b} {b} {b}
d {a} {b} {b} {d} {d}
e {a} {b} {c} {d} {e}

Table 4.

and the same order as in (S, ·,≤) (: Figure 2) is an ordered hypersemigroup, the relation
σ1 is the least semilattice congruence on S and it is different than N .

In [4] there are also examples of ordered semigroups S for which the complete semilat-
tice congruence N is at the same time the least semilattice congruence on S. Let us get
one of them and pass from the ordered semigroup to ordered hypersemigroup.

Example 4.8. If we take the ordered hypersemigroup (S, ·,≤) given in the Example 2 in
[4] and define the hyperoperation as a◦b := {ab}, then we get the ordered hypersemigroup
defined by the table and the figure below.

◦ a b c d f

a {b} {b} {d} {d} {d}
b {b} {b} {d} {d} {d}
c {d} {d} {c} {d} {c}
d {d} {d} {d} {d} {d}
f {d} {d} {c} {d} {c}

Table 5.
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a d f

b c

Figure 3.

We have N(a) = N(b) = {a, b}, N(c) = N(f) = {c, f} and N(d) = S.

There are four semilattice congruences on (S, ◦ ≤) and they are the following

σ1 = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, f), (d, d), (f, c), (f, f)} = N .
σ2 = {(a, a), (a, b), (a, d), (b, a), (b, b), (b, d), (c, c), (c, f), (d, a), (d, b),

(d, d), (f, c), (f, f)}.
σ3 = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (c, f), (d, c), (d, d), (d, f),

(f, c), (f, d), (f, f)}.
σ4 = S × S.

The relation σ1 is the least semilattice congruence on (S, ◦,≤) and at the same time the
least complete semilattice congruence on (S, ◦,≤).

In the Example 3 in [4] and in its “dual” given immediately after the Example 3, the
relation σ1 mentioned in them is at the same time the least semilattice congruence and
the least complete semilattice congruence; as a consequence it is so in the corresponding
ordered hypersemigroup defined by the hyperoperation a ◦ b = {ab}.
Proposition 4.9. (cf. also [12; Remark 1]) If (H, ◦,≤) is an ordered hypergroupoid, then
the semilattice congruence N is a complete semilattice congruence on H.

Proof. Let a ≤ b. Then (a, a ◦ b) ∈ N . In fact: Let u ∈ a ◦ b. Then (a, u) ∈ N , that
is N(a) = N(u). Indeed: Since N(a) 3 a ≤ b, we have b ∈ N(a). Since a, b ∈ N(a),
we have a ◦ b ⊆ N(a), then u ∈ N(a), and so N(u) ⊆ N(a). On the other hand, since
u ∈ a ◦ b and u ∈ N(u), we have (a ◦ b) ∩ N(u) 6= ∅, then a ◦ b ⊆ N(u), then a ∈ N(u),
and N(a) ⊆ N(u). Hence we obtain N(u) = N(a) and the proof is complete. �

Theorem 4.10. (cf. also [11]) Let H be an ordered hypersemigroup and σ a complete
semilattice congruence on H. Then there exists a family A of proper prime ideals of H
such that

σ =
⋂
I∈A

σI.

Proof. Following Theorem 3.1, it remains to prove that for the set

Ax := {y ∈ H | (x, x ◦ y) ∈ σ}
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the following property is satisfied

if y ∈ Ax and H 3 z ≥ y, then z ∈ Ax.

Indeed: Since y ∈ Ax, we have (x, x◦y) ∈ σ then, by Lemma 2.12,
(
x◦z, (x◦y)∗{z}

)
∈ σ,

that is
(

(x ◦ y) ∗ {z}, x ◦ z
)
∈ σ. Since y ≤ z and σ is a complete semilattice congruence

on H, we have (y, y ◦ z) ∈ σ and, by Lemma 2.13,
(
x ◦ y, {x} ∗ (y ◦ z)

)
∈ σ. Hence we

obtain (x, x ◦ z) ∈ σ that is, z ∈ Ax. �

By Proposition 3.2, Proposition 4.9 and Theorem 4.10, we have the following

Corollary 4.11. (cf. also [11; the Proposition]) If H is an ordered hypersemigroup, then
the relation N is the least complete semilattice congruence on H.

If (S, ·,≤) is an ordered groupoid and “◦” the hyperoperation on S defined by: ◦ :
S×S → P∗(S) | (a, b)→ a◦ b, where a◦ b := {t ∈ S | t ≤ ab}, then (S, ◦,≤) is an ordered
hypergroupoid [10; Lemma 1].

Proposition 4.12. Let (S, ·,≤) be an ordered groupoid and “◦” the hyperoperation on S
defined by

◦ : S × S → P∗(S) | (a, b)→ a ◦ b := {t ∈ S | t ≤ ab}.

If F is a filter of (S, ◦,≤), then it is a filter of (S, ·,≤) as well. The converse statement
does not hold in general.

Proof. Let a, b ∈ F . Since F is a filter of (S, ◦,≤), we have a ◦ b ⊆ F . Since ab ∈ a ◦ b,
we have ab ∈ F . Let now a, b ∈ S such that ab ∈ F . Since ab ∈ a ◦ b and ab ∈ F , we have
(a ◦ b) ∩ F 6= ∅, then a ◦ b ⊆ F , and then a, b ∈ F .

For the converse statement, consider the ordered semigroup (S, ·,≤) of the Example
4.6 given by Table 1 and Figure 1 and the ordered hypersemigroup defined by the same
order and the hyperoperation x ◦ y := {t ∈ S | t ≤ xy} in the following table.

◦ a b c d f g

a {b, d} {b, d} {a, d} {d} {a, d} {a, d}
b {b, d} {b, d} {b, d} {d} {b, d} {b, d}
c {a, d} {b, d} {c, d, f, g} {d} {c, d, f, g} {c, d, f, g}
d {d} {d} {d} {d} {d} {d}
f {a, d} {b, d} {c, d, f, g} {d} {c, d, f, g} {c, d, f, g}
g {a, d} {b, d} {c, d, f, g} {d} {d, f} {d, g}

Table 6.

The set {b, c, f} is a filter of (S, ·,≤), but it is not a filter of (S, ◦,≤). Indeed, for example,
b ◦ c = {d, b} * {b, c, f}. �

Proposition 4.13. Let (S, ·,≤) be an ordered groupoid and (S, ◦,≤) the ordered hyper-
groupoid defined by the hyperoperation a ◦ b := {t ∈ S | t ≤ ab}. If σ is a semilattice
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(resp. complete semilattice) congruence on (S, ◦,≤), then it is a semilattice (resp. com-
plete semilattice) congruence on (S, ·,≤). If σ is a semilattice congruence on (S, ·,≤), then
it is not a semilattice congruence on (S, ◦,≤) in general.

Proof. Let σ be a semilattice congruence on (S, ◦,≤). Let (a, b) ∈ σ and c ∈ S. Since
(a◦c, b◦c) ∈ σ, ac ∈ a◦c, and bc ∈ b◦c, we have (ac, bc) ∈ σ. Similarly we get (ca, cb) ∈ σ,
and σ is a congruence on (S, ·,≤). Let now a, b ∈ S. Since (a ◦ a, a) ∈ σ and a2 ∈ a ◦ a,
we have (a2, a) ∈ σ. Since (a ◦ b, b ◦ a) ∈ σ, ab ∈ a ◦ b and ba ∈ b ◦ a, we have (ab, ba) ∈ σ,
so σ is a semilattice congruence on (S, ·,≤). Let σ be a complete semilattice congruence
on (S, ◦,≤) and a ≤ b. Since (a, a ◦ b) ∈ σ and ab ∈ a ◦ b, we have (a, ab) ∈ σ, thus σ is a
complete semilattice congruence on (S, ·,≤).

For the converse statement, consider the ordered semigroup of the Example 4.6 given
by Table 1 and Figure 1 and the ordered hypersemigroup defined by the same order and
the hyperoperation x ◦ y := {t ∈ S | t ≤ xy} in Table 6. As we have seen, the relation

σ1 = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, f), (d, d), (f, c), (f, f), (g, g)}

is a semilattice congruence on (S, ·,≤). On the other site, σ1 is not a semilattice congruence
on (S, ◦,≤). It is enough to observe that (a, b) ∈ σ1 but (a ◦ c, b ◦ c) /∈ σ1, since a ∈ a ◦ c,
d ∈ b ◦ c but (a, d) /∈ σ1. �

The following question is natural. Under what restrictions a semilattice congruence
on (S, ·,≤) is a semilattice congruence on (S, ◦,≤)? For this purpose, we introduce the
concept of pseudocomplete semilattice congruences as follows:

Definition 4.14. Let (S, ·,≤) be an ordered groupoid. A semilattice congruence σ on S
is called pseudocomplete if ≤⊆ σ.

Example 4.15. The relation σ2 (= N ) in the example 4.7 is an example of a pseudocom-
plete semilattice congruence on (S, ·,≤). There is no proper pseudocomplete semilattice
congruence on (S, ·,≤) in the Example 4.6, in fact the only pseudocomplete semilattice
congruence on (S, ·,≤) is the set S × S.

Proposition 4.16. Let (S, ·,≤) be an ordered groupoid and σ a semilattice congruence
on S. If σ is pseudocomplete, then it is complete.

Proof. Let a ≤ b. Then (a, ab) ∈ σ. Indeed: Since a ≤ b and σ is pseudocomplete, we
have (a, b) ∈ σ. Since σ is a semilattice congruence, we have (a2, ab) ∈ σ and (a, a2) ∈ σ,
thus we get (a, ab) ∈ σ. �

Proposition 4.17. Let (S, ·,≤) be an ordered groupoid and “◦” the hyperoperation on S
defined by

◦ : S × S → S | (a, b)→ a ◦ b := {t ∈ S | t ≤ ab}.

If σ is a pseudocomplete semilattice congruence on (S, ·,≤), then it is a complete semilattice
congruence on (S, ◦,≤).

Proof. Let (a, b) ∈ σ and c ∈ S. Then (a ◦ c, b ◦ c) ∈ σ and (c ◦ a, c ◦ b) ∈ σ. Indeed:
Let u ∈ a ◦ c and v ∈ b ◦ c. Then u ≤ ac and v ≤ bc. Since σ is pseudocomplete, we have
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(u, ac) ∈ σ and (v, bc) ∈ σ. Moreover (ac, bc) ∈ σ, thus we get (u, v) ∈ σ, and σ is a right
congruence on (S, ◦,≤). Similarly σ is a left congruence on (S, ◦,≤). Let a ∈ S. Then
(a ◦ a, a) ∈ σ. In fact: Let u ∈ a ◦ a. Then u ≤ a2, thus (u, a2) ∈ σ. Moreover (a2, a) ∈ σ,
and then (u, a) ∈ σ. Let a, b ∈ S. Then (a ◦ b, b ◦ a) ∈ σ. In fact: Let u ∈ a ◦ b and
v ∈ b ◦ a. Then u ≤ ab, v ≤ ba, from which (u, ab) ∈ σ, (v, ba) ∈ σ. Moreover (ab, ba) ∈ σ,
thus we get (u, v) ∈ σ. Let a ≤ b. Then (a, a ◦ b) ∈ σ. Indeed: Let u ∈ a ◦ b. Then u ≤ ab,
so (u, ab) ∈ σ. Since a ≤ b, we have (a, b) ∈ σ, then (a2, ab) ∈ σ. Moreover (a, a2) ∈ σ,
and then (a, u) ∈ σ. Hence σ is a complete semilattice congruence on (S, ◦,≤). �

With my best thanks to the two anonymous referees for their time to read the paper
carefully, their interest on my work and their prompt reply.
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