EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 4, 2018, 1046-1057 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

A note on one-dimensional varieties over the complex *p*-adic field

Amran Dalloul

Department of Mathematics, Beirut Arab University, Beirut, Lebanon

Abstract. In this paper, we study the varieties $V \subseteq \mathbb{C}_p^4$ of dimension one that contain points of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$ by using tools from Non-Archimedian Analysis.

2010 Mathematics Subject Classifications: 11E95, 11F85, 11J81 Key Words and Phrases: p-adic analysis, Transcendence Theory

1. Introduction

The algebraic (in)dependence between elements of the form $x, \exp(x)$ in the p-adic domain plays a fundamental role in the p-adic Transcendental Number Theory. Many results have been made towards this direction. For example, in 1932 K.Mahler, [N], proved that $\exp(\alpha)$ is transcendental over \mathbb{Q} for any non-zero algebraic element $\alpha \in E$ (the domain of convergence of the exponential function). In 2008, Yu.V. Nesterenko proved that if $\alpha_1, ..., \alpha_n \in E$ are algebraic over \mathbb{Q} and form a basis of a finite extension of degree n of \mathbb{Q} . Then, there exist at least $\lfloor \frac{n}{2} \rfloor$ among the elements $\exp(\alpha_1), ..., \exp(\alpha_n)$ which are \mathbb{Q} -algebraically independent. This result is usually called half of Lindemann-Weierstrass Conjecture in the p-adic domain, [N].

In this paper, we use Weierstrass Preparation Theorem to give necessary and sufficient conditions on a class of polynomials over \mathbb{Z} so that each one of them has a root of the form $(x, \exp(x))$. Similarly, we use Hilbert Theorem on the ring of strictly convergent power series to give necessary and sufficient conditions on a class of polynomials over \mathbb{Z} so that each one of them has a root of the form $(\exp(x_1), \exp(x_2))$. That enables us to put necessary conditions on certain varieties $V \subseteq \mathbb{C}_p^4$ of dimension one over \mathbb{Q} in order to have points of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$. Also, we give a class of varieties $V \subseteq \mathbb{C}_p^4$ of dimension one over \mathbb{Q} such that each variety contains a point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$. This point does not contradict Schanuel's conjecture for two elements. The conjecture asserts that for a given variety $V \subseteq \mathbb{C}_p^4$ over \mathbb{Q} of dimension one and a tuple $(x_1, x_2, \exp(x_1), \exp(x_2)) \in V$, then x_1, x_2 are \mathbb{Q} -linearly dependent. Finally,

Email address: amrandalloul@hotmail.com (A. Dalloul)

http://www.ejpam.com

© 2018 EJPAM All rights reserved.

DOI: https://doi.org/10.29020/nybg.ejpam.v11i4.3281

we give some applications on Weierstrass Preparation Theorem and Hilbert Theorem concerning the algebraic dependence over \mathbb{Q}_p and other related topics.

Many results concerning the existence of roots of p-adic exponential polynomials have been made by Poorten (see [P] and [PR]) and others. These results imply the existence of roots of polynomials $P[X, Y] \in \mathbb{Q}[X, Y]$ of the form $(x, \exp(x))$. In our work, we consider these polynomials directly where the coefficients and degrees of the variables play a role in the existence of such roots. We prove, as a Corollary, that there exist polynomials in $\mathbb{Q}[X, Y]$ which do not contain any root of the form $(x, \exp(x))$. This implies the existence of varieties $V \subseteq \mathbb{C}_p^4$ over \mathbb{Q} of dimension one which do not contain points of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$. Using the same technic, we prove that there exist polynomials over \mathbb{Z} with 2n variables which do not contain any root of the form $(x_1, ..., x_n, \exp(x_1), ..., \exp(x_n))$. Furthermore, we use Weierstrass Preparation Theorem to prove the existence of varieties $V \subseteq \mathbb{C}_p^4$ over \mathbb{Q}_p of dimension one that contain points of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$.

2. Background

We recall some basic notations and results regarding the field of p-adic numbers and some elementary Non-Archimedian Analysis that will be needed later. For more details, see [BGR] and [G].

Let p be a prime number, \mathbb{Q}_p the completion of \mathbb{Q} with respect to the non-archimedian absolute value |.| and \mathbb{C}_p the completion of the algebraic closure of \mathbb{Q}_p . This field is Non-Archimedian (with respect to the extended p-adic absolute value |.|), complete and algebraically closed with the residue class field $\overline{\mathbb{F}}_p$ (the algebraic closure of the field \mathbb{F}_p) and the value group $p^{\mathbb{Q}} \cup \{0\}$. Moreover, The field \mathbb{C}_p is endowed by the exponential map:

$$\exp: E \to 1 + E,$$
$$x \longmapsto \sum_{n \ge 0} \frac{x^n}{n!}$$

where $E = \{ x \in \mathbb{C}_p; |x| < p^{\frac{-1}{p-1}} \}.$

It is well-known in the Non-Archimedian fields that a series $\sum_{n} a_n$ is convergent if and only if $\lim_{n \to \infty} |a_n| = 0$. Therefore, Let $f(X) = \sum_{n=0}^{\infty} a_n X^n \in \mathbb{C}_p[[X]]$ be a power series. Then, f(X) is convergent for each x in the closed ball B(0, c) if and only if $\lim_{n \to \infty} |a_n| c^n = 0$. Since $(|a_n|c^n)$ is convergent, it is bounded. i.e, it has a maximum. Therefore, the norm $\| \cdot \|_c$ on f(X) is defined as follows:

$$|| f(X) ||_c := \max\{|a_n|c^n\}.$$

We summaries the properties of $\| \cdot \|_c$ as follows, [G]: 1) $\| f(X) \|_c = 0 \Leftrightarrow f(X) \equiv 0$, 2) $\| f(X) + g(X) \|_c \leq \max\{\| f(X) \|_c, \| g(X) \|_c\}$, 3) $\| \alpha \|_c = |\alpha|$, for any constant $\alpha \in \mathbb{C}_p$.

4) $|f(x)| \le ||f(X)||_c$, for any $x \in B(0, c)$,

where f(X), g(X) are convergent power series on B(0, c) and |.| stands for the *p*-adic absolute value on \mathbb{C}_p .

Now, we are able to state Weierstrass Preparation Theorem:

Theorem 1. (Weierstrass Preparation Theorem [G]) Let c be a positive real number of the form $p^{\alpha}, \alpha \in \mathbb{Q}$, and let

$$f(X) = a_0 + a_1 X + ... + a_n X^n + ... \in \mathbb{C}_p[[X]]$$

be a power series convergent on the closed ball B(0,c). Let $N \in \mathbb{N}$ be a number defined by the conditions:

 $|a_N|c^N = \max_n\{|a_n|c^n\}$ and $|a_N|c^N > |a_n|c^n, \forall n > N$. Then, there exist a polynomial $g(X) \in \mathbb{C}_p[X]$ of degree N, and a power series h(X)convergent on the closed ball B(0,c) such that 1) f(X) = h(X)g(X). In addition, each root of g(X), if exists, belongs to B(0,c).

2) $\|h(X) - 1\|_c < 1$. In particular, h(X) has no roots in B(0, c).

We need the following notions and results related to the ring of strictly convergent power series in order to study the polynomials in $\mathbb{Z}[X_1, X_2]$ that admit roots of the form $(\exp(x_1), \exp(x_2))$. See [S] and [BGR] for more details.

Let (K, |.|) be a Non-Archimedian, complete and algebraically closed field. Then, a formal power series $f(X_1, ..., X_n) = \sum_{I=(i_1,...,i_n)} a_I X_1^{i_1} ... X_n^{i_n} \in K[[X_1, ..., X_n]]$ is convergent on a ball $B(0, \rho) := \{\bar{x} = (x_1, ..., x_n) \in \mathbb{C}_p^n : \max |x_i| \le \rho\}$ if and only if

 $|a_I|\rho^{(i_1+\ldots+i_n)} \to 0$ as $i_1+\ldots+i_n \to \infty$. We define a norm $|.|_{\rho}$ on f as follows:

$$|f|_{\rho} := \max_{I = (i_1, \dots, i_n)} \{ |a_I| \rho^{(i_1 + \dots + i_n)} \}$$

This norm is usually called *Gauss norm*, [S]. Let $T_n(\rho)$ be the set of all formal power series in $K[[X_1, ..., X_n]]$ which are convergent on the ball $B(0, \rho)$. Then, $T_n(\rho)$ forms a complete normed K-algebra embeds $K[X_1, ..., X_n]$ as a dense K- subalgebra. In particular, for $\rho = 1, K\langle X_1, ..., X_n \rangle$ denotes the ring of all power series which are convergent on the unit ball. Each element of this ring is usually called strictly convergent power series, [S]. Then, we have the following:

Lemma 1. ([S] Lemma 4.9, p.9) A strictly convergent power series $f = \sum_{I=(i_1,..,i_n)} a_I X_1^{i_1} \dots X_n^{i_n} \in K\langle X_1, .., X_n \rangle \text{ is unit in } K\langle X_1, .., X_n \rangle \text{ if and only if } |a_{(0,..,0)}| = |f| \text{ and } |a_{(i_1,..,i_n)}| < |f| \text{ for all } i_1 + .. + i_n > 0.$

This lemma immediately implies that if $|a_{(0,0,..,0)}| < |f|$, then f is not unit in $K\langle X_1, .., X_n \rangle$.

Lemma 2. (Hilbert Theorem [S], Corollary 5.10, p.14) There is a one to one correspondence between the maximal ideals of $K\langle X_1, ..., X_n \rangle$ and the points in the unit ball $B(0,1) := \{\bar{x} = (x_1, ..., x_n) \in \mathbb{C}_p^n : \max\{|x_i|\} \leq 1\}$. Under this correspondence, a point $\bar{x} = (x_1, ..., x_n) \in B(0, 1)$ determines the maximal ideal $\langle X_1 - x_1, ..., X_n - x_n \rangle$.

Throughout the paper, we use the standard notation $(\bar{x}, \exp(\bar{x}))$ for the 2*n*- tuple $(x_1, ..., x_n, \exp(x_1), ..., \exp(x_n))$, [K].

3. The Main Results

It is clear that finding roots of a polynomial with rational coefficients can be reduced to the case of coefficients in \mathbb{Z} . Therefore, without loss of generality, we can take the polynomials over \mathbb{Z} . We only consider the class of polynomials $P[X, Y] \in \mathbb{Z}[X, Y]$ in which at least one of the degrees of the variable Y is relatively prime to p. Furthermore, we exclude the case of polynomials that contain the variable X in each term since they have the trivial root $(0, \exp(0))$.

Theorem 2. The polynomial with rational integer coefficients

$$P[X,Y] = c + \sum_{i=1}^{m} d_i Y^{\alpha_i} + e_1 X Y^{\beta_{1,2}} + \sum_{k=1}^{s} f_k X^{\gamma_{k,1}} Y^{\gamma_{k,2}}; \gamma_{k,1} \ge 2,$$

in which $(d_1\alpha_1 + ... + d_m\alpha_m + e_1, p) = 1$, has a root of the form $(x, \exp(x)) \in \mathbb{C}_p \times \mathbb{C}_p^*; p \ge 3$ if and only if $|c + d_1 + ... + d_m| \le p^{-1}$.

Proof. (Proof of the necessary condition) If $(x, \exp(x))$ is a root of P[X, Y], then x is a root of the power series $f(X) := P[X, \exp(X)]$ which is convergent on E (since at least one of the degrees of the variable Y is relatively prime to p, see [PR, Theorem 1]). Thus, $x \in E$. So,

$$c + \sum_{i=1}^{m} d_i \exp(\alpha_i x) = -\Big(e_1 x \exp(\beta_{1,2} x) + \sum_{k=1}^{s} f_k x^{\gamma_{k,1}} \exp(\gamma_{k,2} x)\Big).$$

We have $\mathbb{Z} \subseteq \mathbb{Z}_p$ and $|\exp(w)| = 1$ for every $w \in E$. Using the strong triangle inequality, it follows that

$$\begin{aligned} |c + \sum_{i=1}^{m} d_{i} \exp(\alpha_{i}x)| &\leq \max_{k} \{ |e_{1}x \exp(\beta_{1,2}x)|, |f_{k}x^{\gamma_{k,1}} \exp(\gamma_{k,2}x)| \} \\ &\leq \max_{k} \{ |e_{1}||x|| \exp(\beta_{1,2}x)|, |f_{k}||x^{\gamma_{k,1}}|| \exp(\gamma_{k,2}x)|) \} \\ &\leq \max_{k} \{ |x|, |x|^{\gamma_{k,1}} \} \\ &< p^{\frac{-1}{p-1}} < 1. \end{aligned}$$

We define $z_i = \alpha_i x; i = 1, 2, ..., m$. Then,

$$|c + d_1 \exp(z_1) + \dots + d_m \exp(z_m)| < 1.$$
(1)

Therefore, $|c + d_1 + \dots + d_m| < 1$. This is because,

$$\begin{split} |c+d_1\exp(z_1)+\ldots+d_m\exp(z_m)| &= |c+d_1+\ldots+d_m+d_1(\exp(z_1)-1)+\ldots+d_m(\exp(z_m)-1)|. \end{split}$$
 If $|c+d_1+\ldots+d_m|=1,$ then we find that

$$|d_1(\exp(z_1) - 1) + \dots + d_m(\exp(z_m) - 1)| \le \max_{1 \le i \le m} \{|d_i(\exp(z_i) - 1)|\}$$

$$\leq \max_{1 \leq i \leq m} \{ |(\exp(z_i) - 1)| \}$$
(using the fact $|w| = |\exp(w) - 1|, \forall w \in E$) $\leq \max_{1 \leq i \leq m} \{ |(z_i)| \}$

$$< p^{\frac{-1}{p-1}}$$

$$< 1.$$

So, by the isosceles triangle inequality, we find that

$$|c + d_1 \exp(z_1) + \dots + d_m \exp(z_m)| =$$

= max{|c + d_1 + \dots + d_m|, |d_1(\exp(z_1) - 1) + \dots + d_m(\exp(z_m) - 1)|} =
= |c + d_1 + \dots + d_m| = 1.

This contradicts (1). Therefore, $|c + d_1 + \ldots + d_m| < 1$, so $|c + d_1 + \ldots + d_m| \le p^{-1}$. This is because, $c + d_1 + \ldots + d_m \in \mathbb{Z}$, and the value group of \mathbb{Z} is $p^{\mathbb{Z}} \cup \{0\}$.i.e, for each $q \in \mathbb{Z}^*$, $|q| = p^s$, for some $s \in \mathbb{Z}$.

Proof of the sufficient condition. Consider the polynomial

$$P[X,Y] = c + \sum_{i=1}^{m} d_i Y^{\alpha_i} + e_1 X Y^{\beta_{1,2}} + \sum_{k=1}^{s} f_k X^{\gamma_{k,1}} Y^{\gamma_{k,2}} \in \mathbb{Z}[X,Y],$$

with the condition $|c + d_1 + ... + d_m| \leq p^{-1}$. We have to prove that P[X, Y] has a root of the form $(x, \exp(x)), x \in E$. This is equivalent to prove that the power series $f(X) := P[X, \exp(X)]$ has a root $x \in E$. Suppose that the power series f(X) takes the form $f(X) = a_0 + a_1X + ... + a_nX^n + ...$

In our case, we have

$$a_{0} = c + d_{1} + ... + d_{m},$$

$$a_{1} = d_{1}\alpha_{1} + ... + d_{m}\alpha_{m} + e_{1},$$

$$a_{n} = \frac{d_{1}\alpha_{1}^{n} + ... + d_{m}\alpha_{m}^{n}}{n!} + e_{1}\frac{\beta_{1,2}^{n-1}}{(n-1)!}; n < \min_{1 \le j \le s} \{\gamma_{j,1}\},$$

$$a_{n} = \frac{d_{1}\alpha_{1}^{n} + ... + d_{m}\alpha_{m}^{n}}{n!} + e_{1}\frac{\beta_{1,2}^{n-1}}{(n-1)!} + f_{1}\frac{\gamma_{1,2}^{n-\gamma_{1,1}}}{(n-\gamma_{1,1})!} + ... + f_{s}\frac{\gamma_{s,2}^{n-\gamma_{s,1}}}{(n-\gamma_{s,1})!}; n \ge \min_{1 \le i \le s} \{\gamma_{j,1}\}$$

Let α be any rational number satisfying $-1 < \alpha < \frac{-1}{p-1}$. In fact, we have chosen $\alpha \in \mathbb{Q}$ to guarantee that $p^{\alpha} \in |\mathbb{C}_p|$. Then f(X) is convergent on the closed ball $B(0, p^{\alpha})$. The general assumption of the theorem guarantees that $\operatorname{ord}(a_1) = 0$. Therefore, $|a_1| = 1$. Also, by definition of α , we find that $p^{-1} < p^{\alpha}$. Thus,

$$|a_0| \le p^{-1} < |a_1| p^{1.\alpha} \le \max_{n \ge 1} \{ |a_n| p^{n\alpha} \}.$$

Therefore, the number N, defined in Weierstrass Preparation theorem, is strictly larger than zero.i.e, N > 0. Weierstrass Preparation theorem guarantees that f(X) can be written in the form f(X) = h(X)g(X); h(X) is a power series convergent and non-vanishing

1050

on $B(0, p^{\alpha})$ and g(X) is a polynomial with *p*-adic complex coefficients of degree N > 0. Since \mathbb{C}_p is algebraically closes field, it follows that g(X) has a root *x*. This root belongs to $B(0, p^{\alpha})$.i.e., $x \in E$. Therefore, f(x) = h(x).0 = 0. Thus, $P(x, \exp(x)) = 0$.

Remark 1. In the proof of the necessary condition, we did not use the assumption $(d_1\alpha_1 + ... + d_m\alpha_m + e_1, p) = 1$. This implies that any polynomial of the form

$$P[X,Y] = c + \sum_{i=1}^{m} d_i Y^{\alpha_i} + \sum_{k=1}^{s} f_k X^{\xi_{k,1}} Y^{\xi_{k,2}}; \xi_{k,1} \ge 1,$$

with $(c + d_1 + ... + d_m, p) = 1$ and at least one of the degrees of the variable Y is relatively prime to p does not have any root of the form $(x, \exp(x))$.

Example 1. We can use Remark 1 to prove that the polynomial $P[X, Y] = X^2 + Y^2$ has no roots of the form $(x, \exp(x)) \in \mathbb{C}_p \times \mathbb{C}_p^*; p \geq 3$.

Example 2. Consider the polynomial

$$P[X,Y] = p - 1 + (p+1)Y^{p} + X + X^{3}Y^{p-1} + X^{7}Y^{15}.$$

Then, the domain of $f(X) = P[X, \exp(X)]$ is E, $(d_1\alpha_1 + ... + d_m\alpha_m + e_1, p) = (p(p+1) + 1, p) = 1$ and $|c+d_1+...+d_m| = |2p| = p^{-1}$. According to Theorem 2, we find that P[X, Y] has a root of the form $(x, \exp(x)) \in \mathbb{C}_p \times \mathbb{C}_p^*; p \geq 3$. This example shows that there exists a non trivial tuple of the form $(x, \exp(x))$ satisfies an algebraic dependence relation with rational integer coefficients relatively prime to p.

Also we can use Hilbert Theorem to get a result concerning the roots of the form $(\exp(x_1), \exp(x_2))$ to the polynomials with rational integer coefficients and two variables.

Theorem 3. The polynomial

$$P[X_1, X_2] = a_{I_0} + a_{I_1} X_1^{i_{1,1}} X_2^{i_{1,2}} + \dots + a_{I_m} X_1^{i_{m,1}} X_2^{i_{m,2}} \in \mathbb{Z}[X_1, X_2],$$

in which at least one of the elements $a_{I_1}i_{1,1} + \ldots + a_{I_m}i_{m,1}$, $a_{I_1}i_{1,2} + \ldots + a_{I_m}i_{m,2}$ and all the degrees of X_1 and X_2 are relatively prime to p has a root of the form $(\exp(x_1), \exp(x_2))$ if and only if $|a_{I_0} + \ldots + a_{I_m}| \leq p^{-1}$.

Proof. (*Proof of the necessary condition*). If P has a root of the form $(\exp(x_1), \exp(x_2))$ for some elements $x_1, x_2 \in E$, then

$$P(\exp(x_1), \exp(x_2)) = a_{I_0} + a_{I_1}(\exp(x_1))^{i_{1,1}}(\exp(x_2))^{i_{1,2}} + \dots + a_{I_m}(\exp(x_1))^{i_{m,1}}(\exp(x_2))^{i_{m,2}} = 0$$

Let $z_j := i_{j,1}x_1 + i_{j,2}x_2, \forall j = 1, 2, ..., m$. Then $z_j \in E$. Using the universal property of the exponential function, we obtain

$$a_{I_0} + a_{I_1} \exp(z_1) + \dots + a_{I_m} \exp(z_m) = 0.$$

Thus,

$$|a_{I_0} + a_{I_1} \exp(z_1) + \dots + a_{I_m} \exp(z_m)| = 0 < 1.$$

By a similar argument to the necessary proof of Theorem 2, we find that $|a_{I_0} + \ldots + a_{I_m}| \leq p^{-1}$. *Proof of the sufficient condition.* Consider the polynomial

$$P[X_1, X_2] = a_{I_0} + a_{I_1} X_1^{i_{1,1}} X_2^{i_{1,2}} + \dots + a_{I_m} X_1^{i_{m,1}} X_2^{i_{m,2}} \in \mathbb{Z}[X_1, X_2],$$

in which at least one of the elements $a_{I_1}i_{1,1} + \ldots + a_{I_m}i_{m,1}$, $a_{I_1}i_{1,2} + \ldots + a_{I_m}i_{m,2}$ and all the degrees of X_1 and X_2 are relatively prime to p. Let $f \in \mathbb{C}_p[[X_1, X_2]]$ be an element defined by the relation

$$f(X_1, X_2) = P[\exp(X_1), \exp(X_2)].$$

Then, $P[X_1, X_2]$ has a root of the form $(\exp(x_1), \exp(x_2))$ if and only if (x_1, x_2) is a root of f. It is clear that f is convergent on the ball $B(0, \rho) := \{(x_1, x_2) : \max |x_i| \le \rho, i = 1, 2\}$ for every $\rho < p^{\frac{-1}{p-1}}$ (since all the degrees of the variables X_1 and X_2 are relatively prime to p). Let α be a rational number satisfying the relation $-1 < \alpha < \frac{-1}{p-1}$. Then, $f(X_1, X_2)$ is convergent on the ball $B(0, p^{\alpha})$. We define new variables: $Z_1 := p^{\alpha}X_1, Z_2 := p^{\alpha}X_2$. Also, we define a new power series $g(Z_1, Z_2)$ by the relation

$$g(Z_1, Z_2) := f(p^{-\alpha}Z_1, p^{-\alpha}Z_2).$$

It's clear that $g(Z_1, Z_2)$ is convergent on the unit ball B(0, 1). Furthermore, $f(X_1, X_2)$ has a root in the ball $B(0, p^{\alpha})$ if and only if $g(Z_1, Z_2)$ has a root in the unit ball. Since $g(Z_1, Z_2)$ is convergent on the unit ball, it follows that $g(Z_1, Z_2) \in \mathbb{C}_p \langle Z_1, Z_2 \rangle$. Suppose that $g(Z_1, Z_2)$ takes the form $g = (g_0, g_1, ..., g_q, ...)$, where g_i is homogeneous polynomial of degree *i*. Then, in our case, we have

$$g_0 = g(0,0) = a_{I_0} + \dots + a_{I_m},$$

$$g_1 = (a_{I_1}i_{1,1} + \dots + a_{I_m}i_{m,1})p^{-\alpha}Z_1 + (a_{I_1}i_{1,2} + \dots + a_{I_m}i_{m,2})p^{-\alpha}Z_2.$$

Suppose that α takes the form $\alpha = \frac{-m}{n}$. Then, we have

$$|p^{-\alpha}|^n = |p^m| = p^{-m} \Rightarrow |p^{-\alpha}| = p^{\frac{-m}{n}} = p^{\alpha}.$$

We assume that $(a_{I_1}i_{1,1} + \dots + a_{I_m}i_{m,1}, p) = 1$ (the other case can be done similarly). This implies that $|a_{I_1}i_{1,1} + \dots + a_{I_m}i_{m,1}| = 1$. Now, since $-1 < \alpha < \frac{-1}{p-1}$, it follows that $p^{-1} < p^{\alpha}$. Hence, we obtain the inequalities

$$|g_0| = |a_{I_0} + \dots + a_{I_m}| \le p^{-1} < p^{\alpha} = |(a_{I_1}i_{1,1} + \dots + a_{I_m}i_{m,1})p^{-\alpha}| \le \max_J \{|b_J|\} = |g|,$$

where $\{b_J\}$ are the coefficients of the power series g. Thus,

Using Lemma 1, it implies that g is not unit in the ring $\mathbb{C}_p\langle Z_1, Z_2\rangle$. Therefore, there exits a maximal ideal ρ in $\mathbb{C}_p\langle Z_1, Z_2\rangle$ such that $g \in \rho$. Using Lemma 2 and the fact that \mathbb{C}_p is algebraically closed field, it follows that there exist the elements $z_1, z_2 \in B(0, 1)$ such that

$$\varrho = \langle Z_1 - z_1, Z_2 - z_2 \rangle.$$

Therefore, g can be written in the form $g = r_1(Z_1 - z_1) + r_2(Z_2 - z_2)$, for some $r_1, r_2 \in \mathbb{C}_p(Z_1, Z_2)$. Thus, it is clear that

$$g(z_1, z_2) = 0.$$

Hence, g has a root in the unit ball. Therefore, f has a root in the ball $B(0, p^{\alpha})$. Thus, the original polynomial $P[X_1, X_2]$ has a root of the form $(\exp(x_1), \exp(x_2))$.

Corollary 1. Let $V \subseteq \mathbb{C}_p^4$ be a variety over \mathbb{Q} of dimension one defined by a system of polynomials with rational integer coefficients of the form

$$P_{1}[X_{1}, X_{3}] = c^{(1)} + \sum_{i=1}^{m} d_{i}^{(1)} X_{3}^{\alpha_{i}^{(1)}} + \sum_{l=1}^{r} f_{k}^{(1)} X_{1}^{\xi_{k,1}^{(1)}} X_{3}^{\xi_{k,2}^{(1)}}; \xi_{k,1}^{(1)} \ge 1$$

$$P_{2}[X_{2}, X_{4}] = c^{(2)} + \sum_{i=1}^{m} d_{i}^{(2)} X_{4}^{\alpha_{i}^{(2)}} + \sum_{l=1}^{r} f_{k}^{(2)} X_{2}^{\xi_{k,1}^{(2)}} X_{4}^{\xi_{k,2}^{(2)}}; \xi_{k,1}^{(2)} \ge 1$$

$$P_{3}[X_{3}, X_{4}] = a_{I_{0}} + a_{I_{1}} X_{3}^{i_{1,1}} X_{4}^{i_{1,2}} + \dots + a_{I_{m}} X_{3}^{i_{m,1}} X_{4}^{i_{m,2}},$$

such that there exists a degree of each of the variables X_3 and X_4 in P_1 and P_2 respectively which is relatively prime to p and all the degrees of the variables X_3 and X_4 in P_3 are also relatively prime to p. If V contains a point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$, then the quantities $c^{(1)} + \sum_{i=1}^{m} d_i^{(1)}, c^{(2)} + \sum_{i=1}^{m} d_i^{(2)}$ and $a_{I_0} + \ldots + a_{I_m}$ are all divisible by p.

Proof. If V contains a point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$, then we have

$$P_1(x_1, \exp(x_1)) = P_2(x_2, \exp(x_2)) = P_3(\exp(x_1), \exp(x_2)) = 0$$

Using Theorems 2 and 3, we find that the quantities $c^{(1)} + \sum_{i=1}^{m} d_i^{(1)}, c^{(2)} + \sum_{i=1}^{m} d_i^{(2)}$ and $a_{I_0} + \ldots + a_{I_m}$ are all divisible by p.

Remark 2. From the previous corollary, we can deduce that if we have a variety $V \subseteq \mathbb{C}_p^4$ defined as in the previous Corollary in which one of the quantities $c^{(1)} + \sum_{i=1}^m d_i^{(1)}, c^{(2)} + \sum_{i=1}^m d_i^{(2)}$ or summation of coefficients of P_3 is relatively prime to p, then V has no point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$.

We can also give sufficient conditions on a **class** of varieties such that each variety admits a point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$ as follows.

1053

Corollary 2. Let p be an odd prime and let $c, d, m \in \mathbb{Z}, m \geq 1$ with the conditions (d+1,p) = (m,p) = 1, p | (c+d). Then the variety $V \subseteq \mathbb{C}_p^4$ of dimension one defined by the system of polynomials

$$P_1[X_1, X_3] = c + dX_3^m + mX_1$$
$$P_2[X_2, X_4] = c + dX_4 + X_2$$
$$P_3[X_3, X_4] = X_4 - X_3^m,$$

has a point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$.

Proof. In fact, Theorem 2 guarantees that P_1 has a root of the form $(x, \exp(x))$. By a simple calculation, we find that $(mx, \exp(mx))$ is a root of P_2 which admits roots of the form $(x, \exp(x))$ according to Theorem 2.

It's clear that $(\exp(x), \exp(mx))$ is a root of P_3 which admits roots of the form $(\exp(x_1), \exp(x_2))$ according to Theorem 3. Hence $(x, mx, \exp(x), \exp(mx)) \in V$.

Remark 3. Schanuel's conjecture in the case of two variables asserts that if $V \subseteq \mathbb{C}_p^4$ is a variety of dimension one over \mathbb{Q} and has a point of the form $(x_1, x_2, \exp(x_1), \exp(x_2))$, then the point must take the form $(x, mx, \exp(x), \exp(mx))$, for some $m \in \mathbb{Q}$.

4. Further Applications of Weierstrass Preparation Theorem and Hilbert Theorem

We can use Weierstrass Preparation Theorem to get a result concerning the algebraic dependence over \mathbb{Q}_p as follows.

Theorem 4. Let $P_1, P_2 \in \mathbb{Z}[X, Y]$ be polynomials defined as in the beginning of the previous section of the form

$$P_{1}[X,Y] = c^{(1)} + \sum_{i=1}^{m} d_{i}^{(1)} Y_{i}^{\alpha_{i}^{(1)}} + e^{(1)} X Y^{\beta_{1,2}^{(1)}} + \sum_{k=1}^{s} f_{k}^{(1)} X^{\gamma_{k,1}^{(1)}} Y^{\gamma_{k,2}^{(1)}}; \gamma_{k,1}^{(1)} \ge 2,$$

$$P_{2}[X,Y] = c^{(2)} + \sum_{i=1}^{m} d_{i}^{(2)} Y_{i}^{\alpha_{i}^{(2)}} + e^{(2)} X Y^{\beta_{1,2}^{(2)}} + \sum_{k=1}^{s} f_{k}^{(2)} X^{\gamma_{k,1}^{(2)}} Y^{\gamma_{k,2}^{(2)}}; \gamma_{k,1}^{(2)} \ge 2,$$

in which $(d_1^{(1)}\alpha_1^{(1)} + ... + d_m^{(1)}\alpha_m^{(1)}, p) = (d_1^{(2)}\alpha_1^{(2)} + ... + d_m^{(2)}\alpha_m^{(2)}, p) = 1$. If the quantities $c^{(1)} + \sum_{i=1}^m d_i^{(1)}, c^{(2)} + \sum_{i=1}^m d_i^{(2)}$ are divisible by p and $(x_1, \exp(x_1)), (x_2, \exp(x_2))$ are roots of P_1, P_2 receptively, then there exists a variety $V \subseteq \mathbb{C}_p^4$ over \mathbb{Q}_p of dimension ≤ 1 containing the point $(x_1, x_2, \exp(x_1), \exp(x_2))$.

Proof. Since $\mathbb{Q} \subseteq \mathbb{Q}_p$ and $P_1(x_1, \exp(x_1)) = 0$, it follows that x_1 and $\exp(x_1)$ are \mathbb{Q}_p -algebraically dependent. The same holds true for x_2 and $\exp(x_2)$. It remains to show that x_1 and x_2 are \mathbb{Q}_p -algebraically dependent. For this, it suffices to show that x_1 and x_2 are algebraic over \mathbb{Q}_p . We briefly review the proof of Theorem 2. We have considered

the power series $f[X] := P[X, \exp(X)] \in \mathbb{Q}[[X]]$ which is convergent on the closed ball $B(0, p^{\alpha}), \alpha \in (-1, \frac{-1}{p-1}) \cap \mathbb{Q}$. Weierstrass Preparation Theorem can be applied over any finite extension K of \mathbb{Q}_p (For more details, see [G]). Also, the coefficients of f(X) (which are rationals) can be considered as elements in any finite extension of \mathbb{Q}_p . Hence, we can take K to be \mathbb{Q}_p . Then, f(X) can be factored in the form f(X) = g(X)h(X), where $g(X) \in \mathbb{Q}_p[X]$ and $h(X) \in \mathbb{Q}_p[[X]]$ is non-vanishing and converging on the ball $B(0, p^{\alpha})$. The roots of f(X) are exactly the roots of the polynomial g. That is, each root of f(X) is algebraic over \mathbb{Q}_p . This clearly implies that x_1 and x_2 are \mathbb{Q}_p -algebraically dependent. Thus,

$$td_{\mathbb{Q}_p}\mathbb{Q}_p(x_1, x_2, \exp(x_1), \exp(x_2) \le 1.$$

Hence, there exists a variety $V \subseteq \mathbb{C}_p^4$ over \mathbb{Q}_p of dimension ≤ 1 containing the point $(x_1, x_2, \exp(x_1), \exp(x_2))$.

Finally, we generalize Theorem 2 to the case of polynomials $P[X_1, ..., X_n, Y_1, ..., Y_n] \in \mathbb{Q}[X_1, ..., X_n, Y_1, ..., Y_n].$

As in the two variables case, we reduce the problem to find the roots of polynomials with rational integer coefficients and exclude the polynomials that have at least one of the variables $X_1, ..., X_n$ in each term since it implies that the trivial point $(0, ..., 0, \exp(0), ..., \exp(0))$ is a root of these polynomials. Also, we only consider the polynomials in which all the degrees of the variables $Y_1, ..., Y_n$ are relatively prime to p. Then, we prove

Theorem 5. The polynomial with rational integer coefficients

$$P[X_1, ..., X_n, Y_1, ..., Y_n] = c + \sum_{i=1}^m d_i Y_1^{\alpha_{i,1}} ... Y_n^{\alpha_{i,n}} + \sum_{j=1}^n e_j X_j Y_1^{\beta_{j,1}} Y_n^{\beta_{j,n}} + \sum_{k=1}^s f_k X_1^{\gamma_{k,1}} ... X_n^{\gamma_{k,n}} Y_1^{\gamma_{k,n+1}} ... Y_n^{\gamma_{k,2n}};$$
$$\gamma_{k,1} + ... + \gamma_{k,n} \ge 2,$$

in which at least one of the elements $(d_1\alpha_{1,1} + \dots + d_m\alpha_{m-1} + e_1) = (d_1\alpha_{1,m} + \dots + d_m\alpha_{m-1} + e_1)$

 $(d_1\alpha_{1,1} + ... + d_m\alpha_{m,1} + e_1), ..., (d_1\alpha_{1,n} + ... + d_m\alpha_{m,n} + e_n)$ is relatively prime to $p; p \ge 3$, has a root of the form $(\bar{x}, \exp(\bar{x}))$ if and only if

$$|c+d_1+\ldots+d_m| \le p^{-1}.$$

Proof. Proof of the necessary condition. If $(\bar{x}, \exp(\bar{x}))$ is a root of the polynomial $P[X_1, ..., X_n, Y_1, ..., Y_n]$, then \bar{x} is a root of the power series $f(X_1, ..., X_n) := P[X_1, ..., X_n, \exp(X_1), ..., \exp(X_n)]$ which is convergent on the disk $\{\bar{x}: \max |x_i| < p^{\frac{-1}{p-1}}\}$. Thus, $\bar{x} \in E^n$. So,

$$c + \sum_{i=1}^{m} d_i \exp(\alpha_{i,1} x_1) \dots \exp(\alpha_{i,n} x_n) =$$

$$= -\Big(\sum_{j=1}^{n} e_j x_j \exp(\beta_{j,1} x_1) \dots \exp(\beta_{j,n} x_n) + \sum_{k=1}^{s} f_k x_1^{\gamma_{k,1}} \dots x_n^{\gamma_{k,n}} \exp(\gamma_{k,n+1} x_1) \dots \exp(\gamma_{k,2n} x_n)\Big).$$

Using the fact $\mathbb{Z} \subseteq \mathbb{Z}_p$, $|\exp(w)| = 1$, $\forall w \in E$ and the strong triangle inequality, we find that

$$|c + \sum_{i=1}^{m} d_i \exp(\alpha_{i,1} x_1) \dots \exp(\alpha_{i,n} x_n)| < 1.$$

Let $z_i = \alpha_{i,1}x_1 + ... + \alpha_{i,n}x_n$; i = 1, 2, ..., m. Using the universal property of the exponential function, we find that

$$|c + d_1 \exp(z_1) + \dots + d_m \exp(z_m)| < 1.$$

By a similar fashion to the two variables case, we find that $|c + d_1 + ... + d_m| \le p^{-1}$. Proof of the sufficient condition. Consider the polynomial

$$P[X_1, ..., X_n, Y_1, ..., Y_n] = c + \sum_{i=1}^m d_i Y_1^{\alpha_{i,1}} ... Y_n^{\alpha_{i,n}} + \sum_{j=1}^n e_j X_j Y_1^{\beta_{j,1}} Y_n^{\beta_{j,n}} + \sum_{k=1}^s f_k X_1^{\gamma_{k,1}} ... X_n^{\gamma_{k,n}} Y_1^{\gamma_{k,n+1}} ... Y_n^{\gamma_{k,2n}}; \gamma_{k,1} + ... + \gamma_{k,n} \ge 2,$$

with the conditions:

1) At least one of the elements $(d_1\alpha_{1,1} + \ldots + d_m\alpha_{m,1} + e_1), \ldots, (d_1\alpha_{1,n} + \ldots + d_m\alpha_{m,n} + e_n)$ is relatively prime to p,

2) $|c + d_1 + \dots + d_m| \le p^{-1}$.

Consider the ring of the formal power series $\mathbb{C}_p[[X_1, ..., X_n]]$. Let $f \in \mathbb{C}_p[[X_1, ..., X_n]]$ be an element defined by the relation

$$f(X_1, ..., X_n) = P[X_1, ..., X_n, \exp(X_1), ..., \exp(X_n)].$$

Then, $P[X_1, ..., X_n, Y_1, ..., Y_n]$ has a root of the form $(\bar{x}, \exp(\bar{x}))$ if and only if $(x_1, ..., x_n)$ is a root of f. It is clear that f is convergent on the ball $B(0, \rho)$ for every $\rho < p^{-1}_{\overline{p-1}}$. Applying the same argument in the proof of Theorem 3, we find that P has a root of the form $(\bar{x}, \exp(\bar{x}))$.

Remark 4. As in the two variables case, the polynomial over \mathbb{Z}

$$P[X_1, ..., X_n, Y_1, ..., Y_n] = c + \sum_{i=1}^m d_i Y_1^{\alpha_{i,1}} ... Y_n^{\alpha_{i,n}} + \sum_{k=1}^s f_k X_1^{\xi_{k,1}} ... X_n^{\xi_{k,n}} Y_1^{\xi_{k,n+1}} ... Y_n^{\xi_{k,2n}} ; \xi_{k,1} + ... + \xi_{k,n} \ge 1,$$

with $(c + d_1 + \dots + d_m, p) = 1$ has no roots of the form $(\bar{x}, \exp(\bar{x}))$.

1056

Acknowledgements

I would like to thank the referees for their constructive comments. Also, I would like to thank Ali Bleybel for proposing this subject, as well as his constant help and support throughout the preparation of this paper.

References

- [1] [AD] S. Araci, U. Duran and M. Acikgoz, (ρ, q)-Volkenborn Integration, The Journal of Number Theory, V.171, 2017, pp.1830.
- [2] [BGR] S. Bosch, U. Guntzer, and R. Remmert, Non-Archimedian Analysis, Springer-Verlag, Berlin, 1984.
- [3] [DA] U. Duran, M. Acikgoz, On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals, International Journal of Number Theory, 14 (1), 2018, 241-253. https://doi.org/10.1142/S179304211850015X.
- [4] [G] F. Q. Gouvea, *p-Adic Numbers*, 2nd edition, Springer, New York, 2003.
- [5] [K] J. Kirby, Exponential algebraicity in exponential fields, Bull. Lond. Math. Soc. 42:5(2010), 879890. MR 2011k:03070 Zbl 1203.03050.
- [6] [N] Yu. V. Nesterenko, Algebraic independence of p-adic numbers, Izvestiya: Mathematics 72:3 565-579 (2008).
- [7] [P] A.J.Van Der Poorten, Zeros of p-adic Exponential Polynomials I, School of Mathematics the university of NSW Kensington, NSW 2033, Australia, 1975.
- [8] [PR] A.J.Van Der Poorten and Roberts Rumely, Zeros of p-adic Exponential Polynomials II .J.London Math.Soc.(2)36(1987)1-15.
- [9] [R] A. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics 198, Springer-Verlag 2000.
- [10] [S] H.Schoutens, Introduction Rigid Analytic Geometry, Ohio AntoState University, June 2002,Lecture Notes, available at websupport1.citytech.cuny.edu/faculty/hschoutens/PDF/RAG Lecture Notes.pdf.