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Abstract. This paper aims to introduce the notions of anti-hesitant fuzzy UP-subalgebras of
UP-algebras, anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals, and anti-hesitant fuzzy
strongly UP-ideals, and prove some results. Furthermore, we discuss the relationships between
anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-
ideals, anti-hesitant fuzzy strongly UP-ideals) and some level subsets of hesitant fuzzy sets on
UP-algebras.
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1. Introduction

The branch of the logical algebra, UP-algebras was introduced by Iampan [2] in 2017,
and it is known that the class of KU-algebras [8] is a proper subclass of the class of
UP-algebras. It have been examined by several researchers, for example, Somjanta et al.
[14] introduced the notion of fuzzy sets in UP-algebras, the notion of intuitionistic fuzzy
sets in UP-algebras was introduced by Kesorn et al. [5], Kaijae et al. [4] introduced the
notions of anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras of UP-algebras, the notion
of Q-fuzzy sets in UP-algebras was introduced by Tanamoon et al. [17], Sripaeng et al.
[16] introduced the notion anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of
UP-algebras, the notion of N -fuzzy sets in UP-algebras was introduced by Songsaeng and
Iampan [15], Senapati et al. [12, 13] applied cubic set and interval-valued intuitionistic
fuzzy structure in UP-algebras, Romano [9] introduced the notion of proper UP-filters in
UP-algebras, etc.

A hesitant fuzzy set on a set is a function from a reference set to a power set of the
unit interval. The notion of a hesitant fuzzy set on a set was first considered by Torra [18]
in 2010. The hesitant fuzzy set, which can be perfectly described in terms of the opinions
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of decision makers is a very useful tool to deal with uncertainty. The hesitant fuzzy set
theories developed by Torra and others have found many applications in the domain of
mathematics and elsewhere. In UP-algebras, Mosrijai et al. [6] extended the notion of
fuzzy sets in UP-algebras to hesitant fuzzy sets on UP-algebras, and Satirad et al. [11]
considered level subsets of a hesitant fuzzy set on UP-algebras in 2017. The notion of
partial constant hesitant fuzzy sets on UP-algebras was introduced by Mosrijai et al. [7]
afterwards.

In this paper, the notion of anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant
fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly UP-ideals)
of UP-algebras are introduced and proved some results. Further, we discuss the relation
between anti-hesitant fuzzy UP-subalgebras (resp., anti-hesitant fuzzy UP-filters, anti-
hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly UP-ideals) and level subsets of
a hesitant fuzzy set.

2. Basic Results on UP-Algebras

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1. [2] An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra where A is
a nonempty set, · is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary
operation) if it satisfies the following axioms: for any x, y, z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = 0 and y · x = 0 imply x = y.

From [2], we know that the notion of UP-algebras is a generalization of KU-algebras.

Example 1. [10] Let X be a universal set and let Ω ∈ P(X). Let PΩ(X) = {A ∈ P(X) |
Ω ⊆ A}. Define a binary operation · on PΩ(X) by putting A · B = B ∩ (A′ ∪ Ω) for all
A,B ∈ PΩ(X). Then (PΩ(X), ·,Ω) is a UP-algebra and we shall call it the generalized
power UP-algebra of type 1 with respect to Ω.

Example 2. [10] Let X be a universal set and let Ω ∈ P(X). Let PΩ(X) = {A ∈ P(X) |
A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by putting A ∗ B = B ∪ (A′ ∩ Ω) for all
A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a UP-algebra and we shall call it the generalized
power UP-algebra of type 2 with respect to Ω.
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Example 3. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 1 3 3
2 0 0 0 3 3
3 0 0 0 0 3
4 0 0 0 0 0

Then (A, ·, 0) is a UP-algebra which is not a KU-algebra because (0 · 2)((2 · 4) · (0 · 4)) =
2 · (3 · 4) = 2 · 3 = 3 6= 0 (see the definition in [8]).

In what follows, let A denote UP-algebras unless otherwise specified. The following
proposition is very important for the study of UP-algebras.

Proposition 1. [2, 3] In a UP-algebra A = (A, ·, 0), the following properties hold:

(1) (∀x ∈ A)(x · x = 0),

(2) (∀x, y, z ∈ A)(x · y = 0, y · z = 0⇒ x · z = 0),

(3) (∀x, y, z ∈ A)(x · y = 0⇒ (z · x) · (z · y) = 0),

(4) (∀x, y, z ∈ A)(x · y = 0⇒ (y · z) · (x · z) = 0),

(5) (∀x, y ∈ A)(x · (y · x) = 0),

(6) (∀x, y ∈ A)((y · x) · x = 0⇔ x = y · x),

(7) (∀x, y ∈ A)(x · (y · y) = 0),

(8) (∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),

(9) (∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),

(10) (∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0),

(11) (∀x, y, z ∈ A)(x · y = 0⇒ x · (z · y) = 0),

(12) (∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and

(13) (∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0).

On a UP-algebra A = (A, ·, 0), we define a binary relation ≤ on A [2] as follows: for
any x, y ∈ A,

x ≤ y if and only if x · y = 0.

Definition 2. [1, 2, 14] A nonempty subset S of a UP-algebra (A, ·, 0) is called

(1) a UP-subalgebra of A if for any x, y ∈ S, x · y ∈ S.
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(2) a UP-filter of A if

(i) the constant 0 of A is in S, and

(ii) for any x, y ∈ A, x · y ∈ S and x ∈ S imply y ∈ S.

(3) a UP-ideal of A if

(i) the constant 0 of A is in S, and

(ii) for any x, y, z ∈ A, x · (y · z) ∈ S and y ∈ S imply x · z ∈ S.

(4) a strongly UP-ideal of A if

(i) the constant 0 of A is in S, and

(ii) for any x, y, z ∈ A, (z · y) · (z · x) ∈ S and y ∈ S imply x ∈ S.

Guntasow et al. [1] proved the generalization that the notion of UP-subalgebras is a
generalization of UP-filters, the notion of UP-filters is a generalization of UP-ideals, and
the notion of UP-ideals is a generalization of strongly UP-ideals. Moreover, they also
proved that a UP-algebra A is the only one strongly UP-ideal of itself.

3. Basic Results on Hesitant Fuzzy Sets

Definition 3. [18] Let X be a reference set. A hesitant fuzzy set on X is defined in term of
a function hH that when applied to X return a subset of [0, 1], that is, hH : X → P([0, 1]).
A hesitant fuzzy set hH can also be viewed as the following mathematical representation:

H := {(x, hH(x)) | x ∈ X}

where hH(x) is a set of some values in [0, 1], denoting the possible membership degrees of
the elements x ∈ X to the set H. We say that a hesitant fuzzy set H on X is a constant
hesitant fuzzy set if its function hH is constant.

Definition 4. [6] Let H be a hesitant fuzzy set on A. The hesitant fuzzy set H defined by
hH(x) = [0, 1]− hH(x) for all x ∈ A is said to be the complement of H on A.

Remark 1. [6] For all hesitant fuzzy set H on A, we have H = H.

Theorem 1. A hesitant fuzzy set H is a constant hesitant fuzzy set on A if and only if
the complement of H is a constant hesitant fuzzy set on A.

Proof. Let H be a constant hesitant fuzzy set on A. Then hH(x) = hH(0) for all x ∈ A.
Thus [0, 1]− hH(x) = [0, 1]− hH(0) for all x ∈ A. Therefore, hH(x) = hH(0) for all x ∈ A.
Hence, H is a constant hesitant fuzzy set on A.

Conversely, let H be a constant hesitant fuzzy set on A. Then hH(x) = hH(0) for all
x ∈ A. Thus [0, 1]− hH(x) = [0, 1]− hH(0) for all x ∈ A. Therefore, hH(x) = hH(0) for all
x ∈ A. Hence, H is a constant hesitant fuzzy set on A.
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Definition 5. [6] A hesitant fuzzy set H on a A is called

(1) a hesitant fuzzy UP-subalgebra of A if it satisfies the following property: for any
x, y ∈ A, hH(x · y) ⊇ hH(x) ∩ hH(y).

(2) a hesitant fuzzy UP-filter of A if it satisfies the following properties: for any x, y ∈ A,

(1) hH(0) ⊇ hH(x), and

(2) hH(y) ⊇ hH(x · y) ∩ hH(x).

(3) a hesitant fuzzy UP-ideal of A if it satisfies the following properties: for any x, y, z ∈
A,

(1) hH(0) ⊇ hH(x), and

(2) hH(x · z) ⊇ hH(x · (y · z)) ∩ hH(y).

(4) a hesitant fuzzy strongly UP-ideal of A if it satisfies the following properties: for any
x, y, z ∈ A,

(1) hH(0) ⊇ hH(x), and

(2) hH(x) ⊇ hH((z · y) · (z · x)) ∩ hH(y).

Mosrijai et al. [6] proved that the notion of hesitant fuzzy UP-subalgebras of UP-
algebras is a generalization of hesitant fuzzy UP-filters, the notion of hesitant fuzzy UP-
filters of UP-algebras is a generalization of hesitant fuzzy UP-ideals, and the notion of
hesitant fuzzy UP-ideals of UP-algebras is a generalization of hesitant fuzzy strongly UP-
ideals.

Theorem 2. [6] A hesitant fuzzy set H on A is a hesitant fuzzy strongly UP-ideal of A if
and only if it is a constant hesitant fuzzy set on A.

4. Anti-Type of Hesitant Fuzzy Sets

In this section, we introduce the notions of anti-hesitant fuzzy UP-subalgebras, anti-
hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy strongly
UP-ideals of UP-algebras, provide the necessary examples and prove its generalizations.

Definition 6. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy UP-subalgebra
of A if it satisfies the following property: for any x, y ∈ A,

hH(x · y) ⊆ hH(x) ∪ hH(y).

By Proposition 1 (1), we have hH(0) = hH(x ·x) ⊆ hH(x)∪hH(x) = hH(x) for all x ∈ A.
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Example 4. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 0 0 3
3 0 0 0 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = ∅, hH(1) = {0.5},hH(2) = {0.6}, and hH(3) = [0.5, 0.6].

Using this data, we can show that H is an anti-hesitant fuzzy UP-subalgebra of A.

Definition 7. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy UP-filter of
A if it satisfies the following properties: for any x, y ∈ A,

(1) hH(0) ⊆ hH(x), and

(2) hH(y) ⊆ hH(x · y) ∪ hH(x).

Example 5. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 3
3 0 1 2 0 3
4 0 1 2 0 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = {0.8},hH(1) = [0.8, 0.9),hH(2) = [0.8, 0.9],hH(3) = [0.6, 0.9], and
hH(4) = [0.6, 0.9].

Using this data, we can show that H is an anti-hesitant fuzzy UP-filter of A.

Definition 8. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy UP-ideal of
A if it satisfies the following properties: for any x, y, z ∈ A,

(1) hH(0) ⊆ hH(x), and

(2) hH(x · z) ⊆ hH(x · (y · z)) ∪ hH(y).

Example 6. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:



P. Mosrijai, A. Iampan / Eur. J. Pure Appl. Math, 11 (4) (2018), 976-1002 982

hH(0) = {1}, hH(1) = {1},hH(2) = {0, 1}, and hH(3) = [0, 1].

Using this data, we can show that H is an anti-hesitant fuzzy UP-ideal of A.

Definition 9. A hesitant fuzzy set H on a A is called an anti-hesitant fuzzy strongly
UP-ideal of A if it satisfies the following properties: for any x, y, z ∈ A,

(1) hH(0) ⊆ hH(x), and

(2) hH(x) ⊆ hH((z · y) · (z · x)) ∪ hH(y).

Example 7. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 2
2 0 1 0 1
3 0 0 0 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = {0, 0.2}, hH(1) = {0, 0.2},hH(2) = {0, 0.2}, and hH(3) = {0, 0.2}.

Using this data, we can show that H is an anti-hesitant fuzzy strongly UP-ideal of A.

Theorem 3. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of
A if and only if it is a constant hesitant fuzzy set on A.

Proof. Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. Then hH(0) ⊆
hH(x) and hH(x) ⊆ hH((z · y) · (z ·x))∪ hH(y) for all x, y, z ∈ A. For any x ∈ A, we choose
z = x and y = 0. Then

hH(x) ⊆ hH((x · 0) · (x · x)) ∪ hH(0)

= hH(0 · 0) ∪ hH(0) ((UP-3) and Proposition 1 (1))

= hH(0) ∪ hH(0) ((UP-2))

= hH(0)

⊆ hH(x),

so hH(0) = hH(x). Hence, H is a constant hesitant fuzzy set on A.
Conversely, assume that H is a constant hesitant fuzzy set on A. Then, for any x ∈

A,hH(0) = hH(x), so hH(0) ⊆ hH(x). For any x, y, z ∈ A,hH(x) = hH((z·y)·(z·x)) = hH(y),
so hH(x) = hH((z · y) · (z · x)) ∪ hH(y). Thus hH(x) ⊆ hH((z · y) · (z · x)) ∪ hH(y). Hence,
H is an anti-hesitant fuzzy strongly UP-ideal of A.

Corollary 1. For UP-algebras, we can conclude that the notions of anti-hesitant fuzzy
strongly UP-ideals and hesitant fuzzy strongly UP-ideals coincide.
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Proof. It is straightforward by Theorem 2 and 3.

Corollary 2. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of
A if and only if H on A is an anti-hesitant fuzzy strongly UP-ideal of A.

Proof. It is straightforward by Theorem 1 and 3.

By Using Corollary 1, we can show that a hesitant fuzzy set H on A is an anti-hesitant
fuzzy strongly UP-ideal of A if and only if H on A is an anti-hesitant fuzzy strongly
UP-ideal of A.

Theorem 4. Every anti-hesitant fuzzy UP-filter of A is an anti-hesitant fuzzy UP-subalgebra
of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Then for any x, y ∈ A,

hH(x · y) ⊆ hH(y · (x · y)) ∪ hH(y) (Definition 7 (2))

= hH(0) ∪ hH(y) (Proposition 1 (5))

= hH(y) (Definition 7 (1))

⊆ hH(x) ∪ hH(y).

Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

The converse of Theorem 4 is not true in general. By Example 4, we obtain H is an
anti-hesitant fuzzy UP-subalgebra of A. Since hH(1) = {0.5} * {0.6} = ∅∪{0.6} = hH(0)∪
hH(2) = hH(2·1)∪hH(2), we have H is not an anti-hesitant fuzzy UP-filter of A. Therefore,
the notion of anti-hesitant fuzzy UP-subalgebras of UP-algebras is generalization of anti-
hesitant fuzzy UP-filters.

Theorem 5. Every anti-hesitant fuzzy UP-ideal of A is an anti-hesitant fuzzy UP-filter
of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Then for any x, y ∈ A,
hH(0) ⊆ hH(x) and

hH(y) = hH(0 · y) ((UP-2))

⊆ hH(0 · (x · y)) ∪ hH(x) (Definition 8 (2))

= hH(x · y) ∪ hH(x). ((UP-2))

Hence, H is an anti-hesitant fuzzy UP-filter of A.

The converse of Theorem 5 is not true in general. By Example 5, we obtain H is
an anti-hesitant fuzzy UP-filter of A. Since hH(3 · 4) = hH(3) = [0.6, 0.9] * [0.8, 0.9) =
{0.8}∪ [0.8, 0.9) = hH(0)∪hH(2) = hH(3 · (2 ·4))∪hH(2), we have H is not an anti-hesitant
fuzzy UP-ideal of A. Therefore, the notion of anti-hesitant fuzzy UP-filters of UP-algebras
is generalization of anti-hesitant fuzzy UP-ideals.
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Theorem 6. Every anti-hesitant fuzzy strongly UP-ideal of A is an anti-hesitant fuzzy
UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. Then for any
x, y ∈ A, hH(0) ⊆ hH(x) and

hH(x · z) ⊆ hH((z · y) · (z · (x · z))) ∩ hH(y) (Definition 9 (2))

= hH((z · y) · 0) ∩ hH(y) (Proposition 1 (5))

= hH(0) ∩ hH(y) ((UP-3))

= hH(y) (Definition 9 (1))

= hH(x · (y · z)) ∩ hH(y).

Hence, H is an anti-hesitant fuzzy UP-ideal of A.

The converse of Theorem 6 is not true in general. By Theorem 3, we obtain an anti-
hesitant fuzzy strongly UP-ideal is a constant hesitant fuzzy set. But anti-hesitant fuzzy
UP-ideal is not a constant hesitant fuzzy set in general. Therefore, the notion of anti-
hesitant fuzzy UP-ideals of UP-algebras is generalization of anti-hesitant fuzzy strongly
UP-ideals.

Proposition 2. Let H be an anti-hesitant fuzzy UP-filter (and also anti-hesitant fuzzy
UP-ideal, anti-hesitant fuzzy strongly UP-ideal) of A. Then for any x, y ∈ A,

x ≤ y implies hH(x) ⊇ hH(y) ⊇ hH(x · y).

Proof. Let x, y ∈ A be such that x ≤ y. Then x · y = 0. Since H is an anti-hesitant
fuzzy UP-filter (resp., anti-hesitant fuzzy UP-ideal, anti-hesitant fuzzy strongly UP-ideal)
of A, we have

hH(y) ⊆ hH(x · y) ∪ hH(x) = hH(0) ∪ hH(x) = hH(x).

By Proposition 1 (5), we obtain y ≤ x · y and thus hH(y) ⊇ hH(x · y).

5. Level Subsets of a Hesitant Fuzzy Set

Definition 10. [11] Let H be a hesitant fuzzy set on A. For any ε ∈ P([0, 1]), the sets

U(H; ε) = {x ∈ A | hH(x) ⊇ ε} and U+(H; ε) = {x ∈ A | hH(x) ⊃ ε}

are called an upper ε-level subset and an upper ε-strong level subset of H, respectively. The
sets

L(H; ε) = {x ∈ A | hH(x) ⊆ ε} and L−(H; ε) = {x ∈ A | hH(x) ⊂ ε}

are called a lower ε-level subset and a lower ε-strong level subset of H, respectively. The
set
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E(H; ε) = {x ∈ A | hH(x) = ε}

is called an equal ε-level subset of H. Then

U(H; ε) = U+(H; ε) ∪ E(H; ε) and L(H; ε) = L−(H; ε) ∪ E(H; ε).

Proposition 3. Let H be a hesitant fuzzy set on A and let ε ∈ P([0, 1]). Then the following
statements hold :

(1) U(H; ε) = L(H; [0, 1]− ε),

(2) U+(H; ε) = L−(H; [0, 1]− ε),

(3) L(H; ε) = U(H; [0, 1]− ε), and

(4) L−(H; ε) = U+(H; [0, 1]− ε).

Proof. (1) Let x ∈ A and let ε ∈ P([0, 1]). Then x ∈ U(H; ε) if and only if hH(x) ⊇ ε
if and only if [0, 1] − hH(x) ⊆ [0, 1] − ε if and only if hH(x) ⊆ [0, 1] − ε if and only if
x ∈ L(H; [0, 1]− ε). Therefore, U(H; ε) = L(H; [0, 1]− ε).

(2) Let x ∈ A and let ε ∈ P([0, 1]). Then x ∈ U+(H; ε) if and only if hH(x) ⊃ ε
if and only if [0, 1] − hH(x) ⊂ [0, 1] − ε if and only if hH(x) ⊂ [0, 1] − ε if and only if
x ∈ L−(H; [0, 1]− ε). Therefore, U+(H; ε) = L−(H; [0, 1]− ε).

(3) Let x ∈ A and let ε ∈ P([0, 1]). Then x ∈ L(H; ε) if and only if hH(x) ⊆ ε
if and only if [0, 1] − hH(x) ⊇ [0, 1] − ε if and only if hH(x) ⊇ [0, 1] − ε if and only if
x ∈ U(H; [0, 1]− ε). Therefore, L(H; ε) = U(H; [0, 1]− ε).

(4) Let x ∈ A and let ε ∈ P([0, 1]). Then x ∈ L−(H; ε) if and only if hH(x) ⊂ ε
if and only if [0, 1] − hH(x) ⊃ [0, 1] − ε if and only if hH(x) ⊃ [0, 1] − ε if and only if
x ∈ U+(H; [0, 1]− ε). Therefore, L−(H; ε) = U+(H; [0, 1]− ε).

Lemma 1. [11] Let H be a hesitant fuzzy set on A. Then the following statements hold:
for any x, y ∈ A,

(1) [0, 1]− (hH(x) ∪ hH(y)) = ([0, 1]− hH(x)) ∩ ([0, 1]− hH(y)), and

(2) [0, 1]− (hH(x) ∩ hH(y)) = ([0, 1]− hH(x)) ∪ ([0, 1]− hH(y)).

5.1. Lower ε-Level Subsets

Theorem 7. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A if
and only if for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a UP-subalgebra of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let ε ∈ P([0, 1])
be such that L(H; ε) 6= ∅, and let x, y ∈ A be such that x ∈ L(H; ε) and y ∈ L(H; ε). Then
hH(x) ⊆ ε and hH(y) ⊆ ε. Since H is an anti-hesitant fuzzy UP-subalgebra of A, we have
hH(x · y) ⊆ hH(x)∪ hH(y) ⊆ ε and thus x · y ∈ L(H; ε). Hence, L(H; ε) is a UP-subalgebra
of A.



P. Mosrijai, A. Iampan / Eur. J. Pure Appl. Math, 11 (4) (2018), 976-1002 986

Conversely, assume that for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a UP-
subalgebra of A. Let x, y ∈ A. Then hH(x),hH(y) ∈ P([0, 1]). Choose ε = hH(x)∪hH(y) ∈
P([0, 1]). Then hH(x) ⊆ ε and hH(y) ⊆ ε. Thus x, y ∈ L(H; ε) 6= ∅. By assumption,
L(H; ε) is a UP-subalgebra of A and thus x · y ∈ L(H; ε). Therefore, hH(x · y) ⊆ ε =
hH(x) ∪ hH(y). Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 8. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A if and
only if for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a UP-filter of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let ε ∈ P([0, 1]) be
such that L(H; ε) 6= ∅ and let x ∈ A be such that x ∈ L(H; ε). Then hH(x) ⊆ ε. Since H
is an anti-hesitant fuzzy UP-filter of A, we have hH(0) ⊆ hH(x) ⊆ ε and thus 0 ∈ L(H; ε).

Next, let x, y ∈ A be such that x · y ∈ L(H; ε) and x ∈ L(H; ε). Then hH(x · y) ⊆ ε and
hH(x) ⊆ ε. Since H is an anti-hesitant fuzzy UP-filter of A, we have hH(y) ⊆ hH(x · y) ∪
hH(x) ⊆ ε and thus y ∈ L(H; ε). Hence, L(H; ε) is a UP-filter of A.

Conversely, assume that for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a
UP-filter of A. Let x ∈ A. Then hH(x) ∈ P([0, 1]). Choose ε = hH(x) ∈ P([0, 1]). Then
hH(x) ⊆ ε. Thus x ∈ L(H; ε). By assumption, we have L(H; ε) is a UP-filter of A and so
0 ∈ L(H; ε). Therefore, hH(0) ⊆ ε = hH(x).

Next, let x, y ∈ A. Then hH(x · y), hH(x) ∈ P([0, 1]). Choose ε = hH(x · y) ∪ hH(x) ∈
P([0, 1]). Then hH(x·y) ⊆ ε and hH(x) ⊆ ε. Thus x·y, x ∈ L(H; ε) 6= ∅. By assumption, we
have L(H; ε) is a UP-filter of A and so y ∈ L(H; ε). Therefore, hH(y) ⊆ ε = hH(x·y)∪hH(x).
Hence, H is an anti-hesitant fuzzy UP-filter of A.

Theorem 9. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A if and
only if for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let ε ∈ P([0, 1]) be
such that L(H; ε) 6= ∅ and let x ∈ A be such that x ∈ L(H; ε). Then hH(x) ⊆ ε. Since H
is an anti-hesitant fuzzy UP-ideal of A, we have hH(0) ⊆ hH(x) ⊆ ε and thus 0 ∈ L(H; ε).

Next, let x, y, z ∈ A be such that x · (y · z) ∈ L(H; ε) and y ∈ L(H; ε). Then hH(x ·
(y · z)) ⊆ ε and hH(y) ⊆ ε. Since H is an anti-hesitant fuzzy UP-ideal of A, we have
hH(x · z) ⊆ hH(x · (y · z))∪hH(y) ⊆ ε and thus x · z ∈ L(H; ε). Hence, L(H; ε) is a UP-ideal
of A.

Conversely, assume that for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a
UP-ideal of A. Let x ∈ A. Then hH(x) ∈ P([0, 1]). Choose ε = hH(x) ∈ P([0, 1]). Then
hH(x) ⊆ ε. Thus x ∈ L(H; ε) 6= ∅. By assumption, we have L(H; ε) is a UP-ideal of A and
so 0 ∈ L(H; ε). Therefore, hH(0) ⊆ ε = hH(x).

Next, let x, y, z ∈ A. Then hH(x · (y · z)),hH(y) ∈ P([0, 1]). Choose ε = hH(x · (y · z))∪
hH(y) ∈ P([0, 1]). Then hH(x · (y · z)) ⊆ ε and hH(y) ⊆ ε. Thus x · (y · z), y ∈ L(H; ε) 6= ∅.
By assumption, we have L(H; ε) is a UP-ideal of A and so x · z ∈ L(H; ε). Therefore,
hH(x · z) ⊆ ε = hH(x · (y · z)) ∪ hH(y). Hence, H is an anti-hesitant fuzzy UP-ideal of A.
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Theorem 10. Let H be a hesitant fuzzy set on A. Then the following statements are
equivalent :

(1) H is an anti-hesitant fuzzy strongly UP-ideal of A,

(2) a nonempty subset L(H; ε) of A is a strongly UP-ideal of A for all ε ∈ P([0, 1]), and

(3) a nonempty subset U(H; ε) of A is a strongly UP-ideal of A for all ε ∈ P([0, 1]).

Proof. (1)⇒(2) Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By
Theorem 3, we obtain H is a constant hesitant fuzzy set on A and so hH(x) = hH(y) for
all x, y ∈ A. Let ε ∈ P([0, 1]) be such that L(H; ε) 6= ∅. There exists a ∈ L(H; ε) be such
that hH(a) ⊆ ε. Thus hH(x) = hH(a) ⊆ ε for all x ∈ A and so x ∈ L(H; ε) for all x ∈ A.
Therefore, L(H; ε) = A. Hence, L(H; ε) is a strongly UP-ideal of A.

(2)⇒(3) Assume that for all ε ∈ P([0, 1]), a nonempty subset L(H; ε) of A is a strongly
UP-ideal of A. Let ε ∈ P([0, 1]) be such that U(H; ε) 6= ∅. If U(H; ε) 6= A, then there
exist x ∈ U(H; ε) and y /∈ U(H; ε). So hH(x) ⊇ ε and hH(y) + ε. Consider, εy = hH(y) ∈
P([0, 1]). Then y ∈ L(H; εy) and εy + ε. By assumption, we have L(H; εy) is a strongly
UP-ideal of A and so L(H; εy) = A. Thus hH(x) ⊆ εy. Since hH(x) ⊇ ε, we have εy ⊇ ε, a
contradiction. Therefore, U(H; ε) = A. Hence, U(H; ε) is a strongly UP-ideal of A.

(3)⇒(1) Assume that for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a strongly
UP-ideal of A. Assume that H is not a constant hesitant fuzzy set on A. There exist
x, y ∈ A be such that hH(x) 6= hH(y). Now, x ∈ U(H; hH(x)) 6= ∅ and y ∈ U(H; hH(y)) 6= ∅.
By assumption, we have U(H; hH(x)) and U(H; hH(y)) are strongly UP-ideals of A and
thus U(H; hH(x)) = A = U(H; hH(y)). Then x ∈ U(H; hH(y)) and y ∈ U(H; hH(x)). Thus
hH(x) ⊇ hH(y) and hH(y) ⊇ hH(x). So hH(x) = hH(y), a contradiction. Therefore, H is
a constant hesitant fuzzy set on A. By Theorem 3, we obtain H is an anti-hesitant fuzzy
strongly UP-ideal of A.

5.2. Lower ε-Strong Level Subsets

Theorem 11. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy UP-subalgebra of A, then for all ε ∈ P([0, 1]), L−(H; ε)
is a UP-subalgebra of A if L−(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε) of A is a
UP-subalgebra of A, then H is an anti-hesitant fuzzy UP-subalgebra of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let ε ∈
P([0, 1]) be such that L−(H; ε) 6= ∅, and let x, y ∈ A be such that x ∈ L−(H; ε) and
y ∈ L−(H; ε). Then hH(x) ⊂ ε and hH(y) ⊂ ε. Since H is an anti-hesitant fuzzy UP-
subalgebra of A, we have hH(x · y) ⊆ hH(x)∪ hH(y) ⊂ ε and thus x · y ∈ L−(H; ε). Hence,
L−(H; ε) is a UP-subalgebra of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε)
of A is a UP-subalgebra of A. Assume that there exist x, y ∈ A such that hH(x · y) *
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hH(x) ∪ hH(y). Since Im(H) is a chain, we have hH(x · y) ⊃ hH(x) ∪ hH(y). Choose
ε = hH(x · y) ∈ P([0, 1]). Then hH(x) ⊂ ε and hH(y) ⊂ ε. Thus x, y ∈ L−(H; ε) 6= ∅.
By assumption, we have L−(H; ε) is a UP-subalgebra of A and so x · y ∈ L−(H; ε). Thus
hH(x · y) ⊂ ε = hH(x · y), a contradiction. Therefore, hH(x · y) ⊆ hH(x) ∪ hH(y) for all
x, y ∈ A. Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

Example 8. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 0 0 0
2 0 2 0 0 0
3 0 2 2 0 0
4 0 2 2 4 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = (0, 1),hH(1) = [0, 1), hH(2) = (0, 1], hH(3) = [0, 1), and hH(4) = [0, 1].

Then Im(H) is not a chain. If ε ⊆ (0, 1), then L−(H; ε) = ∅. If ε = [0, 1) or ε = (0, 1], then
L−(H; ε) = {0}. If ε = [0, 1], then. L−(H; ε) = {0, 1, 2, 3}. Using this data, we can show
that all nonempty subset L−(H; ε) of A is a UP-subalgebra of A. Since hH(3 ·1) = hH(2) =
(0, 1] * [0, 1) = hH(3) ∪ hH(1), we have H is not an anti-hesitant fuzzy UP-subalgebra of
A.

Theorem 12. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy UP-filter of A, then for all ε ∈ P([0, 1]), L−(H; ε) is a
UP-filter of A if L−(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε) of A is a
UP-filter of A, then H is an anti-hesitant fuzzy UP-filter of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-filter of A. Let ε ∈ P([0, 1])
be such that L−(H; ε) 6= ∅ and let x ∈ A be such that x ∈ L−(H; ε). Then hH(x) ⊂ ε.
Since H is an anti-hesitant fuzzy UP-filter of A, we have hH(0) ⊆ hH(x) ⊂ ε and thus
0 ∈ L−(H; ε).

Next, let x, y ∈ A be such that x · y ∈ L−(H; ε) and x ∈ L−(H; ε). Then hH(x · y) ⊂ ε
and hH(x) ⊂ ε. Since H is an anti-hesitant fuzzy UP-filter of A, we have hH(y) ⊆ hH(x ·
y) ∪ hH(x) ⊂ ε and thus y ∈ L−(H; ε). Hence, L−(H; ε) is a UP-filter of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε)
of A is a UP-filter of A. Assume that there exists x ∈ A such that hH(0) * hH(x).
Since Im(H) is a chain, we have hH(0) ⊃ hH(x). Choose ε = hH(0) ∈ P([0, 1]). Then
hH(x) ⊂ hH(0) = ε. Thus x ∈ L−(H; ε) 6= ∅. By assumption, we have L−(H; ε) is a UP-
filter of A and so 0 ∈ L−(H; ε). Therefore, hH(0) ⊂ ε = hH(0), a contradiction. Hence,
hH(0) ⊆ hH(x) for all x ∈ A.
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Next, assume that there exist x, y ∈ A such that hH(y) * hH(x · y) ∪ hH(x). Since
Im(H) is a chain, we have hH(y) ⊃ hH(x · y) ∪ hH(x). Choose ε = hH(y) ∈ P([0, 1]).
Then hH(x · y) ⊂ ε and hH(x) ⊂ ε. Thus x · y, x ∈ L−(H; ε) 6= ∅. By assumption, we have
L−(H; ε) is a UP-filter of A and so y ∈ L−(H; ε). Thus hH(y) ⊂ ε = hH(y), a contradiction.
Therefore, hH(y) ⊆ hH(x · y) ∪ hH(x) for all x, y ∈ A. Hence, H is an anti-hesitant fuzzy
UP-filter of A.

Example 9. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 1 3 4
2 0 0 0 3 4
3 0 0 0 0 4
4 0 0 0 0 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = (0, 1),hH(1) = [0, 1), hH(2) = (0, 1], hH(3) = [0, 1], and hH(4) = [0, 1].

Then Im(H) is not a chain. If ε ⊆ (0, 1), then L−(H; ε) = ∅. If ε = [0, 1) or ε = (0, 1],
then L−(H; ε) = {0}. If ε = [0, 1], then L−(H; ε) = {0, 1, 2}. Using this data, we can show
that all nonempty subset L−(H; ε) of A is a UP-filter of A. Since hH(2) = (0, 1] * [0, 1) =
hH(1) ∪ hH(1) = hH(1 · 2) ∪ hH(1), we have H is not an anti-hesitant fuzzy UP-filter of A.

Theorem 13. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy UP-ideal of A, then for all ε ∈ P([0, 1]), L−(H; ε) is a
UP-ideal of A if L−(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε) of A is a
UP-ideal of A, then H is an anti-hesitant fuzzy UP-ideal of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let ε ∈ P([0, 1])
be such that L−(H; ε) 6= ∅ and let x ∈ A be such that x ∈ L−(H; ε). Then hH(x) ⊂ ε.
Since H is an anti-hesitant fuzzy UP-ideal of A, we have hH(0) ⊆ hH(x) ⊂ ε and thus
0 ∈ L−(H; ε).

Next, let x, y, z ∈ A be such that x · (y · z) ∈ L−(H; ε) and y ∈ L−(H; ε). Then
hH(x · (y · z)) ⊂ ε and hH(y) ⊂ ε. Since H is an anti-hesitant fuzzy UP-ideal of A, we have
hH(x · z) ⊆ hH(x · (y · z)) ∪ hH(y) ⊂ ε and thus x · z ∈ L−(H; ε). Hence, L−(H; ε) is a
UP-ideal of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε)
of A is a UP-ideal of A. Assume that there exists x ∈ A such that hH(0) * hH(x).
Since Im(H) is a chain, we have hH(0) ⊃ hH(x). Choose ε = hH(0) ∈ P([0, 1]). Then
hH(x) ⊂ hH(0) = ε. Thus x ∈ L−(H; ε) 6= ∅. By assumption, we have L−(H; ε) is a UP-
ideal of A and so 0 ∈ L−(H; ε). Therefore, hH(0) ⊂ ε = hH(0), a contradiction. Hence,
hH(0) ⊆ hH(x) for all x ∈ A.
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Next, assume that there exist x, y, z ∈ A such that hH(x·z) * hH(x·(y·z))∪hH(y). Since
Im(H) is a chain, we have hH(x·z) ⊃ hH(x·(y ·z))∪hH(y). Choose ε = hH(x·z) ∈ P([0, 1]).
Then hH(x · (y · z)) ⊂ ε and hH(y) ⊂ ε. Thus x · (y · z), y ∈ L−(H; ε) 6= ∅. By assumption,
we have L−(H; ε) is a UP-ideal of A and so x ·z ∈ L−(H; ε). Thus hH(x ·z) ⊂ ε = hH(x ·z),
a contradiction. Therefore, hH(x · z) ⊆ hH(x · (y · z)) ∪ hH(y) for all x, y, z ∈ A. Hence, H
is an anti-hesitant fuzzy UP-ideal of A.

Example 10. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 0 2 0 4
4 0 0 0 0 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = (0, 1),hH(1) = [0, 1), hH(2) = [0, 1], hH(3) = (0, 1], and hH(4) = [0, 1].

Then Im(H) is not a chain. If ε ⊆ (0, 1), then L−(H; ε) = ∅. If ε = [0, 1) or ε = (0, 1],
then L−(H; ε) = {0}. If ε = [0, 1], then L−(H; ε) = {0, 1, 3}. Using this data, we can show
that all nonempty subset L−(H; ε) of A is a UP-ideal of A. Since hH(0 · 1) = hH(1) =
[0, 1) * (0, 1] = hH(0) ∪ hH(3) = hH(0 · (3 · 1)) ∪ hH(3), we have H is not an anti-hesitant
fuzzy UP-ideal of A.

Theorem 14. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy strongly UP-ideal of A, then for all ε ∈ P([0, 1]),
L−(H; ε) is a strongly UP-ideal of A if L−(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε) of A is a
strongly UP-ideal of A, then H is an anti-hesitant fuzzy strongly UP-ideal of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem
3, we obtain H is a constant hesitant fuzzy set on A and so hH(x) = hH(y) for all x, y ∈ A.
Let ε ∈ P([0, 1]) be such that L−(H; ε) 6= ∅. There exists a ∈ L−(H; ε) be such that
hH(a) ⊂ ε. Thus hH(x) = hH(a) ⊂ ε for all x ∈ A and so x ∈ L−(H; ε) for all x ∈ A.
Therefore, L−(H; ε) = A. Hence, L−(H; ε) is a strongly UP-ideal of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset L−(H; ε)
of A is a strongly UP-ideal of A. Assume that H is not a constant hesitant fuzzy set on
A. There exist x, y ∈ A be such that hH(x) 6= hH(y). Since Im(H) is a chain, we have
hH(x) ⊂ hH(y) or hH(x) ⊃ hH(y). Without loss of generality, assume that hH(x) ⊂ hH(y),
then x ∈ L−(H; hH(y)) 6= ∅. By assumption, we have L−(H; hH(y)) is a strongly UP-ideal
of A and so L−(H; hH(y)) = A. Thus y ∈ A = L−(H; hH(y)) and so hH(y) ⊂ hH(y), a
contradiction. Therefore, H is a constant hesitant fuzzy set on A. By Theorem 3, we
obtain H is an anti-hesitant fuzzy strongly UP-ideal of A.
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Example 11. Let A = {0, 1} be a set with a binary operation · defined by the following
Cayley table:

· 0 1

0 0 1
1 0 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = (0, 1], and hH(1) = [0, 1).

Then Im(H) is not a chain. If ε ⊆ [0, 1) or ε ⊆ (0, 1], then L−(H; ε) = ∅. If ε = [0, 1],
then L−(H; ε) = A. Thus a nonempty subset L−(H; ε) of A is a strongly UP-ideal of A.
By Theorem 3 and H is not a constant hesitant fuzzy set on A, we have H is not an
anti-hesitant fuzzy strongly UP-ideal of A.

5.3. Upper ε-Level Subsets

Theorem 15. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A
if and only if for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a UP-subalgebra of
A.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let ε ∈ P([0, 1])
be such that U(H; ε) 6= ∅, and let x, y ∈ A be such that x ∈ U(H; ε) and y ∈ U(H; ε).
Then hH(x) ⊇ ε and hH(y) ⊇ ε. Since H is an anti-hesitant fuzzy UP-subalgebra of
A, we obtain hH(x · y) ⊆ hH(x) ∪ hH(y). By Lemma 1 (2), we have [0, 1] − hH(x · y) ⊆
([0, 1]−hH(x))∪([0, 1]−hH(y)) = [0, 1]−(hH(x)∩hH(y)). Thus hH(x·y) ⊇ hH(x)∩hH(y) ⊇ ε.
Therefore, x · y ∈ U(H; ε). Hence, U(H; ε) is a UP-subalgebra of A.

Conversely, assume that for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a UP-
subalgebra of A. Let x, y ∈ A. Choose ε = hH(x)∩hH(y) ∈ P([0, 1]). Then hH(x) ⊇ ε and
hH(y) ⊇ ε. Thus x, y ∈ U(H; ε) 6= ∅. By assumption, we have U(H; ε) is a UP-subalgebra
of A and so x · y ∈ U(H; ε). Therefore, hH(x · y) ⊇ ε = hH(x) ∩ hH(y). By Lemma 1 (2),
we have

hH(x · y) = [0, 1]− hH(x · y)

⊆ [0, 1]− (hH(x) ∩ hH(y))

= ([0, 1]− hH(x)) ∪ ([0, 1]− hH(y))

= hH(x) ∪ hH(y).

Hence, H is an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 16. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A if and
only if for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a UP-filter of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let ε ∈ P([0, 1]) be
such that U(H; ε) 6= ∅, and let x ∈ A be such that x ∈ U(H; ε). Then hH(x) ⊇ ε. Since
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H is an anti-hesitant fuzzy UP-filter of A, we have hH(0) ⊆ hH(x). Thus [0, 1]− hH(0) ⊆
[0, 1]− hH(x). Therefore, hH(0) ⊇ hH(x) ⊇ ε. Hence, 0 ∈ U(hH; ε).

Next, let x, y ∈ A be such that x ·y ∈ U(H; ε) and x ∈ U(H; ε). Then hH(x ·y) ⊇ ε and
hH(x) ⊇ ε. Since H is an anti-hesitant fuzzy UP-filter of A, we have hH(y) ⊆ hH(x · y) ∪
hH(x). By Lemma 1 (2), we have [0, 1] − hH(y) ⊆ ([0, 1] − hH(x · y)) ∪ ([0, 1] − hH(x)) =
[0, 1] − (hH(x · y) ∩ hH(x)). Thus hH(y) ⊇ hH(x · y) ∩ hH(x) ⊇ ε. Therefore, y ∈ U(H; ε).
Hence, U(H; ε) is a UP-filter of A.

Conversely, assume that for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a
UP-filter of A. Let x ∈ A. Choose ε = hH(x) ∈ P([0, 1]). Then hH(x) ⊇ ε. Thus
x ∈ U(H; ε) 6= ∅. By assumption, we have U(H; ε) is a UP-filter of A and so 0 ∈ U(H; ε).
Therefore, hH(0) ⊇ ε = hH(x). Hence, hH(0) = [0, 1]− hH(0) ⊆ [0, 1]− hH(x) = hH(x).

Next, let x, y ∈ A. Choose ε = hH(x · y) ∩ hH(x) ∈ P([0, 1]). Then hH(x · y) ⊇ ε and
hH(x) ⊇ ε. Thus x · y, x ∈ U(H; ε) 6= ∅. By assumption, we have U(H; ε) is a UP-filter of
A and so y ∈ U(H; ε). Therefore, hH(y) ⊇ ε = hH(x · y) ∩ hH(x). By Lemma 1 (2), we
have

hH(y) = [0, 1]− hH(y)

⊆ [0, 1]− (hH(x · y) ∩ hH(x))

= ([0, 1]− hH(x · y)) ∪ ([0, 1]− hH(x))

= hH(x · y) ∪ hH(x).

Hence, H is an anti-hesitant fuzzy UP-filter of A.

Theorem 17. A hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A if and
only if for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let ε ∈ P([0, 1]) be
such that U(H; ε) 6= ∅, and let x ∈ A be such that x ∈ U(H; ε). Then hH(x) ⊇ ε. Since
H is an anti-hesitant fuzzy UP-ideal of A, we have hH(0) ⊆ hH(x). Thus [0, 1]− hH(0) ⊆
[0, 1]− hH(x). Therefore, hH(0) ⊇ hH(x) ⊇ ε. Hence, 0 ∈ U(H; ε).

Next, let x, y, z ∈ A be such that x · (y · z) ∈ U(H; ε) and y ∈ U(H; ε). Then hH(x ·
(y · z)) ⊇ ε and hH(y) ⊇ ε. Since H is an anti-hesitant fuzzy UP-ideal of A, we obtain
hH(x · z) ⊆ hH(x · (y · z)) ∪ hH(y). By Lemma 1 (2), we have [0, 1] − hH(x · z) ⊆ ([0, 1] −
hH(x · (y · z))) ∪ ([0, 1] − hH(y)) = [0, 1] − (hH(x · (y · z)) ∩ hH(y)). Thus hH(x · z) ⊇
hH(x · (y · z)) ∪ hH(y) ⊇ ε. Therefore, x · z ∈ U(H; ε). Hence, U(H; ε) is a UP-ideal of A.

Conversely, assume that for all ε ∈ P([0, 1]), a nonempty subset U(H; ε) of A is a
UP-ideal of A. Let x ∈ A. Choose ε = hH(x) ∈ P([0, 1]). Then hH(x) ⊇ ε. Thus
x ∈ U(H; ε) 6= ∅. By assumption, we have U(H; ε) is a UP-ideal of A and so 0 ∈ U(H; ε).
Therefore, hH(0) ⊇ ε = hH(x). Hence, hH(0) = [0, 1]− hH(0) ⊆ [0, 1]− hH(x) = hH(x).

Next, let x, y, z ∈ A. Choose ε = hH(x·(y·z))∩hH(y) ∈ P([0, 1]). Then hH(x·(y·z)) ⊇ ε
and hH(y) ⊇ ε. Thus x · (y · z), y ∈ U(H; ε) 6= ∅. By assumption, we have U(H; ε) is a
UP-ideal of A and so x · z ∈ U(H; ε). Therefore, hH(x · z) ⊇ ε = hH(x · (y · z))∩ hH(y). By
Lemma 1 (2), we have

hH(x · z) = [0, 1]− hH(x · z)
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⊆ [0, 1]− (hH(x · (y · z)) ∩ hH(y))

= ([0, 1]− hH(x · (y · z))) ∪ ([0, 1]− hH(y))

= hH(x · (y · z)) ∪ hH(y).

Hence, H is an anti-hesitant fuzzy UP-ideal of A.

Theorem 18. Let H be a hesitant fuzzy set on A. Then the following statements are
equivalent :

(1) H is an anti-hesitant fuzzy strongly UP-ideal of A,

(2) a nonempty subset U(H; ε) of A is a strongly UP-ideal of A for all ε ∈ P([0, 1]), and

(3) a nonempty subset L(H; ε) of A is a strongly UP-ideal of A for all ε ∈ P([0, 1]).

Proof. It is straightforward by Theorem 10 and Corollary 2.

5.4. Upper ε-Strong Level Subsets

Theorem 19. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy UP-subalgebra of A, then for all ε ∈ P([0, 1]), U+(H; ε)
is a UP-subalgebra of A if U+(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε) of A is a
UP-subalgebra of A, then H is an anti-hesitant fuzzy UP-subalgebra of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let ε ∈
P([0, 1]) be such that U+(H; ε) 6= ∅, and let x, y ∈ A be such that x ∈ U+(H; ε) and y ∈
U+(H; ε). Then hH(x) ⊃ ε and hH(y) ⊃ ε. Since H is an anti-hesitant fuzzy UP-subalgebra
of A, we obtain hH(x · y) ⊆ hH(x) ∪ hH(y). By Lemma 1 (2), we have [0, 1]− hH(x · y) ⊆
([0, 1]−hH(x))∪([0, 1]−hH(y)) = [0, 1]−(hH(x)∩hH(y)). Thus hH(x·y) ⊇ hH(x)∩hH(y) ⊃ ε.
Therefore, x · y ∈ U+(H; ε). Hence, U+(H; ε) is a UP-subalgebra of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε)
of A is a UP-subalgebra of A. Assume that there exist x, y ∈ A such that hH(x · y) *
hH(x) ∪ hH(y). Since Im(H) is a chain, we have hH(x · y) ⊃ hH(x) ∪ hH(y). By Lemma 1
(2), we have [0, 1]−hH(x · y) ⊃ ([0, 1]−hH(x))∪ ([0, 1]−hH(y)) = [0, 1]− (hH(x)∩hH(y)).
Thus hH(x · y) ⊂ hH(x) ∩ hH(y). Choose ε = hH(x · y) ∈ P([0, 1]). Then hH(x) ⊃ ε
and hH(y) ⊃ ε. Thus x, y ∈ U+(H; ε) 6= ∅. By assumption, we have U+(H; ε) is a UP-
subalgebra of A and so x · y ∈ U+(H; ε). Thus hH(x · y) ⊃ ε = hH(x · y), a contradiction.
Therefore, hH(x · y) ⊆ hH(x) ∪ hH(y) for all x, y ∈ A. Hence, H is an anti-hesitant fuzzy
UP-subalgebra of A.

Example 12. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
Cayley table from Example 8. Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy
set H on A as follows:
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hH(0) = {0, 1},hH(1) = {1}, hH(2) = {0},hH(3) = {1}, and hH(4) = ∅.

Then Im(H) is not a chain. If ε = {1} or ε = {0}, then U+(H; ε) = {0}. If ε = ∅, then
U+(H; ε) = {0, 1, 3}. Otherwise, U+(H; ε) = ∅. Using this data, we can show that all
nonempty subset U+(H; ε) of A is a UP-subalgebra of A. By Definition 4, we have

hH(0) = (0, 1),hH(1) = [0, 1), hH(2) = (0, 1], hH(3) = [0, 1), and hH(3) = [0, 1].

Since hH(3 ·1) = hH(2) = (0, 1] * [0, 1) = hH(3)∪hH(1), we have H is not an anti-hesitant
fuzzy UP-subalgebra of A.

Theorem 20. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy UP-filter of A, then for all ε ∈ P([0, 1]), U+(H; ε) is a
UP-filter of A if U+(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε) of A is a
UP-filter of A, then H is an anti-hesitant fuzzy UP-filter of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-filter of A. Let ε ∈ P([0, 1]) be
such that U+(H; ε) 6= ∅, and let x ∈ A be such that x ∈ U+(H; ε). Then hH(x) ⊃ ε. Since
H is an anti-hesitant fuzzy UP-filter of A, we have hH(0) ⊆ hH(x). Thus [0, 1]− hH(0) ⊆
[0, 1]− hH(x). Therefore, hH(0) ⊇ hH(x) ⊃ ε. Hence, 0 ∈ U+(hH; ε).

Next, let x, y ∈ A be such that x · y ∈ U+(H; ε) and x ∈ U+(H; ε). Then hH(x · y) ⊃ ε
and hH(x) ⊃ ε. Since H is an anti-hesitant fuzzy UP-filter of A, we have hH(y) ⊆ hH(x ·
y)∪hH(x). By Lemma 1 (2), we have [0, 1]−hH(y) ⊆ ([0, 1]−hH(x ·y))∪ ([0, 1]−hH(x)) =
[0, 1]− (hH(x · y) ∩ hH(x)). Thus hH(y) ⊇ hH(x · y) ∩ hH(x) ⊃ ε. Therefore, y ∈ U+(H; ε).
Hence, U+(H; ε) is a UP-filter of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε)
of A is a UP-filter of A. Assume that there exists x ∈ A such that hH(0) * hH(x). Since
Im(H) is a chain, we have hH(0) ⊃ hH(x). and thus [0, 1] − hH(0) ⊃ [0, 1] − hH(x). So
hH(0) ⊂ hH(x). Choose ε = hH(0) ∈ P([0, 1]). Then hH(x) ⊃ ε. Thus x ∈ U+(H; ε) 6= ∅.
By assumption, we have U+(H; ε) is a UP-filter of A and so 0 ∈ L−(H; ε). Therefore,
hH(0) ⊃ ε = hH(0), a contradiction. Hence, hH(0) ⊆ hH(x) for all x ∈ A.

Next, assume that there exist x, y ∈ A such that hH(y) * hH(x·y)∪hH(x). Since Im(H)
is a chain, we have hH(y) ⊃ hH(x · y) ∪ hH(x). By Lemma 1 (2), we have [0, 1]− hH(y) ⊃
([0, 1]−hH(x·y))∪([0, 1]−hH(x)) = [0, 1]−(hH(x·y)∩hH(x)). Thus hH(y) ⊂ hH(x·y)∩hH(x).
Choose ε = hH(y) ∈ P([0, 1]). Then hH(x · y) ⊃ ε and hH(x) ⊃ ε. Thus x · y, x ∈
U+(H; ε) 6= ∅. By assumption, we have U+(H; ε) is a UP-filter of A and so y ∈ U+(H; ε).
Thus hH(y) ⊃ ε = hH(y), a contradiction. Therefore, hH(y) ⊆ hH(x · y) ∪ hH(x) for all
x, y ∈ A. Hence, H is an anti-hesitant fuzzy UP-filter of A.

Example 13. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
Cayley table from Example 9. Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy
set H on A as follows:
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hH(0) = {0, 1}, hH(1) = {1},hH(2) = {0},hH(3) = ∅, and hH(4) = ∅.

Then Im(H) is not a chain. If ε = {1} or ε = {0}, then U+(H; ε) = {0}. If ε = ∅, then
U+(H; ε) = {0, 1, 2}. Otherwise, U+(H; ε) = ∅. Using this data, we can show that all
nonempty subset U+(H; ε) of A is a UP-filter of A. By Definition 4, we have

hH(0) = (0, 1),hH(1) = [0, 1), hH(2) = (0, 1], hH(3) = [0, 1], and hH(4) = [0, 1].

Since hH(2) = (0, 1] * [0, 1) = hH(1) ∪ hH(1) = hH(1 · 2) ∪ hH(1), we have H is not an
anti-hesitant fuzzy UP-filter of A.

Theorem 21. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy UP-ideal of A, then for all ε ∈ P([0, 1]), U+(H; ε) is a
UP-ideal of A if U+(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε) of A is a
UP-ideal of A, then H is an anti-hesitant fuzzy UP-ideal of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let ε ∈ P([0, 1]) be
such that U+(H; ε) 6= ∅, and let x ∈ A be such that x ∈ U(H; ε). Then hH(x) ⊃ ε. Since
H is an anti-hesitant fuzzy UP-ideal of A, we have hH(0) ⊆ hH(x). Thus [0, 1]− hH(0) ⊆
[0, 1]− hH(x). Therefore, hH(0) ⊇ hH(x) ⊃ ε. Hence, 0 ∈ U+(H; ε).

Next, let x, y, z ∈ A be such that x · (y · z) ∈ U+(H; ε) and y ∈ U+(H; ε). Then
hH(x · (y · z)) ⊃ ε and hH(y) ⊃ ε. Since H is an anti-hesitant fuzzy UP-ideal of A,
we obtain hH(x · z) ⊆ hH(x · (y · z)) ∪ hH(y). By Lemma 1 (2), we have [0, 1] − hH(x ·
z) ⊆ ([0, 1] − hH(x · (y · z))) ∪ ([0, 1] − hH(y)) = [0, 1] − (hH(x · (y · z)) ∩ hH(y)). Thus
hH(x · z) ⊇ hH(x · (y · z)) ∩ hH(y) ⊃ ε. Therefore, x · z ∈ U+(H; ε). Hence, U+(H; ε) is a
UP-ideal of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε)
of A is a UP-ideal of A. Assume that there exists x ∈ A such that hH(0) * hH(x). Since
Im(H) is a chain, we have hH(0) ⊃ hH(x). Then [0, 1] − hH(0) ⊃ [0, 1] − hH(x). Thus
hH(0) ⊂ hH(x). Choose ε = hH(0) ∈ P([0, 1]). Then hH(x) ⊃ ε. Thus x ∈ U+(H; ε) 6= ∅.
By assumption, we have U+(H; ε) is a UP-ideal of A and so 0 ∈ U+(H; ε). Therefore,
hH(0) ⊃ ε = hH(0), a contradiction. Hence, hH(0) ⊆ hH(x) for any x ∈ A.

Next, assume that there exist x, y, z ∈ A such that hH(x · z) * hH(x · (y · z)) ∪ hH(y).
Since Im(H) is a chain, we have hH(x ·z) ⊃ hH(x ·(y ·z))∪hH(y). By Lemma 1 (2), we have
[0, 1]−hH(x·z) ⊃ ([0, 1]−hH(x·(y·z)))∪([0, 1]−hH(y)) = [0, 1]−(hH(x·(y·z))∩hH(y)). Thus
hH(x · z) ⊂ hH(x · (y · z))∩hH(y). Choose ε = hH(x · z) ∈ P([0, 1]). Then hH(x · (y · z)) ⊃ ε
and hH(y) ⊃ ε. Thus x · (y · z), y ∈ U+(H; ε) 6= ∅. By assumption, we have U+(H; ε) is a
UP-ideal of A and so x · z ∈ L−(H; ε). Thus, hH(x · z) ⊃ ε = hH(x · z), a contradiction.
Therefore, hH(x ·z) ⊆ hH(x · (y ·z))∪hH(y) for all x, y, z ∈ A. Hence, H is an anti-hesitant
fuzzy UP-ideal of A.

Example 14. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
Cayley table from Example 10. Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy
set H on A as follows:
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hH(0) = {0, 1}, hH(1) = {1},hH(2) = ∅, hH(3) = {0}, and hH(4) = ∅.

Then Im(H) is not a chain. If ε = {1} or ε = {0}, then U+(H; ε) = {0}. If ε = ∅, then
U+(H; ε) = {0, 1, 3}. Otherwise, U+(H; ε) = ∅. Using this data, we can show that all
nonempty subset U+(H; ε) of A is a UP-ideal of A. By Definition 4, we have

hH(0) = (0, 1),hH(1) = [0, 1), hH(2) = [0, 1], hH(3) = (0, 1], and hH(4) = [0, 1].

Since hH(0 · 1) = hH(1) = [0, 1) * (0, 1] = hH(0) ∪ hH(3) = hH(0 · (3 · 1)) ∪ hH(3), we have
H is not an anti-hesitant fuzzy UP-ideal of A.

Theorem 22. Let H be a hesitant fuzzy set on A. Then the following statements hold :

(1) if H is an anti-hesitant fuzzy strongly UP-ideal of A, then for all ε ∈ P([0, 1]),
U+(H; ε) is a strongly UP-ideal of A if U+(H; ε) is nonempty, and

(2) if Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε) of A is a
strongly UP-ideal of A, then H is an anti-hesitant fuzzy strongly UP-ideal of A.

Proof. (1) Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem
3, we obtain H is a constant hesitant fuzzy set on A. By Corollary 2, we have H is a constant
hesitant fuzzy set on A and so hH(x) = hH(y) for all x, y ∈ A. Let ε ∈ P([0, 1]) be such that
U+(H; ε) 6= ∅. There exists a ∈ U+(H; ε) be such that hH(a) ⊃ ε. Thus hH(x) = hH(a) ⊃ ε
for all x ∈ A and so x ∈ U+(H; ε) for all x ∈ A. Therefore, U+(H; ε) = A. Hence, U+(H; ε)
is a strongly UP-ideal of A.

(2) Assume that Im(H) is a chain and for all ε ∈ P([0, 1]), a nonempty subset U+(H; ε)
of A is a strongly UP-ideal of A. Assume that H is not a constant hesitant fuzzy set
on A. By Corollary 2, we have H is not a constant hesitant fuzzy set on A. There
exist x, y ∈ A be such that hH(x) 6= hH(y). Since Im(H) is a chain, we have hH(x) ⊂
hH(y) or hH(x) ⊃ hH(y). Without loss of generality, assume that hH(x) ⊂ hH(y), then
y ∈ U+(H; hH(x)) 6= ∅. By assumption, we have U+(H; hH(x)) is a strongly UP-ideal of
A and so U+(H; hH(x)) = A. Thus x ∈ A = U+(H; hH(x)) and so hH(x) ⊂ hH(x), a
contradiction. Therefore, H is a constant hesitant fuzzy set on A. By Theorem 3, we
obtain H is an anti-hesitant fuzzy strongly UP-ideal of A.

Example 15. Let A = {0, 1} be a set with a binary operation · defined by the Cayley table
from Example 11. Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A
as follows:

hH(0) = {0}, and hH(1) = {1}.

Then Im(H) is not a chain. If ε = ∅, then U+(H; ε) = A. Otherwise, U+(H; ε) = ∅. Thus
a nonempty subset U+(H; ε) of A is a strongly UP-ideal of A. By Definition 4, we have

hH(0) = (0, 1], and hH(1) = [0, 1).

By Theorem 3 and because H is not a constant hesitant fuzzy set on A, we have H is not
an anti-hesitant fuzzy strongly UP-ideal of A.
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5.5. Equal ε-Level Subsets

Theorem 23. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A,
then for all ε ∈ P([0, 1]), a nonempty subset E(H; ε) of A is a UP-subalgebra of A where
L−(H; ε) is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let ε ∈ P([0, 1])
be such that E(H; ε) 6= ∅ but L−(H; ε) = ∅, and let x, y ∈ A be such that x ∈ E(H; ε)
and y ∈ E(H; ε). Then hH(x) = ε and hH(y) = ε. Because H is an anti-hesitant fuzzy
UP-subalgebra of A, we have hH(x · y) ⊆ hH(x) ∪ hH(y) = ε. Thus x · y ∈ L(H; ε).
Since L−(H; ε) is empty, we obtain L(H; ε) = L−(H; ε)∪E(H; ε) = ∅ ∪E(H; ε) = E(H; ε).
Therefore, x · y ∈ E(H; ε). Hence, E(H; ε) is a UP-subalgebra of A.

The following example show that the converse of Theorem 23 is not true in general.

Example 16. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 1 1 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = ∅, hH(1) = [0, 0.6], hH(2) = [0, 0.3], and hH(3) = [0, 0.3].

If ε 6= ∅, then L−(H; ε) 6= ∅. If ε = ∅, then L−(H; ε) = ∅ and E(H; ε) = {0}. Thus E(H; ε)
is clearly a UP-subalgebra of A. Since hH(3·2) = hH(1) = [0, 0.6] * [0, 0.3] = hH(3)∪hH(2),
we have H is not an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 24. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A, then
for all ε ∈ P([0, 1]), a nonempty subset E(H; ε) of A is a UP-filter of A where L−(H; ε) is
empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let ε ∈ P([0, 1]) be
such that E(H; ε) 6= ∅ but L−(H; ε) = ∅, and let x ∈ A be such that x ∈ E(H; ε). Then
hH(x) = ε. Because H is an anti-hesitant fuzzy UP-filter of A, we obtain hH(0) ⊆ hH(x) = ε
and thus 0 ∈ L(H; ε). Since L−(H; ε) is empty, we have 0 ∈ L(H; ε) = E(H; ε).

Next, let x, y ∈ A be such that x · y ∈ E(H; ε) and x ∈ E(H; ε). Then hH(x · y) = ε
and hH(x) = ε. Because H is an anti-hesitant fuzzy UP-filter of A, we have hH(y) ⊆ hH(x ·
y) ∪ hH(x) = ε. Thus y ∈ L(H; ε). Since L−(H; ε) is empty, we obtain L(H; ε) = E(H; ε).
Therefore, y ∈ E(H; ε). Hence, E(H; ε) is a UP-filter of A.

The converse of Theorem 24 is not true in general. By Example 16, we still have
E(H; ε) = {0} is a UP-filter of A. Since hH(1) = [0, 0.6] * [0, 0.3] = hH(0) ∪ hH(2) =
hH(2 · 1) ∪ hH(2), we have H is not an anti-hesitant fuzzy UP-filter of A.
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Theorem 25. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A, then
ε ∈ P([0, 1]), a nonempty subset E(H; ε) of A is a UP-ideal of A where L−(H; ε) is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let ε ∈ P([0, 1]) be
such that E(H; ε) 6= ∅ but L−(H; ε) = ∅, and let x ∈ A be such that x ∈ E(H; ε). Then
hH(x) = ε. Because H is an anti-hesitant fuzzy UP-ideal of A, we obtain hH(0) ⊆ hH(x) = ε
and thus 0 ∈ L(H; ε). Since L−(H; ε) is empty, we have 0 ∈ L(H; ε) = E(H; ε).

Next, let x, y, z ∈ A be such that x · (y · z) ∈ E(H; ε) and y ∈ E(H; ε). Then hH(x ·
(y · z)) = ε and hH(y) = ε. Because H is an anti-hesitant fuzzy UP-ideal of A, we have
hH(x · z) ⊆ hH(x · (y · z)) ∪ hH(y) = ε. Thus x · z ∈ L(H; ε). Since L−(H; ε) is empty, we
obtain L(H; ε) = E(H; ε). Therefore, x · z ∈ E(H; ε). Hence, E(H; ε) is a UP-ideal of A.

The converse of Theorem 25 is not true in general. By Example 16, we still have
E(H; ε) = {0} is a UP-ideal of A. Since hH(0 · 1) = hH(1) = [0, 0.6] * [0, 0.3] = hH(0) ∪
hH(2) = hH(0 · (2 · 1)) ∪ hH(2), we have H is not an anti-hesitant fuzzy UP-ideal of A.

Theorem 26. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of
A if and only if E(H; hH(0)) is a strongly UP-ideal of A.

Proof. Assume that H is an anti-hesitant fuzzy strongly UP-ideal of A. By Theorem
3, we obtain H is a constant hesitant fuzzy set on A and so hH(x) = hH(0) for all x ∈ A.
Then E(H; hH(0)) = A. Hence, E(H; hH(0)) is a strongly UP-ideal of A.

Conversely, assume that E(H; hH(0)) is a strongly UP-ideal of A. Then E(H; hH(0)) =
A and so hH(x) = hH(0) for all x ∈ A. Therefore, H is a constant hesitant fuzzy set on A.
By Theorem 3, H is an anti-hesitant fuzzy strongly UP-ideal of A.

Moreover, we still obtain theorems of equal ε-level subsets with a hesitant fuzzy
UP-subalgebra. (resp., hesitant fuzzy UP-filter, hesitant fuzzy UP-ideal, hesitant fuzzy
strongly UP-ideal)

Theorem 27. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-subalgebra of A,
then for all ε ∈ P([0, 1]), a nonempty subset E(H; ε) of A is a UP-subalgebra of A where
U+(H; ε) is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-subalgebra of A. Let ε ∈ P([0, 1])
be such that E(H; ε) 6= ∅ but U+(H; ε) = ∅, and let x, y ∈ A be such that x ∈ E(H; ε)
and y ∈ E(H; ε). Then hH(x) = ε and hH(y) = ε. Since H is an anti-hesitant fuzzy
UP-subalgebra of A, we have hH(x · y) ⊇ hH(x) ∩ hH(y) = ε. Thus x · y ∈ U(H; ε). Since
U+(H; ε) is empty, we obtain U(H; ε) = U+(H; ε) ∪ E(H; ε) = ∅ ∪ E(H; ε) = E(H; ε).
Therefore, x · y ∈ E(H; ε). Hence, E(H; ε) is a UP-subalgebra of A.

The following example show that the converse of Theorem 27 is not true in general.

Example 17. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by the following
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Cayley table:
· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 0 0 0
3 0 0 1 0

Then (A, ·, 0) is a UP-algebra. We define a hesitant fuzzy set H on A as follows:

hH(0) = [0, 1],hH(1) = {0},hH(2) = [0, 0.1], and hH(3) = [0, 0.1].

If ε 6= [0, 1], then U+(H; ε) 6= ∅. If ε = [0, 1], then U+(H; ε) = ∅ and E(H; ε) = {0}.
Thus E(H; ε) is clearly a UP-subalgebra of A. Since hH(3 · 2) = hH(1) = {0} + [0, 0.1] =
hH(3) ∩ hH(2), we have H is not an anti-hesitant fuzzy UP-subalgebra of A.

Theorem 28. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-filter of A, then
for all ε ∈ P([0, 1]), a nonempty subset E(H; ε) of A is a UP-filter of A where U+(H; ε)
is empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-filter of A. Let ε ∈ P([0, 1]) be
such that E(H; ε) 6= ∅ but U+(H; ε) = ∅, and let x ∈ A be such that x ∈ E(H; ε). Then
hH(x) = ε. Because H is an anti-hesitant fuzzy UP-filter of A, we obtain hH(0) ⊇ hH(x) = ε
and thus 0 ∈ U(H; ε). Since U+(H; ε) is empty, we have 0 ∈ U(H; ε) = E(H; ε).

Next, let x, y ∈ A be such that x · y ∈ E(H; ε) and x ∈ E(H; ε). Then hH(x · y) = ε
and hH(x) = ε. Because H is an anti-hesitant fuzzy UP-filter of A, we have hH(y) ⊇ hH(x ·
y) ∩ hH(x) = ε. Thus y ∈ L(H; ε). Since U+(H; ε) is empty, we obtain U(H; ε) = E(H; ε).
Therefore, y ∈ E(H; ε). Hence, E(H; ε) is a UP-filter of A.

The converse of Theorem 28 is not true in general. By Example 17, we still have
E(H; ε) = {0} is a UP-filter of A. Since hH(1) = {0} + [0, 0.1] = hH(0) ∩ hH(3) =
hH(3 · 1) ∩ hH(3), we have H is not an anti-hesitant fuzzy UP-filter of A.

Theorem 29. If a hesitant fuzzy set H on A is an anti-hesitant fuzzy UP-ideal of A, then
for all ε ∈ P([0, 1]), a nonempty subset E(H; ε) of A is a UP-ideal of A where U+(H; ε) is
empty.

Proof. Assume that H is an anti-hesitant fuzzy UP-ideal of A. Let ε ∈ P([0, 1]) be
such that E(H; ε) 6= ∅ but U+(H; ε) = ∅, and let x ∈ A be such that x ∈ E(H; ε). Then
hH(x) = ε. Because H is an anti-hesitant fuzzy UP-filter of A, we obtain hH(0) ⊇ hH(x) = ε
and thus 0 ∈ U(H; ε). Since U+(H; ε) is empty, we have 0 ∈ U(H; ε) = E(H; ε).

Next, let x, y, z ∈ A be such that x · (y · z) ∈ E(H; ε) and y ∈ E(H; ε). Then hH(x ·
(y · z)) = ε and hH(y) = ε. Since H is an anti-hesitant fuzzy UP-ideal of A, we have
hH(x · z) ⊇ hH(x · (y · z)) ∩ hH(y) = ε. Thus x · z ∈ U(H; ε). Since L−(H; ε) is empty, we
obtain U(H; ε) = E(H; ε). Therefore, x · z ∈ E(H; ε). Hence, E(H; ε) is a UP-ideal of A.

The converse of Theorem 29 is not true in general. By Example 17, we still have
E(H; ε) = {0} is a UP-ideal of A. Since hH(3·2) = hH(1) = {0} + [0, 0.1] = hH(0)∩hH(2) =
hH(3 · (2 · 2)) ∩ hH(2), we have H is not an anti-hesitant fuzzy UP-ideal of A.
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Theorem 30. A hesitant fuzzy set H on A is an anti-hesitant fuzzy strongly UP-ideal of
A if and only if E(H; hH(0)) is a strongly UP-ideal of A.

Proof. It is straightforward by Theorem 26 and 3.

6. Conclusions and Future Work

In this paper, we have introduced the notion of anti-hesitant fuzzy UP-subalgebras
(resp., anti-hesitant fuzzy UP-filters, anti-hesitant fuzzy UP-ideals and anti-hesitant fuzzy
strongly UP-ideals) of UP-algebras and investigated some of its important properties.
Then we have the diagram of anti-type of hesitant fuzzy sets on UP-algebras below.

In our future study of UP-algebras, may be the following topics should be considered:

• To get more results in anti-hesitant fuzzy UP-subalgebras, anti-hesitant fuzzy UP-
filters, anti-hesitant fuzzy UP-ideals, and anti-hesitant fuzzy strongly UP-ideals of
UP-algebras.

• To define anti-hesitant fuzzy soft UP-subalgebras, anti-hesitant fuzzy soft UP-filters,
anti-hesitant fuzzy soft UP-ideals, and anti-hesitant fuzzy soft strongly UP-ideals
over UP-algebras.

• To define operations of hesitant fuzzy soft sets over UP-algebras.
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