EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 11, No. 4, 2018, 1046-1057
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

A note on one-dimensional varieties over the complex p-adic field

Amran Dalloul
Department of Mathematics, Beirut Arab University, Beirut, Lebanon

Abstract

In this paper, we study the varieties $V \subseteq \mathbb{C}_{p}^{4}$ of dimension one that contain points of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ by using tools from Non-Archimedian Analysis.

2010 Mathematics Subject Classifications: 11E95, 11F85, 11J81
Key Words and Phrases: p-adic analysis, Transcendence Theory

1. Introduction

The algebraic (in)dependence between elements of the form $x, \exp (x)$ in the p-adic domain plays a fundamental role in the p-adic Transcendental Number Theory. Many results have been made towards this direction. For example, in 1932 K.Mahler, [N], proved that $\exp (\alpha)$ is transcendental over \mathbb{Q} for any non-zero algebraic element $\alpha \in E$ (the domain of convergence of the exponential function). In 2008, Yu.V. Nesterenko proved that if $\alpha_{1}, \ldots, \alpha_{n} \in E$ are algebraic over \mathbb{Q} and form a basis of a finite extension of degree n of \mathbb{Q}. Then, there exist at least $\left\lfloor\frac{n}{2}\right\rfloor$ among the elements $\exp \left(\alpha_{1}\right), \ldots ., \exp \left(\alpha_{n}\right)$ which are \mathbb{Q}-algebraically independent. This result is usually called half of Lindemann-Weierstrass Conjecture in the p-adic domain, $[\mathrm{N}]$.
In this paper, we use Weierstrass Preparation Theorem to give necessary and sufficient conditions on a class of polynomials over \mathbb{Z} so that each one of them has a root of the form $(x, \exp (x))$. Similarly, we use Hilbert Theorem on the ring of strictly convergent power series to give necessary and sufficient conditions on a class of polynomials over \mathbb{Z} so that each one of them has a root of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$. That enables us to put necessary conditions on certain varieties $V \subseteq \mathbb{C}_{p}^{4}$ of dimension one over \mathbb{Q} in order to have points of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$. Also, we give a class of varieties $V \subseteq \mathbb{C}_{p}^{4}$ of dimension one over \mathbb{Q} such that each variety contains a point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$. This point does not contradict Schanuel's conjecture for two elements. The conjecture asserts that for a given variety $V \subseteq \mathbb{C}_{p}^{4}$ over \mathbb{Q} of dimension one and a tuple $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right) \in V$, then x_{1}, x_{2} are \mathbb{Q}-linearly dependent. Finally,

DOI: https://doi.org/10.29020/nybg.ejpam.v11i4.3281
Email address: amrandalloul@hotmail.com (A. Dalloul)
we give some applications on Weierstrass Preparation Theorem and Hilbert Theorem concerning the algebraic dependence over \mathbb{Q}_{p} and other related topics.
Many results concerning the existence of roots of p-adic exponential polynomials have been made by Poorten (see $[\mathrm{P}]$ and $[\mathrm{PR}]$) and others. These results imply the existence of roots of polynomials $P[X, Y] \in \mathbb{Q}[X, Y]$ of the form $(x, \exp (x))$. In our work, we consider these polynomials directly where the coefficients and degrees of the variables play a role in the existence of such roots. We prove, as a Corollary, that there exist polynomials in $\mathbb{Q}[X, Y]$ which do not contain any root of the form $(x, \exp (x))$. This implies the existence of varieties $V \subseteq \mathbb{C}_{p}^{4}$ over \mathbb{Q} of dimension one which do not contain points of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$. Using the same technic, we prove that there exist polynomials over \mathbb{Z} with $2 n$ variables which do not contain any root of the form $\left(x_{1}, . ., x_{n}, \exp \left(x_{1}\right), . ., \exp \left(x_{n}\right)\right)$. Furthermore, we use Weierstrass Preparation Theorem to prove the existence of varieties $V \subseteq \mathbb{C}_{p}^{4}$ over \mathbb{Q}_{p} of dimension one that contain points of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$.

2. Background

We recall some basic notations and results regarding the field of p-adic numbers and some elementary Non-Archimedian Analysis that will be needed later. For more details, see $[B G R]$ and $[\mathrm{G}]$.
Let p be a prime number, \mathbb{Q}_{p} the completion of \mathbb{Q} with respect to the non-archimedian absolute value $|$.$| and \mathbb{C}_{p}$ the completion of the algebraic closure of \mathbb{Q}_{p}. This field is Non-Archimedian (with respect to the extended p-adic absolute value |.|), complete and algebraically closed with the residue class field $\overline{\mathbb{F}}_{p}$ (the algebraic closure of the field \mathbb{F}_{p}) and the value group $p^{\mathbb{Q}} \cup\{0\}$. Moreover, The field \mathbb{C}_{p} is endowed by the exponential map:

$$
\begin{gathered}
\exp : E \rightarrow 1+E, \\
x \longmapsto \sum_{n \geq 0} \frac{x^{n}}{n!}
\end{gathered}
$$

where $E=\left\{x \in \mathbb{C}_{p} ;|x|<p^{\frac{-1}{p-1}}\right\}$.
It is well-known in the Non-Archimedian fields that a series $\sum_{n} a_{n}$ is convergent if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. Therefore, Let $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n} \in \mathbb{C}_{p}[[X]]$ be a power series. Then, $f(X)$ is convergent for each x in the closed ball $B(0, c)$ if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right| c^{n}=0$. Since $\left(\left|a_{n}\right| c^{n}\right)$ is convergent, it is bounded. i.e, it has a maximum. Therefore, the norm $\|.\|_{c}$ on $f(X)$ is defined as follows:

$$
\|f(X)\|_{c}:=\max \left\{\left|a_{n}\right| c^{n}\right\} .
$$

We summaries the properties of $\|.\|_{c}$ as follows, $[\mathrm{G}]$:

1) $\|f(X)\|_{c}=0 \Leftrightarrow f(X) \equiv 0$,
2) $\|f(X)+g(X)\|_{c} \leq \max \left\{\|f(X)\|_{c},\|g(X)\|_{c}\right\}$,
3) $\|\alpha\|_{c}=|\alpha|$, for any constant $\alpha \in \mathbb{C}_{p}$.
4) $|f(x)| \leq\|f(X)\|_{c}$, for any $x \in B(0, c)$,
where $f(X), g(X)$ are convergent power series on $B(0, c)$ and $|$.$| stands for the p$-adic absolute value on \mathbb{C}_{p}.
Now, we are able to state Weierstrass Preparation Theorem:
Theorem 1. (Weierstrass Preparation Theorem [G]) Let c be a positive real number of the form $p^{\alpha}, \alpha \in \mathbb{Q}$, and let

$$
f(X)=a_{0}+a_{1} X+. .+a_{n} X^{n}+. . \in \mathbb{C}_{p}[[X]]
$$

be a power series convergent on the closed ball $B(0, c)$. Let $N \in \mathbb{N}$ be a number defined by the conditions:
$\left|a_{N}\right| c^{N}=\max _{n}\left\{\left|a_{n}\right| c^{n}\right\}$ and $\left|a_{N}\right| c^{N}>\left|a_{n}\right| c^{n}, \forall n>N$.
Then, there exist a polynomial $g(X) \in \mathbb{C}_{p}[X]$ of degree N, and a power series $h(X)$ convergent on the closed ball $B(0, c)$ such that

1) $f(X)=h(X) g(X)$. In addition, each root of $g(X)$, if exists, belongs to $B(0, c)$.
2) $\|h(X)-1\|_{c}<1$. In particular, $h(X)$ has no roots in $B(0, c)$.

We need the following notions and results related to the ring of strictly convergent power series in order to study the polynomials in $\mathbb{Z}\left[X_{1}, X_{2}\right]$ that admit roots of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$. See $[\mathrm{S}]$ and $[\mathrm{BGR}]$ for more details.
Let ($K,|$.$|) be a Non-Archimedian, complete and algebraically closed field. Then, a formal$ power series $f\left(X_{1}, . ., X_{n}\right)=\sum_{I=\left(i_{1}, ., i_{n}\right)} a_{I} X_{1}^{i_{1}} \ldots X_{n}^{i_{n}} \in K\left[\left[X_{1}, . ., X_{n}\right]\right]$ is convergent on a ball $B(0, \rho):=\left\{\bar{x}=\left(x_{1}, . ., x_{n}\right) \in \mathbb{C}_{p}^{n}: \max \left|x_{i}\right| \leq \rho\right\}$ if and only if $\left|a_{I}\right| \rho^{\left(i_{1}+\ldots+i_{n}\right)} \rightarrow 0$ as $i_{1}+\ldots+i_{n} \rightarrow \infty$. We define a norm $|.| \rho$ on f as follows:

$$
|f|_{\rho}:=\max _{I=\left(i_{1}, ., i_{n}\right)}\left\{\left|a_{I}\right| \rho^{\left(i_{1}+\ldots+i_{n}\right)}\right\}
$$

This norm is usually called Gauss norm, $[\mathrm{S}]$. Let $T_{n}(\rho)$ be the set of all formal power series in $K\left[\left[X_{1}, . ., X_{n}\right]\right]$ which are convergent on the ball $B(0, \rho)$. Then, $T_{n}(\rho)$ forms a complete normed K-algebra embeds $K\left[X_{1}, . ., X_{n}\right]$ as a dense K - subalgebra. In particular, for $\rho=1, K\left\langle X_{1}, \ldots, X_{n}\right\rangle$ denotes the ring of all power series which are convergent on the unit ball. Each element of this ring is usually called strictly convergent power series, [S]. Then, we have the following:

Lemma 1. ([S] Lemma 4.9, p.9) A strictly convergent power series
$f=\sum_{I=\left(i_{1}, . . i_{n}\right)} a_{I} X_{1}^{i_{1}} \ldots X_{n}^{i_{n}} \in K\left\langle X_{1}, . ., X_{n}\right\rangle$ is unit in $K\left\langle X_{1}, . ., X_{n}\right\rangle$ if and only if $\left|a_{(0, . ., 0)}\right|=$ $|f|$ and $\left|a_{\left(i_{1}, \ldots, i_{n}\right)}\right|<|f|$ for all $i_{1}+. .+i_{n}>0$.

This lemma immediately implies that if $\left|a_{(0,0, . ., 0)}\right|<|f|$, then f is not unit in $K\left\langle X_{1}, . ., X_{n}\right\rangle$.
Lemma 2. (Hilbert Theorem [S], Corollary 5.10, p.14) There is a one to one correspondence between the maximal ideals of $K\left\langle X_{1}, . ., X_{n}\right\rangle$ and the points in the unit ball $B(0,1):=\left\{\bar{x}=\left(x_{1}, . ., x_{n}\right) \in \mathbb{C}_{p}^{n}: \max \left\{\left|x_{i}\right|\right\} \leq 1\right\}$. Under this correspondence, a point $\bar{x}=\left(x_{1}, . ., x_{n}\right) \in B(0,1)$ determines the maximal ideal $\left\langle X_{1}-x_{1}, . ., X_{n}-x_{n}\right\rangle$.

Throughout the paper, we use the standard notation $(\bar{x}, \exp (\bar{x}))$ for the $2 n$ - tuple $\left(x_{1}, \ldots, x_{n}, \exp \left(x_{1}\right), \ldots, \exp \left(x_{n}\right)\right),[\mathrm{K}]$.

3. The Main Results

It is clear that finding roots of a polynomial with rational coefficients can be reduced to the case of coefficients in \mathbb{Z}. Therefore, without loss of generality, we can take the polynomials over \mathbb{Z}. We only consider the class of polynomials $P[X, Y] \in \mathbb{Z}[X, Y]$ in which at least one of the degrees of the variable Y is relatively prime to p. Furthermore, we exclude the case of polynomials that contain the variable X in each term since they have the trivial root $(0, \exp (0))$.

Theorem 2. The polynomial with rational integer coefficients

$$
P[X, Y]=c+\sum_{i=1}^{m} d_{i} Y^{\alpha_{i}}+e_{1} X Y^{\beta_{1,2}}+\sum_{k=1}^{s} f_{k} X^{\gamma_{k, 1}} Y^{\gamma_{k, 2}} ; \gamma_{k, 1} \geq 2
$$

in which $\left(d_{1} \alpha_{1}+. .+d_{m} \alpha_{m}+e_{1}, p\right)=1$, has a root of the form $(x, \exp (x)) \in \mathbb{C}_{p} \times \mathbb{C}_{p}^{*} ; p \geq 3$ if and only if $\left|c+d_{1}+. .+d_{m}\right| \leq p^{-1}$.

Proof. (Proof of the necessary condition) If $(x, \exp (x))$ is a root of $P[X, Y]$, then x is a root of the power series $f(X):=P[X, \exp (X)]$ which is convergent on E (since at least one of the degrees of the variable Y is relatively prime to p, see [PR, Theorem 1]). Thus, $x \in E$. So,

$$
c+\sum_{i=1}^{m} d_{i} \exp \left(\alpha_{i} x\right)=-\left(e_{1} x \exp \left(\beta_{1,2} x\right)+\sum_{k=1}^{s} f_{k} x^{\gamma_{k, 1}} \exp \left(\gamma_{k, 2} x\right)\right) .
$$

We have $\mathbb{Z} \subseteq \mathbb{Z}_{p}$ and $|\exp (w)|=1$ for every $w \in E$. Using the strong triangle inequality, it follows that

$$
\begin{aligned}
\left|c+\sum_{i=1}^{m} d_{i} \exp \left(\alpha_{i} x\right)\right| & \leq \max _{k}\left\{\left|e_{1} x \exp \left(\beta_{1,2} x\right)\right|,\left|f_{k} x^{\gamma_{k, 1}} \exp \left(\gamma_{k, 2} x\right)\right|\right\} \\
& \left.\leq \max _{k}\left\{\left|e_{1}\right||x|\left|\exp \left(\beta_{1,2} x\right)\right|,\left|f_{k}\right|\left|x^{\gamma_{k, 1}}\right|\left|\exp \left(\gamma_{k, 2} x\right)\right|\right)\right\} \\
& \leq \max _{k}\left\{|x|,|x|^{\gamma_{k, 1}}\right\} \\
& <p^{\frac{-1}{p-1}}<1 .
\end{aligned}
$$

We define $z_{i}=\alpha_{i} x ; i=1,2, . ., m$. Then,

$$
\begin{equation*}
\left|c+d_{1} \exp \left(z_{1}\right)+\ldots+d_{m} \exp \left(z_{m}\right)\right|<1 . \tag{1}
\end{equation*}
$$

Therefore, $\left|c+d_{1}+\ldots+d_{m}\right|<1$. This is because,
$\left|c+d_{1} \exp \left(z_{1}\right)+\ldots+d_{m} \exp \left(z_{m}\right)\right|=\left|c+d_{1}+\ldots+d_{m}+d_{1}\left(\exp \left(z_{1}\right)-1\right)+. .+d_{m}\left(\exp \left(z_{m}\right)-1\right)\right|$.
If $\left|c+d_{1}+\ldots+d_{m}\right|=1$, then we find that

$$
\left|d_{1}\left(\exp \left(z_{1}\right)-1\right)+. .+d_{m}\left(\exp \left(z_{m}\right)-1\right)\right| \leq \max _{1 \leq i \leq m}\left\{\left|d_{i}\left(\exp \left(z_{i}\right)-1\right)\right|\right\}
$$

$$
\leq \max _{1 \leq i \leq m}\left\{\left|\left(\exp \left(z_{i}\right)-1\right)\right|\right\}
$$

(using the fact $|w|=|\exp (w)-1|, \forall w \in E) \leq \max _{1 \leq i \leq m}\left\{\mid\left(z_{i} \mid\right\}\right.$

$$
<p^{\frac{-1}{p-1}}
$$

$$
<1
$$

So, by the isosceles triangle inequality, we find that

$$
\begin{aligned}
& \left|c+d_{1} \exp \left(z_{1}\right)+\ldots+d_{m} \exp \left(z_{m}\right)\right|= \\
& \quad=\max \left\{\left|c+d_{1}+\ldots+d_{m}\right|,\left|d_{1}\left(\exp \left(z_{1}\right)-1\right)+\ldots+d_{m}\left(\exp \left(z_{m}\right)-1\right)\right|\right\}= \\
& \quad=\left|c+d_{1}+\ldots+d_{m}\right|=1
\end{aligned}
$$

This contradicts (1). Therefore, $\left|c+d_{1}+\ldots+d_{m}\right|<1$, so $\left|c+d_{1}+\ldots+d_{m}\right| \leq p^{-1}$. This is because, $c+d_{1}+\ldots+d_{m} \in \mathbb{Z}$, and the value group of \mathbb{Z} is $p^{\mathbb{Z}} \cup\{0\}$.i.e, for each $q \in \mathbb{Z}^{*}$, $|q|=p^{s}$, for some $s \in \mathbb{Z}$.
Proof of the sufficient condition. Consider the polynomial

$$
P[X, Y]=c+\sum_{i=1}^{m} d_{i} Y^{\alpha_{i}}+e_{1} X Y^{\beta_{1,2}}+\sum_{k=1}^{s} f_{k} X^{\gamma_{k, 1}} Y^{\gamma_{k, 2}} \in \mathbb{Z}[X, Y]
$$

with the condition $\left|c+d_{1}+\ldots+d_{m}\right| \leq p^{-1}$. We have to prove that $P[X, Y]$ has a root of the form $(x, \exp (x)), x \in E$. This is equivalent to prove that the power series $f(X):=P[X, \exp (X)]$ has a root $x \in E$. Suppose that the power series $f(X)$ takes the form $f(X)=a_{0}+a_{1} X+. .+a_{n} X^{n}+.$.
In our case, we have

$$
\begin{gathered}
a_{0}=c+d_{1}+. .+d_{m} \\
a_{1}=d_{1} \alpha_{1}+. .+d_{m} \alpha_{m}+e_{1}, \\
a_{n}=\frac{d_{1} \alpha_{1}^{n}+. .+d_{m} \alpha_{m}^{n}}{n!}+e_{1} \frac{\beta_{1,2}^{n-1}}{(n-1)!} ; n<\min _{1 \leq j \leq s}\left\{\gamma_{j, 1}\right\}, \\
a_{n}=\frac{d_{1} \alpha_{1}^{n}+. .+d_{m} \alpha_{m}^{n}}{n!}+e_{1} \frac{\beta_{1,2}^{n-1}}{(n-1)!}+f_{1} \frac{\gamma_{1,2}^{n-\gamma_{1,1}}}{\left(n-\gamma_{1,1}\right)!}+. .+f_{s} \frac{\gamma_{s, 2}^{n-\gamma_{s, 1}}}{\left(n-\gamma_{s, 1}\right)!} ; n \geq \min _{1 \leq i \leq s}\left\{\gamma_{j, 1}\right\} .
\end{gathered}
$$

Let α be any rational number satisfying $-1<\alpha<\frac{-1}{p-1}$. In fact, we have chosen $\alpha \in \mathbb{Q}$ to guarantee that $p^{\alpha} \in\left|\mathbb{C}_{p}\right|$. Then $f(X)$ is convergent on the closed ball $B\left(0, p^{\alpha}\right)$. The general assumption of the theorem guarantees that $\operatorname{ord}\left(a_{1}\right)=0$. Therefore, $\left|a_{1}\right|=1$. Also, by definition of α, we find that $p^{-1}<p^{\alpha}$. Thus,

$$
\left|a_{0}\right| \leq p^{-1}<\left|a_{1}\right| p^{1 . \alpha} \leq \max _{n \geq 1}\left\{\left|a_{n}\right| p^{n \alpha}\right\}
$$

Therefore, the number N, defined in Weierstrass Preparation theorem, is strictly larger than zero.i.e, $N>0$. Weierstrass Preparation theorem guarantees that $f(X)$ can be written in the form $f(X)=h(X) g(X) ; h(X)$ is a power series convergent and non-vanishing
on $B\left(0, p^{\alpha}\right)$ and $g(X)$ is a polynomial with p-adic complex coefficients of degree $N>0$. Since \mathbb{C}_{p} is algebraically closes field, it follows that $g(X)$ has a root x. This root belongs to $B\left(0, p^{\alpha}\right)$.i.e., $x \in E$. Therefore, $f(x)=h(x) .0=0$. Thus, $P(x, \exp (x))=0$.

Remark 1. In the proof of the necessary condition, we did not use the assumption ($d_{1} \alpha_{1}+$.. $\left.+d_{m} \alpha_{m}+e_{1}, p\right)=1$. This implies that any polynomial of the form

$$
P[X, Y]=c+\sum_{i=1}^{m} d_{i} Y^{\alpha_{i}}+\sum_{k=1}^{s} f_{k} X^{\xi_{k, 1}} Y^{\xi_{k, 2}} ; \xi_{k, 1} \geq 1
$$

with $\left(c+d_{1}+. .+d_{m}, p\right)=1$ and at least one of the degrees of the variable Y is relatively prime to p does not have any root of the form $(x, \exp (x))$.

Example 1. We can use Remark 1 to prove that the polynomial $P[X, Y]=X^{2}+Y^{2}$ has no roots of the form $(x, \exp (x)) \in \mathbb{C}_{p} \times \mathbb{C}_{p}^{*} ; p \geq 3$.

Example 2. Consider the polynomial

$$
P[X, Y]=p-1+(p+1) Y^{p}+X+X^{3} Y^{p-1}+X^{7} Y^{15}
$$

Then, the domain of $f(X)=P[X, \exp (X)]$ is $E,\left(d_{1} \alpha_{1}+. .+d_{m} \alpha_{m}+e_{1}, p\right)=(p(p+1)+$ $1, p)=1$ and $\left|c+d_{1}+. .+d_{m}\right|=|2 p|=p^{-1}$. According to Theorem 2, we find that $P[X, Y]$ has a root of the form $(x, \exp (x)) \in \mathbb{C}_{p} \times \mathbb{C}_{p}^{*} ; p \geq 3$. This example shows that there exists a non trivial tuple of the form $(x, \exp (x))$ satisfies an algebraic dependence relation with rational integer coefficients relatively prime to p.

Also we can use Hilbert Theorem to get a result concerning the roots of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ to the polynomials with rational integer coefficients and two variables .

Theorem 3. The polynomial

$$
P\left[X_{1}, X_{2}\right]=a_{I_{0}}+a_{I_{1}} X_{1}^{i_{1,1}} X_{2}^{i_{1,2}}+\ldots+a_{I_{m}} X_{1}^{i_{m, 1}} X_{2}^{i_{m, 2}} \in \mathbb{Z}\left[X_{1}, X_{2}\right],
$$

in which at least one of the elements $a_{I_{1}} i_{1,1}+\ldots .+a_{I_{m}} i_{m, 1}, a_{I_{1}} i_{1,2}+\ldots .+a_{I_{m}} i_{m, 2}$ and all the degrees of X_{1} and X_{2} are relatively prime to p has a root of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ if and only if $\left|a_{I_{0}}+\ldots .+a_{I_{m}}\right| \leq p^{-1}$.

Proof. (Proof of the necessary condition). If P has a root of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ for some elements $x_{1}, x_{2} \in E$, then
$P\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)=a_{I_{0}}+a_{I_{1}}\left(\exp \left(x_{1}\right)\right)^{i_{1,1}}\left(\exp \left(x_{2}\right)\right)^{i_{1,2}}+\ldots+a_{I_{m}}\left(\exp \left(x_{1}\right)\right)^{i_{m, 1}}\left(\exp \left(x_{2}\right)\right)^{i_{m, 2}}=0$.
Let $z_{j}:=i_{j, 1} x_{1}+i_{j, 2} x_{2}, \forall j=1,2, . ., m$. Then $z_{j} \in E$. Using the universal property of the exponential function, we obtain

$$
a_{I_{0}}+a_{I_{1}} \exp \left(z_{1}\right)+\ldots+a_{I_{m}} \exp \left(z_{m}\right)=0 .
$$

Thus,

$$
\left|a_{I_{0}}+a_{I_{1}} \exp \left(z_{1}\right)+\ldots+a_{I_{m}} \exp \left(z_{m}\right)\right|=0<1
$$

By a similar argument to the necessary proof of Theorem 2, we find that $\left|a_{I_{0}}+\ldots .+a_{I_{m}}\right| \leq p^{-1}$.
Proof of the sufficient condition. Consider the polynomial

$$
P\left[X_{1}, X_{2}\right]=a_{I_{0}}+a_{I_{1}} X_{1}^{i_{1,1}} X_{2}^{i_{1,2}}+\ldots+a_{I_{m}} X_{1}^{i_{m, 1}} X_{2}^{i_{m, 2}} \in \mathbb{Z}\left[X_{1}, X_{2}\right],
$$

in which at least one of the elements $a_{I_{1}} i_{1,1}+\ldots .+a_{I_{m}} i_{m, 1}, a_{I_{1}} i_{1,2}+\ldots .+a_{I_{m}} i_{m, 2}$ and all the degrees of X_{1} and X_{2} are relatively prime to p.
Let $f \in \mathbb{C}_{p}\left[\left[X_{1}, X_{2}\right]\right]$ be an element defined by the relation

$$
f\left(X_{1}, X_{2}\right)=P\left[\exp \left(X_{1}\right), \exp \left(X_{2}\right)\right] .
$$

Then, $P\left[X_{1}, X_{2}\right]$ has a root of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ if and only if $\left(x_{1}, x_{2}\right)$ is a root of f. It is clear that f is convergent on the ball $B(0, \rho):=\left\{\left(x_{1}, x_{2}\right): \max \left|x_{i}\right| \leq \rho, i=1,2\right\}$ for every $\rho<p^{\frac{-1}{p-1}}$ (since all the degrees of the variables X_{1} and X_{2} are relatively prime to $p)$. Let α be a rational number satisfying the relation $-1<\alpha<\frac{-1}{p-1}$. Then, $f\left(X_{1}, X_{2}\right)$ is convergent on the ball $B\left(0, p^{\alpha}\right)$. We define new variables: $Z_{1}:=p^{\alpha} X_{1}, Z_{2}:=p^{\alpha} X_{2}$. Also, we define a new power series $g\left(Z_{1}, Z_{2}\right)$ by the relation

$$
g\left(Z_{1}, Z_{2}\right):=f\left(p^{-\alpha} Z_{1}, p^{-\alpha} Z_{2}\right) .
$$

It's clear that $g\left(Z_{1}, Z_{2}\right)$ is convergent on the unit ball $B(0,1)$. Furthermore, $f\left(X_{1}, X_{2}\right)$ has a root in the ball $B\left(0, p^{\alpha}\right)$ if and only if $g\left(Z_{1}, Z_{2}\right)$ has a root in the unit ball. Since $g\left(Z_{1}, Z_{2}\right)$ is convergent on the unit ball, it follows that $g\left(Z_{1}, Z_{2}\right) \in \mathbb{C}_{p}\left\langle Z_{1}, Z_{2}\right\rangle$. Suppose that $g\left(Z_{1}, Z_{2}\right)$ takes the form $g=\left(g_{0}, g_{1}, \ldots, g_{q}, \ldots\right)$, where g_{i} is homogeneous polynomial of degree i. Then, in our case, we have

$$
\begin{gathered}
g_{0}=g(0,0)=a_{I_{0}}+\ldots .+a_{I_{m}}, \\
g_{1}=\left(a_{I_{1}} i_{1,1}+\ldots .+a_{I_{m}} i_{m, 1}\right) p^{-\alpha} Z_{1}+\left(a_{I_{1}} i_{1,2}+\ldots .+a_{I_{m}} i_{m, 2}\right) p^{-\alpha} Z_{2} .
\end{gathered}
$$

Suppose that α takes the form $\alpha=\frac{-m}{n}$. Then, we have

$$
\left|p^{-\alpha}\right|^{n}=\left|p^{m}\right|=p^{-m} \Rightarrow\left|p^{-\alpha}\right|=p^{\frac{-m}{n}}=p^{\alpha} .
$$

We assume that $\left(a_{I_{1}} i_{1,1}+\ldots .+a_{I_{m}} i_{m, 1}, p\right)=1$ (the other case can be done similarly). This implies that $\left|a_{I_{1}} i_{1,1}+\ldots .+a_{I_{m}} i_{m, 1}\right|=1$.
Now, since $-1<\alpha<\frac{-1}{p-1}$, it follows that $p^{-1}<p^{\alpha}$. Hence, we obtain the inequalities

$$
\begin{aligned}
\left|g_{0}\right|=\left|a_{I_{0}}+\ldots .+a_{I_{m}}\right| \leq & p^{-1}<p^{\alpha}=\left|\left(a_{I_{1}} i_{1,1}+\ldots .+a_{I_{m}} i_{m, 1}\right) p^{-\alpha}\right| \leq \\
& \leq \max _{J}\left\{\left|b_{J}\right|\right\}=|g|,
\end{aligned}
$$

where $\left\{b_{J}\right\}$ are the coefficients of the power series g. Thus,

$$
|g(0,0)|<|g| .
$$

Using Lemma 1 , it implies that g is not unit in the ring $\mathbb{C}_{p}\left\langle Z_{1}, Z_{2}\right\rangle$. Therefore, there exits a maximal ideal ϱ in $\mathbb{C}_{p}\left\langle Z_{1}, Z_{2}\right\rangle$ such that $g \in \varrho$. Using Lemma 2 and the fact that \mathbb{C}_{p} is algebraically closed field, it follows that there exist the elements $z_{1}, z_{2} \in B(0,1)$ such that

$$
\varrho=\left\langle Z_{1}-z_{1}, Z_{2}-z_{2}\right\rangle .
$$

Therefore, g can be written in the form $g=r_{1}\left(Z_{1}-z_{1}\right)+r_{2}\left(Z_{2}-z_{2}\right)$, for some $r_{1}, r_{2} \in$ $\mathbb{C}_{p}\left\langle Z_{1}, Z_{2}\right\rangle$. Thus, it is clear that

$$
g\left(z_{1}, z_{2}\right)=0 .
$$

Hence, g has a root in the unit ball. Therefore, f has a root in the ball $B\left(0, p^{\alpha}\right)$. Thus, the original polynomial $P\left[X_{1}, X_{2}\right]$ has a root of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$.

Corollary 1. Let $V \subseteq \mathbb{C}_{p}^{4}$ be a variety over \mathbb{Q} of dimension one defined by a system of polynomials with rational integer coefficients of the form

$$
\begin{aligned}
& P_{1}\left[X_{1}, X_{3}\right]=c^{(1)}+\sum_{i=1}^{m} d_{i}^{(1)} X_{3}^{\alpha_{i}^{(1)}}+\sum_{l=1}^{r} f_{k}^{(1)} X_{1}^{\xi_{k, 1}^{(1)}} X_{3}^{\xi_{k, 2}^{(1)}} ; \xi_{k, 1}^{(1)} \geq 1 \\
& P_{2}\left[X_{2}, X_{4}\right]=c^{(2)}+\sum_{i=1}^{m} d_{i}^{(2)} X_{4}^{\alpha_{i}^{(2)}}+\sum_{l=1}^{r} f_{k}^{(2)} X_{2}^{\xi_{k, 1}^{(2)}} X_{4}^{\xi_{k, 2}^{(2)}} ; \xi_{k, 1}^{(2)} \geq 1 \\
& P_{3}\left[X_{3}, X_{4}\right]=a_{I_{0}}+a_{I_{1}} X_{3}^{i_{1,1}} X_{4}^{i_{1,2}}+\ldots+a_{I_{m}} X_{3}^{i_{m, 1}} X_{4}^{i_{m, 2}},
\end{aligned}
$$

such that there exists a degree of each of the variables X_{3} and X_{4} in P_{1} and P_{2} respectively which is relatively prime to p and all the degrees of the variables X_{3} and X_{4} in P_{3} are also relatively prime to p. If V contains a point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$, then the quantities $c^{(1)}+\sum_{i=1}^{m} d_{i}^{(1)}, c^{(2)}+\sum_{i=1}^{m} d_{i}^{(2)}$ and $a_{I_{0}}+\ldots+a_{I_{m}}$ are all divisible by p.

Proof. If V contains a point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$, then we have

$$
P_{1}\left(x_{1}, \exp \left(x_{1}\right)\right)=P_{2}\left(x_{2}, \exp \left(x_{2}\right)\right)=P_{3}\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)=0 .
$$

Using Theorems 2 and 3 , we find that the quantities $c^{(1)}+\sum_{i=1}^{m} d_{i}^{(1)}, c^{(2)}+\sum_{i=1}^{m} d_{i}^{(2)}$ and $a_{I_{0}}+\ldots+a_{I_{m}}$ are all divisible by p.

Remark 2. From the previous corollary, we can deduce that if we have a variety $V \subseteq \mathbb{C}_{p}^{4}$ defined as in the previous Corollary in which one of the quantities $c^{(1)}+\sum_{i=1}^{m} d_{i}^{(1)}, c^{(2)}+$ $\sum_{i=1}^{m} d_{i}^{(2)}$ or summation of coefficients of P_{3} is relatively prime to p, then V has no point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$.

We can also give sufficient conditions on a class of varieties such that each variety admits a point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ as follows.

Corollary 2. Let p be an odd prime and let $c, d, m \in \mathbb{Z}, m \geq 1$ with the conditions $(d+1, p)=(m, p)=1, p \mid(c+d)$. Then the variety $V \subseteq \mathbb{C}_{p}^{4}$ of dimension one defined by the system of polynomials

$$
\begin{aligned}
& P_{1}\left[X_{1}, X_{3}\right]=c+d X_{3}^{m}+m X_{1} \\
& P_{2}\left[X_{2}, X_{4}\right]=c+d X_{4}+X_{2} \\
& P_{3}\left[X_{3}, X_{4}\right]=X_{4}-X_{3}^{m},
\end{aligned}
$$

has a point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$.
Proof. In fact, Theorem 2 guarantees that P_{1} has a root of the form $(x, \exp (x))$. By a simple calculation, we find that $(m x, \exp (m x))$ is a root of P_{2} which admits roots of the form $(x, \exp (x))$ according to Theorem 2.
It's clear that $(\exp (x), \exp (m x))$ is a root of P_{3} which admits roots of the form $\left(\exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$ according to Theorem 3 . Hence $(x, m x, \exp (x), \exp (m x)) \in V$.

Remark 3. Schanuel's conjecture in the case of two variables asserts that if $V \subseteq \mathbb{C}_{p}^{4}$ is a variety of dimension one over \mathbb{Q} and has a point of the form $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$, then the point must take the form $(x, m x, \exp (x), \exp (m x))$, for some $m \in \mathbb{Q}$.

4. Further Applications of Weierstrass Preparation Theorem and Hilbert Theorem

We can use Weierstrass Preparation Theorem to get a result concerning the algebraic dependence over \mathbb{Q}_{p} as follows.

Theorem 4. Let $P_{1}, P_{2} \in \mathbb{Z}[X, Y]$ be polynomials defined as in the beginning of the previous section of the form

$$
\begin{aligned}
& P_{1}[X, Y]=c^{(1)}+\sum_{i=1}^{m} d_{i}^{(1)} Y_{i}^{\alpha_{i}^{(1)}}+e^{(1)} X Y^{\beta_{1,2}^{(1)}}+\sum_{k=1}^{s} f_{k}^{(1)} X^{\gamma_{k, 1}^{(1)}} Y_{k, 2}^{\gamma_{k, 2}^{(1)}} \gamma_{k, 1}^{(1)} \geq 2, \\
& P_{2}[X, Y]=c^{(2)}+\sum_{i=1}^{m} d_{i}^{(2)} Y_{i}^{\alpha_{i}^{(2)}}+e^{(2)} X Y^{\beta_{1,2}^{(2)}}+\sum_{k=1}^{s} f_{k}^{(2)} X_{k, 1}^{\gamma_{k, 1}^{(2)}} Y_{k, 2}^{\gamma_{k, 2}^{(2)}} \gamma_{k, 1}^{(2)} \geq 2,
\end{aligned}
$$

in which $\left(d_{1}^{(1)} \alpha_{1}^{(1)}+\ldots+d_{m}^{(1)} \alpha_{m}^{(1)}, p\right)=\left(d_{1}^{(2)} \alpha_{1}^{(2)}+\ldots+d_{m}^{(2)} \alpha_{m}^{(2)}, p\right)=1$. If the quantities $c^{(1)}+$ $\sum_{i=1}^{m} d_{i}^{(1)}, c^{(2)}+\sum_{i=1}^{m} d_{i}^{(2)}$ are divisible by p and $\left(x_{1}, \exp \left(x_{1}\right)\right),\left(x_{2}, \exp \left(x_{2}\right)\right)$ are roots of P_{1}, P_{2} receptively, then there exists a variety $V \subseteq \mathbb{C}_{p}^{4}$ over \mathbb{Q}_{p} of dimension ≤ 1 containing the point $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$.

Proof. Since $\mathbb{Q} \subseteq \mathbb{Q}_{p}$ and $P_{1}\left(x_{1}, \exp \left(x_{1}\right)\right)=0$, it follows that x_{1} and $\exp \left(x_{1}\right)$ are \mathbb{Q}_{p}-algebraically dependent. The same holds true for x_{2} and $\exp \left(x_{2}\right)$. It remains to show that x_{1} and x_{2} are \mathbb{Q}_{p}-algebraically dependent. For this, it suffices to show that x_{1} and x_{2} are algebraic over \mathbb{Q}_{p}. We briefly review the proof of Theorem 2. We have considered
the power series $f[X]:=P[X, \exp (X)] \in \mathbb{Q}[[X]]$ which is convergent on the closed ball $B\left(0, p^{\alpha}\right), \alpha \in\left(-1, \frac{-1}{p-1}\right) \cap \mathbb{Q}$. Weierstrass Preparation Theorem can be applied over any finite extension K of \mathbb{Q}_{p} (For more details, see [G]). Also, the coefficients of $f(X)$ (which are rationals) can be considered as elements in any finite extension of \mathbb{Q}_{p}. Hence, we can take K to be \mathbb{Q}_{p}. Then, $f(X)$ can be factored in the form $f(X)=g(X) h(X)$, where $g(X) \in \mathbb{Q}_{p}[X]$ and $h(X) \in \mathbb{Q}_{p}[[X]]$ is non-vanishing and converging on the ball $B\left(0, p^{\alpha}\right)$. The roots of $f(X)$ are exactly the roots of the polynomial g. That is, each root of $f(X)$ is algebraic over \mathbb{Q}_{p}. From this argument, we deduce that x_{1} and x_{2} are algebraic numbers over \mathbb{Q}_{p}. This clearly implies that x_{1} and x_{2} are \mathbb{Q}_{p}-algebraically dependent. Thus,

$$
t d_{\mathbb{Q}_{p}} \mathbb{Q}_{p}\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right) \leq 1\right.
$$

Hence, there exists a variety $V \subseteq \mathbb{C}_{p}^{4}$ over \mathbb{Q}_{p} of dimension ≤ 1 containing the point $\left(x_{1}, x_{2}, \exp \left(x_{1}\right), \exp \left(x_{2}\right)\right)$.

Finally, we generalize Theorem 2 to the case of polynomials $P\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right] \in$ $\mathbb{Q}\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$.
As in the two variables case, we reduce the problem to find the roots of polynomials with rational integer coefficients and exclude the polynomials that have at least one of the variables X_{1}, \ldots, X_{n} in each term since it implies that the trivial point $(0, . ., 0, \exp (0), . ., \exp (0))$ is a root of these polynomials. Also, we only consider the polynomials in which all the degrees of the variables Y_{1}, \ldots, Y_{n} are relatively prime to p. Then, we prove

Theorem 5. The polynomial with rational integer coefficients

$$
\begin{aligned}
P\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]= & c+\sum_{i=1}^{m} d_{i} Y_{1}^{\alpha_{i, 1}} \ldots Y_{n}^{\alpha_{i, n}}+ \\
& \sum_{j=1}^{n} e_{j} X_{j} Y_{1}^{\beta_{j, 1}} \ldots . Y_{n}^{\beta_{j, n}}+\sum_{k=1}^{s} f_{k} X_{1}^{\gamma_{k, 1}} \ldots X_{n}^{\gamma_{k, n}} Y_{1}^{\gamma_{k, n+1}} \ldots Y_{n}^{\gamma_{k, 2 n}} ; \\
& \gamma_{k, 1}+\ldots+\gamma_{k, n} \geq 2,
\end{aligned}
$$

in which at least one of the elements
$\left(d_{1} \alpha_{1,1}+\ldots+d_{m} \alpha_{m, 1}+e_{1}\right), \ldots,\left(d_{1} \alpha_{1, n}+\ldots+d_{m} \alpha_{m, n}+e_{n}\right)$ is relatively prime to $p ; p \geq 3$, has a root of the form $(\bar{x}, \exp (\bar{x}))$ if and only if

$$
\left|c+d_{1}+\ldots+d_{m}\right| \leq p^{-1}
$$

Proof. Proof of the necessary condition. If $(\bar{x}, \exp (\bar{x}))$ is a root of the polynomial $P\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$, then \bar{x} is a root of the power series $f\left(X_{1}, \ldots, X_{n}\right):=P_{-1}\left[X_{1}, \ldots, X_{n}, \exp \left(X_{1}\right), . ., \exp \left(X_{n}\right)\right]$ which is convergent on the disk $\left\{\bar{x}: \max \left|x_{i}\right|<p^{\frac{-1}{p-1}}\right\}$. Thus, $\bar{x} \in E^{n}$. So,

$$
c+\sum_{i=1}^{m} d_{i} \exp \left(\alpha_{i, 1} x_{1}\right) \ldots \exp \left(\alpha_{i, n} x_{n}\right)=
$$

$=-\left(\sum_{j=1}^{n} e_{j} x_{j} \exp \left(\beta_{j, 1} x_{1}\right) \ldots \exp \left(\beta_{j, n} x_{n}\right)+\sum_{k=1}^{s} f_{k} x_{1}^{\gamma_{k, 1}} \ldots x_{n}^{\gamma_{k, n}} \exp \left(\gamma_{k, n+1} x_{1}\right) \ldots \exp \left(\gamma_{k, 2 n} x_{n}\right)\right)$.
Using the fact $\mathbb{Z} \subseteq \mathbb{Z}_{p},|\exp (w)|=1, \forall w \in E$ and the strong triangle inequality, we find that

$$
\left|c+\sum_{i=1}^{m} d_{i} \exp \left(\alpha_{i, 1} x_{1}\right) \ldots \exp \left(\alpha_{i, n} x_{n}\right)\right|<1
$$

Let $z_{i}=\alpha_{i, 1} x_{1}+\ldots+\alpha_{i, n} x_{n} ; i=1,2, . ., m$. Using the universal property of the exponential function, we find that

$$
\left|c+d_{1} \exp \left(z_{1}\right)+\ldots+d_{m} \exp \left(z_{m}\right)\right|<1
$$

By a similar fashion to the two variables case, we find that $\left|c+d_{1}+\ldots+d_{m}\right| \leq p^{-1}$.
Proof of the sufficient condition. Consider the polynomial

$$
\begin{aligned}
P\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]= & c+\sum_{i=1}^{m} d_{i} Y_{1}^{\alpha_{i, 1}} \ldots Y_{n}^{\alpha_{i, n}}+\sum_{j=1}^{n} e_{j} X_{j} Y_{1}^{\beta_{j, 1}} \ldots Y_{n}^{\beta_{j, n}}+ \\
& \sum_{k=1}^{s} f_{k} X_{1}^{\gamma_{k, 1}} \ldots X_{n}^{\gamma_{k, n}} Y_{1}^{\gamma_{k, n+1}} \ldots Y_{n}^{\gamma_{k, 2 n}} ; \gamma_{k, 1}+\ldots+\gamma_{k, n} \geq 2
\end{aligned}
$$

with the conditions:

1) At least one of the elements $\left(d_{1} \alpha_{1,1}+\ldots+d_{m} \alpha_{m, 1}+e_{1}\right), \ldots,\left(d_{1} \alpha_{1, n}+\ldots+d_{m} \alpha_{m, n}+e_{n}\right)$ is relatively prime to p,
2) $\left|c+d_{1}+\ldots+d_{m}\right| \leq p^{-1}$.

Consider the ring of the formal power series $\mathbb{C}_{p}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Let $f \in \mathbb{C}_{p}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be an element defined by the relation

$$
f\left(X_{1}, \ldots, X_{n}\right)=P\left[X_{1}, \ldots, X_{n}, \exp \left(X_{1}\right), . ., \exp \left(X_{n}\right)\right]
$$

Then, $P\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$ has a root of the form $(\bar{x}, \exp (\bar{x}))$ if and only if $\left(x_{1}, . ., x_{n}\right)$ is a root of f. It is clear that f is convergent on the ball $B(0, \rho)$ for every $\rho<p^{\frac{-1}{p-1}}$. Applying the same argument in the proof of Theorem 3, we find that P has a root of the form $(\bar{x}, \exp (\bar{x}))$.

Remark 4. As in the two variables case, the polynomial over \mathbb{Z}

$$
\begin{aligned}
P\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]= & c+\sum_{i=1}^{m} d_{i} Y_{1}^{\alpha_{i, 1}} \ldots Y_{n}^{\alpha_{i, n}} \\
& +\sum_{k=1}^{s} f_{k} X_{1}^{\xi_{k, 1}} \ldots X_{n}^{\xi_{k, n}} Y_{1}^{\xi_{k, n+1}} \ldots Y_{n}^{\xi_{k, 2 n}} \\
& ; \xi_{k, 1}+\ldots+\xi_{k, n} \geq 1,
\end{aligned}
$$

with $\left(c+d_{1}+\ldots+d_{m}, p\right)=1$ has no roots of the form $(\bar{x}, \exp (\bar{x}))$.

Acknowledgements

I would like to thank the referees for their constructive comments. Also, I would like to thank Ali Bleybel for proposing this subject, as well as his constant help and support throughout the preparation of this paper.

References

[1] [AD] S. Araci, U. Duran and M. Acikgoz, (ρ, q)-Volkenborn Integration, The Journal of Number Theory, V.171, 2017, pp. 1830.
[2] [BGR] S. Bosch, U. Guntzer, and R. Remmert, Non-Archimedian Analysis, SpringerVerlag, Berlin, 1984.
[3] [DA] U. Duran, M. Acikgoz, On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals, International Journal of Number Theory, 14 (1), 2018, 241-253. https://doi.org/10.1142/S179304211850015X.
[4] [G] F. Q. Gouvea, p-Adic Numbers, 2nd edition, Springer, New York, 2003.
[5] [K] J. Kirby, Exponential algebraicity in exponential fields, Bull. Lond. Math. Soc. 42:5(2010), 879890. MR 2011k:03070 Zbl 1203.03050.
[6] [N] Yu. V. Nesterenko, Algebraic independence of p-adic numbers, Izvestiya: Mathematics 72:3 565-579 (2008).
[7] [P] A.J.Van Der Poorten, Zeros of p-adic Exponential Polynomials I, School of Mathematics the university of NSW Kensington, NSW 2033, Australia, 1975.
[8] [PR] A.J.Van Der Poorten and Roberts Rumely, Zeros of p-adic Exponential Polynomials II .J.London Math.Soc.(2)36(1987)1-15.
[9] [R] A. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics 198, Springer-Verlag 2000.
[10] [S] H.Schoutens, An Introduction to Rigid Analytic Geometry, Ohio State University, June 2002, Lecture Notes, available at websupport1.citytech.cuny.edu/faculty/hschoutens/PDF/RAG Lecture Notes.pdf.

