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Abstract. Fractional order calculus always includes integer-order too. The question that crops
up is: Can it be a widely accepted generalized version of classical calculus? We attempt to
highlight the current problems that come in the way to define the fractional calculus that will
be universally accepted as a perfect generalized version of integer-order calculus and to point out
the efforts in this direction. Also, we discuss the question: Given a non-integer fractional order
differential equation as a mathematical model can we readily write the corresponding physical
model and vice versa in the same way as we traditionally do for classical differential equations?
We demonstrate numerically computationally the pros and cons while addressing the questions
keeping in the background the generalization of the inverse of a matrix.
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1. Introduction

Fractional calculus is the calculus investigating the properties of derivatives and inte-
grals of both integer order and non-integer fractional order called fractional derivatives
and fractional integrals, in short differintegrals. Specifically, this discipline introduces
the notion and methods of solving differential equations both ordinary and partial con-
sisting of fractional derivatives of the unknown function (named as fractional differential
equations or FDEs in short).

The history of fractional calculus began almost at the same time (late 17th century
A.D.) when conventional (classical) calculus viz. integer-order calculus was established. In
conventional calculus, both derivatives and integrals (anti-derivatives a term not widely
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used) are exactly defined with corresponding exact physical significance that is taught in
high schools/colleges and is uniquely and readily understood.

The classical differential equations viz. the integer order differential equations both
ordinary and partial also pervades not only almost the whole of science and engineering
applications but also the whole of relatively easily understood mathematical modelling for
physical problems involving derivatives and integrals. The concerned scientists/modellers
attempted to model some of these physical problems in terms of non-integer fractional
order differential equations and to demonstrate the scope of fractional differential equations
against the classical ones. Their attempts mostly were limited to mathematical treatment
rather than a serious computational one.

A rigorous computational treatment both in terms of quality of the numerical solution
(computational relative error) and the cost of the solution (computational complexity)
for fractional differential equations were practically not done and then compared with
the corresponding integer order differential equations for a specified physical problem, the
claim/statement was often in favour of fractional differential equations though in some
sense.

In fractional calculus, both derivatives and integrals are also exactly defined but with
no corresponding exact physical significance that is readily understood exactly in the same
way as those in the conventional calculus.

For instance, Newtons 1st law of motion viz. Every object (a point mass, say) either
remains at rest eternally or continues to move at a constant velocity eternally, unless acted
upon by an external impressed force. is understood without any ambiguity.

In our physical environment, it is not possible to have external impressed force (from
any of the infinity of possible directions) to have exact zero value, we can easily imagine
(the exact zero value) though. There could be, for example, air resistance against the
direction of movement of the object or air assistance/flow in the direction of the movement
of the object as an external impressed force over a finite (not infinite) period of time since
we have not been able to create exact vacuum in our environment nor possibly does it
exist in the universe.

Or/and there could be any other friction (external impressed) force such as the one
created by the surface on/through which the object is moving. Consequently the moving
object cannot move eternally. It eventually comes to a halt based on the strength of the
friction forces. If the object is stationary/static, then, however, such a friction has no
effect on the object or, equivalently, a friction simply does not exist.

Mathematicians may consider the foregoing real-world situation as an ideal example of
introducing non-integer (fractional) order calculus that necessarily brings (corresponds to)
one or more friction forces and explains rather more conveniently the real-world situation
for the object in motion.

The question is: Can we readily know/find out the value of the fraction that corre-
sponds precisely to the friction forces in the same way as we do in the classical calcu-
lus/models?

An ansatz (An ansatz is the establishment of the starting equation(s), the theo-
rem(s)/the value(s) describing a physical problem or mathematical model or solution.
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It can take into consideration boundary conditions. Having established an ansatz con-
stituting essentially an assumption, the equations are solved for the general function of
interest constituting a confirmation of the assumption.) for friction forces FR is a usually
followed power law

FR = −µ sign(v)|v|α, (1)

where µ is the friction coefficient measured in [kg/s(2−α)] in MKS unit system, The value
α is an arbitrarily chosen real exponent. In special cases, α ≈ 0 found for static and
kinetic friction for solids, α=1 observed for Stokes friction in liquids with high velocity,
α ≈ 2 used as a general trend for high velocity.

The nonlinear ordinary differential equation using Newtons 2nd law of motion with
friction forces is

m(ẍ) = FR = −µ sign(v)|ẋ|α, (2)

where the initial conditions are
x(t = 0) = x0 (3)

v(t = 0) = ẋ(t = 0) = v0 (4)

The point mass m is measured in [kg]. If ẋ = v(t) is positive, the foregoing ordinary
differential equation (2) reduces to

m(ẍ) = −µ ẋα (5)

When α = 1, the classical force and the fractional friction force coincide. But for α 6= 1
i.e. for all other real α except 1,

ẋα = (
dx

dt
)α 6= dαx

dtα
(6)

Thus we expect a dynamic behaviour different from the classical one. The fractional
differential equation

m(ẍ) = −µ dαx

dtα
ẋ(t) > 0 (7)

with initial conditions (3) and (4) determines the dynamical behaviour of the classical
object (point mass m) to a fractional friction force. Using the Liouvilles definition of the
fractional derivative and using the ansatz

x(t) = eωt (8)

we obtain the general solution consisting of 3 different constants [1]. We thus need yet 1
more condition besides the foregoing 2 initial conditions. By choosing this 1 condition a
reasonable numerical value, we get a solution. Since we can have many reasonable choices,
there will be infinitely many (but a finite number of solutions in a digital computer since
it is a finite precision machine) numerical solutions.

By appropriate choices of the condition, we could see that the solutions of the fractional
differential equation match up to the 2nd order term in t with the solutions computed for
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the Newtonian equation of motion with the classical friction force term (1) [1]. Hence
the difference between the fractional solutions and the classical solutions manifests both
numerically and graphically when t is sufficiently greater than 1[1].

It can be seen that there is an alternative choice for 3rd initial condition. Let the initial
(maximum) velocity of the object (point mass) decrease through all stages of motion due
to the fractional friction force. Hence, in addition to the initial conditions (3) and (4), we
introduce the 3rd initial condition [1].

v̇(t = 0) = ẍ(t = 0) = 0 (9)

For the general symbolic (mathematical) solution of the FDE (including a fractional fric-
tion force) valid for t=0 up to t0 – the final time when the object halts permanently, see
[1, Page 28]. t0 is obtained as

t0 =
π

(ᾱ)ϕsin(πᾱ)
(10)

where
ϕ = | µ

m
|

1
ᾱ , ᾱ = 2− α (11)

The foregoing example of an ever-existing friction force can be tackled always by the
integer-order (i.e. classical) calculus without any recourse to fractional calculus, provided
we know/determine the friction force by an experiment or otherwise. Hence it is not abso-
lutely necessary to bring fractional calculus into picture for solving any physical problem.

The solution of a fractional differential equation with appropriate initial/ boundary
conditions (BCs) will be an analytic function as is the case with that of classical differential
equation. Numerically, the solution will be a (numerical) table consisting of the values
of the independent variables and the corresponding values of the function. The function
values can be graphically represented for the function of 1 or 2 independent variables
since we can visualize 0, 1, 2, and 3 dimensional objects and not beyond, a mathematical
extension beyond dimension 3 is always possibe and also is required for most real-word
physical problems though.

The numerical table for the function of n independent variables (n is a finite integer)
can be depicted, but cannot be graphically represented on a 2-dimensional paper when n
is greater than 2. It can be seen that the graph is a less accurate form of the numerical
solution, it is visually very useful though. The recreation of the numerical table from the
graph will have accuracy even less than (or at best equal to) that of the graph.

Once the foregoing analytic function is known as the solution of the fractional differ-
ential equation, one can readily determine the corresponding classical differential equation
with appropriate initial conditions. This implies that the fractional differential equations
are not absolutely essential to solve any physical problem that can be tackled by the ap-
propriate classical differential equations. In other words, there exists no physical problem
in nature, which does not have a classical differential equation (CDE) model but has a
fractional differential equation (FDE) model.

Thus the knowledge of fractional differential equations may be considered redundant
from the engineering and scientific applications point of view. But the concerned quality
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(error) and cost (complexity) of the solution of FDE need to be explored for computa-
tional competitiveness with that of classical differential equation (CDE) for engineering
applications.

Are the FDE models better than CDE models in terms of quality and cost of the
numerical solutions always (for solving a concerned physical problem)? If the answer is
no implying not always, then which are the practical situations when the FDE models are
better? This issue will be discussed elsewhere.

The interpretation of a fractional differential equation, more simply a non-integer frac-
tional derivative and that of a classical differential equation, more simply an integer-order
derivative are different more specifically from the exact comprehension of the correspond-
ing physical problem point in view.

The later interpretation has been readily exactly comprehended and easily understood
while the former one has not been.

However, the exact value of the fraction in the fractional order cannot be readily known
from the physical problem except through a numerical experiment or by some other means
(say trial and error).

Special cases of the foregoing general solution are the following solutions [1]:

x(t) = x0 +
v0sin(ϕt)

ϕ
(for α = 0 i.e., for free oscillation) (12)

x(t) = x0 + v0(2− (2 + ϕt)e−ϕt) (for α = 1) (13)

This is a totally new function type. The role of the initial velocity v0 is not more than
just a scaling factor. In terms of free oscillation (α = 0) as well as in terms of damped
oscillation (0 < α ≤ 1), the time variant solutions may be better understood when we
consider the 1st quarter period to describe the process of a fractional friction force [1].

The presentation of the foregoing solutions is to reveal the effect of fractional friction
forces on the solution. How do we integrate and merge these facts so that the classical
calculus becomes a special case of fractional calculus?

The solutions of the differential equation

mẍ(t) + γẋ(t) + kx(t) = 0 (14)

for the damped classical harmonic oscillator will allow us to investigate and understand
this aspect of fractional friction, where m, γ, k are the mass, the damping coefficient, and
the spring constant of the oscillator, respectively [1].

For every value of the fraction in a fractional mathematical model usually an FDE
what will precisely be the corresponding physical model?

In a digital computer (finite precision machine), concerning differential equations, there
will be a very large but finite number of physical models. Corresponding to each of these
physical models there will also be an integer-order mathematical model.

Will each of the integer order models be equivalent numerically to the corresponding
fractional order mathematical model over the complete interval (range) of integration?
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Besides, quality of a numerical solution – a must for any engineering use as an engi-
neer needs a solution in numbers not in mathematical symbols – implying computational
relative error bounds needs to be determined. This quality (the error bounds) allows
us to compare relative quality of 2 or more different algorithms – both fractional and
corresponding integer order [2].

Cost (computational complexity) of the numerical solution also needs to be obtained.
This cost permits us to choose that algorithm out of 2 or more algorithms, which is least
expensive computationally [2].

Out of the foregoing 2 parameters viz. quality and cost, usually quality is more im-
portant than cost since most of the differential equation models are not too large. This is
particularly so in the current (21st century) computational scenario where the computa-
tional power has reached/crossed 1018 flops (floating-point operations per second).

The fractional derivative for powers was systematically studied by Riemann:

dα

dxα
xk =

Γ(1 + k)

Γ(1 + k − α)
xk−α (15)

In the foregoing equation, we restrict x ≥ 0, k ≥ 0 to ensure the uniqueness of the frac-
tional derivative definition. The fractional derivative of the exponential function was given
by Liouville and that of trigonometric functions was proposed by Fourier. Around 100
years earlier Leibniz and Euler attempted to solve this problem of fractional derivatives.
According to Riemanns definition, the fractional derivative of the constant x0 is given by

dα

dxα
x0 =

1

Γ(1− α)
x−α (16)

which is not equal to 0, the known behaviour in the integer order derivative. If α = 0
or 1, then the Riemann definition is compatible with the conventional calculus definition.
Consequently as an additional postulate Caputo imposed

dα

dxα
x0 = 0 (17)

We have thus 4 different definitions of a fractional derivative. The common aspects of all
these definitions satisfy a correspondence principle:

limα→n
dα

dxα
f(x) =

dn

dxn
f(x), n = 0, 1, 2, ... (18)

and the rules
dα

dxα
cf(x) = c

dα

dxα
f(x) (19)

dα

dxα
[f(x) + g(x)] =

dα

dxα
f(x) +

dα

dxα
g(x) (20)

This principle and the rules need to be strictly adhered to by any other definition of
fractional derivatives. If these are not adhered to by a definition, then such a definition



S. K.Sen, J. V. Devi, R.V.G. R. Kumar / Eur. J. Pure Appl. Math, 11 (3) (2018), 1058-1099 1064

will not merit in the first place as a possible candidate for an attempt of fractional calculus
to be a generalized version of conventional calculus.

Further, we can define, in analogy to the well-known Taylor series expansion, series
on these 4 different function classes and specify the corresponding fractional derivatives
according to Liouville, Fourier, Riemann, and Caputo:
Liouville: If f(x) =

∑∞
k=0 ake

kx, then

dα

dxα
f(x) =

∞∑
k=0

akk
αekx (21)

Fourier: If f(x) = a0 +
∑∞

k=1 aksin(kx) +
∑∞

k=1 bkcos(kx), then

dα

dxα
f(x) =

∞∑
k=1

akk
αsin(kx+

πα

2
) +

∞∑
k=1

bkcos(kx+
πα

2
) (22)

Riemann: If f(x) =
∑∞

k=0 akx
kα, then

dα

dxα
f(x) =

∞∑
k=0

ak+1
Γ((k + 2)α)

Γ((k + 1)α)
xkα (23)

Caputo: If f(x) =
∑∞

k=0 akx
kα, then

dα

dxα
f(x) =

∞∑
k=0

ak+1
Γ(1 + (k + 1)α)

Γ(1 + kα)
xkα (24)

by considering the foregoing infinite series/exponential functions.
Are these 4 definitions equivalent? The answer is No. This can be demonstrated by

considering the exponential function f(x) = ex as an example. According to Caputo

dα

dxα
f(x) =

∞∑
n=1

xn−α

Γ(1 + n+ α)
= x1−α E(1, 2− α, x) (25)

where E(1, 2−α, x) is a generalized Mittag-Leffler function and evidently not an exponen-
tial function any more. This is in contrast to Louvilles definition. The non-equivalence
of these definitions is disturbing and an obstacle to the attempt of making fractional
derivatives a generalized version of classical derivatives.

However, not only such an obstacle but also other obstacles that we could encounter
for some function or the other need to be overcome by more appropriately defining the
fractional derivatives. Once a generalization compatible with the concerned physical prob-
lems is achieved, the fractional calculus will be a part of the regular university curriculum
for the students.

There could be many problems from physics which might be beneficially numerically
solved using an appropriate mathematical model based on fractional differential equations.
But this may not have direct connection to the generalized version of the calculus.
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If a physical frictional model can be readily converted to a non-integer fractional differ-
ential equation model and vice versa exactly in the same way as we could do for integer-
order differential equation model, then it would be a break-through in the process of
achieving the desired generalization.

The unique generalized matrix inverse (viz. the Moore-Penrose matrix inverse also
known as the minimum-norm least-squares inverse of the matrix or as the pseudo-inverse
of the matrix) out of the possible infinity of generalized inverses of a matrix has been
beautifully integrated and merged with the true matrix inverse during 1950-1970s. This
integration is included in all university science and engineering curricula.

The pseudo-inverse [3] (the term is coined by Gene H. Golub of Stanford University
and is used widely) of any matrix square, non-square rectangular, and singular –is unique
and always exists unlike the true inverse that exists only for non-singular (necessarily
square) matrices. The pseudo-inverse is meant for solving non-square rectangular as well
as square linear systems and is extensively used in science and engineering applications.

The pseudo-inverse is non-redundant in the sense that the true inverse cannot take the
place of the pseudo-inverse for solving linear equations including inconsistent equations
(for inconsistent systems, the minimum-norm least-squares solution is obtained and is
used and this solution is of paramount importance in all our concerned physical problems
numerically). If the matrix is non-singular then the pseudo-inverse is the true inverse of
the matrix.

In a linear consistent system if the matrix is near-singular then computational er-
ror creeps in the solution irrespective of whether the inverse is true (when it exists and
computable within the available finite precision of the computer) or pseudo. The more
pronounced the singularity is, the more will be the computational error. Depending on the
context, this error may or may not be acceptable. Strictly speaking while a singular linear
system like a non-singular one poses no extraordinary error problem for a true solution or
the minimum norm least-squares solution, a near-singular system does. So a near-singular
linear system may be termed ill-conditioned with respect to its solution while a strictly
singular as well as a non-singular (sufficiently away from a near-singular (depending on
the precision/context)) linear system may not be.

If the pseudo-inverse of the rectangular matrix A is B, then the pseudo inverse of the
matrix B is the matrix A. Could the fractional calculus be made to have a similar status
in future by appropriate definitions and procedures?

In other words, once the integer-order derivative/fractional derivative of a function is
known, can we get back the original function using its anti-derivative (i.e. the integra-
tion/fractional integration of the derivative) by imposing the concerned condition(s)?

While computing the ever-existent pseudo-inverse or the non-ever existent true inverse
(true matrix inverse does not exist for non-square rectangular matrices as well as square
singular matrices) of a matrix, no fractional power of the matrix is involved in computing
the pseudo-inverse. This is quite unlike the fractional calculus operations.

However, for a square singular or a non-singular matrix A, we can find its fractional
power B = Aα. Hence B(1/α) = A for α positive real. If α is complex with the imaginary
part 6= 0, then the preceding rule may not be valid for every matrix whose order is greater
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then 1. A fractional positive real power α of the matrix A could have more than one
matrix. Everyone of these matrices with power 1

α will result in the original matrix A.
If the matrix A is rectangular real/complex, then appending 0 rows or 0 columns it can

be made square. Replace the original rectangular matrix A by this new square matrix.
That is, the most recent matrix A is square singular. The foregoing fractional power
rule in the preceding paragraph is perfectly valid for this matrix A for α positive real.
Incidentally, the identical rule is always valid for a real/complex matrix of order 1. A
real/complex number may be viewed as a real/complex matrix of order 1 and vice versa.

The following numerical examples produced using Matlab demonstrate the foregoing
facts.

>> A = [1+1i 2−2i 3+3i; 4+4i 5+5i 6−6i; 7+7i 8−8i 9+9i], B = A∧(.4− .7i),
C = B∧(1/(.4− .7i))

(The matrices A and C will be the same)

A =1.0000 + 1.0000i 2.0000 - 2.0000i 3.0000 + 3.0000i
4.0000 + 4.0000i 5.0000 + 5.0000i 6.0000 - 6.0000i
7.0000 + 7.0000i 8.0000 - 8.0000i 9.0000 + 9.0000i

B = 0.0304 - 0.6891i -0.3652 + 0.8921i -0.1599 - 1.5749i
0.9850 - 0.7253i 2.0753 - 4.7575i -2.1730 + 2.2331i

-0.3766 - 1.8286i -1.9743 + 2.9792i i -0.1007 - 5.6070i

C = 1.0000 + 1.0000i 2.0000 - 2.0000i 3.0000 + 3.0000i
4.0000 + 4.0000i 5.0000 + 5.0000i 6.0000 - 6.0000i

7.0000 + 7.0000i 8.0000 - 8.0000i 9.0000 + 9.0000i

>> clear all; close all

>> A = [1 2 3 4; 5 6 7 8], C = [A; zeros(2, 4)], B = C ∧ (.4− .7i), D = B ∧ (1/(.4− .7i))
(The matrix B and hence the matrix D do not exist.)

A = 1 2 3 4
5 6 7 8

C = 1 2 3 4
5 6 7 8
0 0 0 0
0 0 0 0

B = NaN + NaNi NaN + NaNi NaN + NaNi NaN + NaNi
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NaN + NaNi NaN + NaNi NaN + NaNi NaN + NaNi
NaN + NaNi NaN + NaNi NaN + NaNi NaN + NaNi
NaN + NaNi NaN + NaNi NaN + NaNi NaN + NaNi

(NaN means Not a Number and implies usually division by 0)
??? Error using ==> mpower
Input to EIG must not contain NaN or Inf.

>> A = [1 2 3 4; 5 6 7 8], C = [A; zeros(2, 4)], B = C ∧ .4, D = B ∧ (1/.4)
The matrices C and D are identical.)

A = 1 2 3 4
5 6 7 8

C = 1 2 3 4
5 6 7 8
0 0 0 0
0 0 0 0

B = 0.6202 + 0.5982i 0.4968 - 0.1832i 0.3733 - 0.9645i 0.2499 - 1.7458i
1.2420 - 0.4579i 1.8622 + 0.1402i 2.4825 + 0.7384i 3.1027 + 1.3366i

0 0 0 0
0 0 0 0

D =1.0000 + 0.0000i 2.0000 - 0.0000i 3.0000 - 0.0000i 4.0000 - 0.0000i
5.0000 + 0.0000i 6.0000 - 0.0000i 7.0000 - 0.0000i 8.0000 - 0.0000i

0 0 0 0
0 0 0 0

>> a = 5 + 7i, b = a ∧ (.4− .7i), c = b ∧ (1/(.4− .7i))

(complex power of a complex number (1x1 matrix)

a = 5.0000 + 7.0000i
b =1.9787 - 4.1534i
c = 5.0000 + 7.0000i (c is the same as a as these should be.)

>> A = [1 + 1i 2−2i 3 + 3i; 4 + 4i 5 + 5i 6−6i; 7 + 7i 8−8i 9 + 9i], B = A∧ (.4− .7i),
C = B ∧ (1/(.4− .7i))

(The matrix C is the same as the matrix A as is expected here.)

A =1.0000 + 1.0000i 2.0000 - 2.0000i 3.0000 + 3.0000i
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4.0000 + 4.0000i 5.0000 + 5.0000i 6.0000 - 6.0000i
7.0000 + 7.0000i 8.0000 - 8.0000i 9.0000 + 9.0000i

B = 0.0304 - 0.6891i -0.3652 + 0.8921i -0.1599 - 1.5749i
0.9850 - 0.7253i 2.0753 - 4.7575i -2.1730 + 2.2331i

-0.3766 - 1.8286i -1.9743 + 2.9792i i -0.1007 - 5.6070i

C = 1.0000 + 1.0000i 2.0000 - 2.0000i 3.0000 + 3.0000i
4.0000 + 4.0000i 5.0000 + 5.0000i 6.0000 - 6.0000i

7.0000 + 7.0000i 8.0000 - 8.0000i 9.0000 + 9.0000i

The Matlab provides only 1 of these possible matrices (as answers) and this serves
our purpose for solving a physical problem well unless the context demands something
different from the usual stuff.

We provide in section 2 the problems and efforts toward generalizing the calculus such
that the integer order (classical) calculus is integrated/merged with/into the fractional
one. One of the popular fractional derivative viz. Grunwald-Letnikov derivative demon-
strates numerically and also graphically how the derivatives behave and how well they
integrate/merge with the integer order ones. This is essentially an effort by the mathe-
maticians/physicists toward making fractional calculus a generalized version that includes
integer-order calculus. Also included in this section FDE and its integration with the
classical one and the interpretation.

In section 3 we raise a few of questions on fractional ODEs (FODEs) regarding how
we convert these to a system of α-th order FODEs or/and 1st order ODEs, how many
initial conditions we would need to solve these ODEs, and what procedure(s) we could
design and develop to numerically solve the system. Also talked about in this section are
the partial as well as complete generalizations of calculus dealing with both fractional and
integer orders. Conclusions are included in section 4.

2. Problems and Efforts

2.1. Leibnitz Product Rule

The Leibniz Product Rule (LPR) for integer order derivatives (IOD) is

d

dx
(f1(x)f2(x)) =

df1

dx
f2 + f1

df2

dx
(26)

But the LPR is not valid for fractional order derivatives:

dα

dx
(f1(x)f2(x)) 6= dαf1

dx
f2 + f1

dαf2

dx
, if(α 6= 1) (27)

The proof follows from the counter-example where f1(x) = ek1x, f2(x) = ek2x The forego-
ing product rule will be valid for the given problem if kα1 + kα2 = (k1 + k2)α i.e., if k1 = k2
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and α = any nonnegative integer, or α = 1. This is undesirable for a generalization of
the rule. Is this problem not surmountable by designing an appropriate procedure? The
answer is No. That is, the problem is surmountable.

The LPR for generalized derivative (valid for IOD as well as fractional order derivative
(FOD) may be given:

Define dα

dxα = Dα When α = n ∈ N is an arbitrary integer (N is the set of natural
numbers), then

Dn(f1f2) =

n∑
j=0

nCjD
n−jf1D

jf2 (28)

For arbitrary α,

Dα(f1f2) =

∞∑
j=0

αCjD
α−jf1D

jf2 (29)

where f1, f2 are functions of the independent variable x. The foregoing rules (28) and
(29), though more expensive, in general, from quality (implying more computational rel-
ative error) and cost (implying more computational complexity) points of view, are still
generalized LPR.

However, a direct transfer of any standard rule of classical calculus to fractional cal-
culus could be hazardous. In every case the rule used in fractional calculus needs to be
checked for its validity.

A useful strategy for a satisfactory generalization scheme is a 2-step procedure[1]:
Step 1. Derive a rule which is valid for all n ∈ N .
Step 2. Replace n by α ∈ C and check the validity,

where C is the set of complex numbers.

Computationally, the LPR is not an essentially required rule. Computation is a must
in all engineering and science applications. Nobody can escape computation if he has some
thing to do with a real world physical problem. Consequently, it is very much more impor-
tant than the pure mathematical treatment of fractional calculus/differential equations.
Let x be defined in a finite interval [a, b], where a,b are numerical values. Suppose that
f1(x), f2(x), f1(x)f2(x) are functions defined by/computed as a numerical table having 4
columns viz.

x f1(x) f2(x) f1(x)f2(x)

a f1(a) f2(a) f1(a)f2(a)

. . .
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b f1(b) f2(b) f1(b)f2(b)

All the entries from the 2nd row to the last row are all numerical elements. One may
use the 1st and the 4th columns of the foregoing table to compute a fractional numerical
derivative based on 1 of the definitions such as the Grunwald-Letnikov definition.

In case of 3 or more functions, the product rule can be obviated similarly. Hence
generalization problem for LPR is numerically computationally non-existent.

2.2. Fractional derivatives of general functions: Values and Graphs

We present some of the fractional derivatives for a general function. The presentation
will help one to get a feel about the scope of each one of them. Consequently one can decide
which of the definitions would be more desirable/suitable as an attempt to generalize the
calculus.

It is also possible that a new definition for the fractional derivative can be proposed,
which would allow a better generalization (with possibly less error and less computation).
Grunwald-Letnikov Derivative (Reverse)

Dαf(x) = limh→0
1

hα

∑
(0≤m<∞)

(−1)m (αCm)f(x+ (α−m)h)

= limh→0
1

hα

∑
(0≤m<∞)

(−1)m
Γ(1 + α)

Γ(1 +m)Γ(1 + α−m)
f(x+ (α−m)h) (30)

Grunwald-Letnikov Derivative (Direct) Set h = −h

Dαf(x) = limh→0
1

hα

∑
(0≤m<∞)

(−1)m (αCm)f(x− (α−m)h)

= limh→0
1

hα

∑
(0≤m<∞)

(−1)m
Γ(1 + α)

Γ(1 +m)Γ(1 + α−m)
f(x+ (α−m)h) (31)

We have taken h = .01, α = .99, m = 0 to140. Error in computation of the gamma function
is significant when α is a non-integer fraction. If α is a positive integer, then we can use the
factorial function (and also the gamma function) with many terms both in the numerator
and the denominator cancelling. The accuracy will be significantly more. Observe that
in Matlab, we can compute (up to argument 17) exactly factorial(17) = gamma(18) =
355687428096000. Beyond the argument 17 Matlab provides only approximate (erroneous)
integer values.

The Matlab routine fgl.deriv.m [8, 17] is used to compute, in 3-D, the fractional deriva-
tives (including integer ones) for different fractional orders of an equi-spaced sampled
function using Grunwald-Letnikov formulation. The idea is to demonstrate how well the
formulation integrates and merges the fractional orders with the integer orders. The 12-
line Matlab program fderiv sin1 hp1, where the sampling period h=0.1 is as follows.
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% clear all; close all;
%h=0.1; t=0:h:4*pi;
%y=sin(t),
%order=0:0.1:1;
%for i=1:length(order)
%yd(i,:)=fgl deriv(order(i),y,h);
%end; for i=1:length(order),
% ’Fractional order alpha=’,disp(order(i)),
% ’Sampled derivatives (omitting 1st element 0) are ’, disp(yd(i,:)), end;
%[X, Y]=meshgrid(t,order);
%mesh(X,Y,yd)
%xlabel( ’ t ’); ylabel( ’ α ’ ); zlabel( ’ y ’ )

% Usage We call the following 12-line Matlab program ”fderiv sin1 hp1”
% without the 12 ”%” symbols and use simply >> fderiv sin1 hp1 (in the command
% window). Observe that the Matlab program uses the Matlab routine fgl deriv which
%needs to be available in the Matlab machine.

We have used the fractional order α = 0, .1, .2, .3, ..., 1 and computed the fractional
(including integer order derivatives for x = 0, .1, .2, ..., 4π. One can readily check how
accurate the integer order derivatives are and how the fractional orders merge and integrate
with the integer order derivatives. Also see [8].

The numerical results (only partially produced to conserve space) and the graph (Fig.
1a) depicting the results are as follows. The reader may view the complete numerical result
along with the graph when he executes the foregoing Matlab program fderiv sin1 hp1.

Fractional order alpha= 0 Sampled derivatives (omitting the 1st element 0) are

0(omit) 0.0998 0.1987 0.2955 0.3894 0.4794 0.5646
0.6442 0.7174 0.7833 0.8415 0.8912 0.9320 0.9636
0.9854 0.9975 0.9996 0.9917 0.9738 0.9463 0.9093
0.8632 0.8085 0.7457 0.6755 0.5985 0.5155 0.4274 0.3350
0.2392 0.1411 0.0416 -0.0584 -0.1577 -0.2555 -0.3508 -0.4425
-0.5298 -0.6119 -0.6878 -0.7568 -0.8183 -0.8716 -0.9162 -
0.9516 -0.9775 -0.9937 -0.9999 -0.9962 -0.9825 -0.9589 -
0.9258 -0.8835 -0.8323 -0.7728 -0.7055 -0.6313 -0.5507 -
0.4646 -0.3739 -0.2794 -0.1822 -0.0831 0.0168 0.1165 0.2151
0.3115 0.4048 0.4941 0.5784 0.6570 0.7290 0.7937 0.8504
0.8987 0.9380 0.9679 0.9882 0.9985 0.9989 0.9894 0.9699
0.9407 0.9022 0.8546 0.7985 0.7344 0.6630 0.5849 0.5010
0.4121 4 0.3191 0.2229 0.1245 0.0248 −0.0752 −0.1743 −0.2718
−0.3665 − 0.4575 − 0.5440 − 0.6251 − 0.6999 − 0.7677 − 0.8278
−0.8797 − 0.9228 − 0.9566 − 0.9809 − 0.9954 − 1.0000 − 0.9946
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−0.9792 − 0.9540 − 0.9193 − 0.8755 − 0.8228 − 0.7620 − 0.6935
−0.6181 − 0.5366 − 0.4496 − 0.3582 − 0.2632 − 0.1656 − 0.0663

Fractional order alpha= 0.1000 Sampled derivatives are

0 (omit) 0.1257 0.2375 0.3414 0.4382 0.5281 0.6106 0.6854 0.7520 0.8098 0.8585 0.8977
0.9271 0.9464 0.9556 0.9546 0.9434 0.9223 0.8914 0.8511 0.8019 0.7442 0.6786 0.6059 0.5268
0.4420 0.3525 0.2591 0.1628 0.0646 -0.0345 -0.1336 -0.2316 -0.3276 -0.4205 -0.5095 -0.5936
-0.6720 -0.7440 -0.8087 -0.8655 -0.9139 -0.9534 -0.9835 -1.0040 -1.0146 -1.0153 -1.0060
-0.9868 -0.9580 -0.9197 -0.8724 -0.8165 -0.7527 -0.6814 -0.6035 -0.5197 -0.4309 -0.3379 -
0.2416 -0.1431 -0.0433 0.0569 0.1563 0.2541 0.3492 0.4406 0.5276 0.6092 0.6846 0.7530
0.8138 0.8664 0.9102 0.9447 0.9698 0.9851 0.9904 0.9857 0.9711 0.9467 0.9127 0.8695
0.8175 0.7573 0.6894 0.6145 0.5334 0.4469 0.3559 0.2612 0.1638 0.0647 -0.0352 -0.1347
-0.2330 -0.3291 -0.4219 -0.5106 -0.5943 -0.6721 -0.7433 -0.8071 -0.8629 -0.9102 -0.9485
-0.9773 -0.9965 -1.0057 -1.0050 -0.9943 -0.9738 -0.9435 -0.9039 -0.8554 -0.7984 -0.7334 -
0.6612 -0.5825 -0.4979 -0.4085 -0.3151 -0.2185 -0.1199 -0.0201 0.0799

Fractional order alpha= 0.2000 Sampled derivatives are

0 (omit) 0.1582 0.2832 0.3927 0.4907 0.5785 0.6565 0.7246 0.7829 0.8310 0.8689 0.8963
0.9133 0.9197 0.9157 0.9013 0.8770 0.8428 0.7993 0.7470 0.6864 0.6183 0.5432 0.4620 0.3756
0.2848 0.1906 0.0940 -0.0041 -0.1027 -0.2007 -0.2972 -0.3912 -0.4816 -0.5677 -0.6485 -0.7232
-0.7910 -0.8513 -0.9035 -0.9469 -0.9812 -1.0060 -1.0211 -1.0263 -1.0215 -1.0068 -0.9823
-0.9482 -0.9050 -0.8529 -0.7926 -0.7246 -0.6496 -0.5684 -0.4817 -0.3904 -0.2954 -0.1977 -
0.0982 0.0021 0.1021 0.2009 0.2976 0.3910 0.4804 0.5648 0.6434 0.7153 0.7800 0.8366 0.8848
0.9239 0.9537 0.9738 0.9840 0.9842 0.9744 0.9547 0.9254 0.8866 0.8389 0.7826 0.7184 0.6469
0.5687 0.4848 0.3959 0.3029 0.2067 0.1084 0.0088 -0.0909 -0.1899 -0.2871 -0.3815 -0.4723
-0.5584 -0.6391 -0.7135 -0.7809 -0.8405 -0.8919 -0.9345 -0.9679 -0.9917 -1.0056 -1.0097
-1.0037 -0.9878 -0.9622 -0.9270 -0.8826 -0.8296 -0.7683 -0.6995 -0.6237 -0.5418 -0.4546 -
0.3630 -0.2678 -0.1700 -0.0706 0.0295 0.1291 0.2274

Fractional order alpha= 0.9000 Sampled derivatives are

0 (omit) 0.7930 0.8644 0.8914 0.8965 0.8857 0.8619 0.8265 0.7807 0.7255 0.6618 0.5904
0.5123 0.4284 0.3395 0.2468 0.1511 0.0534 -0.0451 -0.1435 -0.2407 -0.3358 -0.4278 -0.5157
-0.5987 -0.6759 -0.7465 -0.8098 -0.8652 -0.9120 -0.9499 -0.9784 -0.9973 -1.0062 -1.0053
-0.9943 -0.9736 -0.9432 -0.9034 -0.8547 -0.7975 -0.7325 -0.6601 -0.5813 -0.4967 -0.4072
-0.3136 -0.2170 -0.1183 -0.0185 0.0815 0.1807 0.2779 0.3724 0.4631 0.5491 0.6297 0.7038
0.7710 0.8303 0.8814 0.9236 0.9565 0.9799 0.9935 0.9970 0.9907 0.9743 0.9482 0.9127 0.8679
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0.8145 0.7529 0.6838 0.6078 0.5257 0.4384 0.3466 0.2514 0.1536 0.0543 -0.0456 -0.1450
-0.2430 -0.3386 -0.4309 -0.5188 -0.6016 -0.6784 -0.7484 -0.8110 -0.8654 -0.9113 -0.9480
-0.9753 -0.9928 -1.0005 -0.9982 -0.9859 -0.9637 -0.9320 -0.8909 -0.8410 -0.7827 -0.7165 -
0.6432 -0.5635 -0.4782 -0.3881 -0.2941 -0.1973 -0.0984 0.0014 0.1012 0.2000 0.2968 0.3906
0.4804 0.5655 0.6449 0.7179 0.7837 0.8416 0.8912 0.9318 0.9631

Fractional order alpha= 1 Sampled derivatives are

0 (omit) 0.9983 0.9884 0.9685 0.9390 0.9001 0.8522 0.7958 0.7314 0.6597 0.5814 0.4974
0.4083 0.3152 0.2189 0.1205 0.0208 -0.0791 -0.1782 -0.2755 -0.3700 -0.4609 -0.5471 -0.6279
-0.7024 -0.7699 -0.8297 -0.8812 -0.9239 -0.9574 -0.9813 -0.9954 -0.9995 -0.9937 -0.9780
-0.9524 -0.9174 -0.8732 -0.8202 -0.7591 -0.6904 -0.6147 -0.5330 -0.4459 -0.3544 -0.2593
-0.1616 -0.0623 0.0376 0.1371 0.2353 0.3311 0.4236 0.5119 0.5950 0.6722 0.7427 0.8058
0.8608 0.9073 0.9446 0.9725 0.9907 0.9990 0.9974 0.9857 0.9642 0.9331 0.8926 0.8433
0.7855 0.7198 0.6470 0.5677 0.4827 0.3929 0.2992 0.2025 0.1038 0.0040 -0.0958 -0.1947
-0.2916 -0.3856 -0.4757 -0.5611 -0.6409 -0.7143 -0.7805 -0.8390 -0.8890 -0.9302 -0.9621
-0.9844 -0.9968 -0.9993 -0.9918 -0.9743 -0.9472 -0.9106 -0.8649 -0.8105 -0.7480 -0.6781 -
0.6014 -0.5187 -0.4308 -0.3386 -0.2430 -0.1450 -0.0455 0.0544 0.1537 0.2516 0.3469 0.4388
0.5262 0.6085 0.6846 0.7539 0.8156 0.8693 0.9142 0.9500 0.9763 0.9928

The foregoing results are correct up to 2 decimal places (same here as 2 significant
digits since the sine and cosine functions are having order of magnitude 1).

For better accuracy, choose the sampling period h=.01 (10 times higher frequency).
That is, replace in the foregoing 12-line program h=0.1 by h=0.01.

Consequently the numerical results (not depicted to conserve space) are correct up to 3
significant digits (enough for most engineering implementations). However, for the graph
for h=0.01 see Fig. 1b.

It may be seen how the sampled fractional derivatives demonstrate the curvature (de-
viated from the uniform behaviour as it should be).

As another example we take cosine function and demonstrate how it behaves for
h = 0.1, α = 0(.1)14 and the cosine function sampled at points −pi2 (h)6 ∗ pi. The Matlab
program fderiv cos8.m is as follows

clear all; close all;
h=0.1; t=-pi/2:h:6*pi;
y=cos(t),
order=0:0.1:1;
for i=1:length(order)
yd(i,:)=fgl deriv(order(i),y,h);
end; for i=1:length(order),
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Fig. 1a Fractional derivative of sin(x)forx = 0(h)4π for α = 0(0.1)1, h = 0.1(The graph
is slightly different in appearance from the original graph produced by Matlab due to

copy (under Matlab Edit) and paste)

’Fractional order alpha=’,disp(order(i)),
’Sampled derivatives (omitting 1st element 0) are’, disp(yd(i,:)), end; [X, Y]=meshgrid(t,order);
mesh(X,Y,yd)

xlabel(’t’); ylabel(′α′); zlabel(’y’)

Observe that there is a great advantage in considering an equi-spaced sampled function
in numerical computation. The program needs no change except in the 3rd line viz.
y = cos(t).

If we have to deal with different mathematical non-sampled functions inside the Matlab
program, then there will be more changes in the program. However, ill-conditioned func-
tions (such as violently fluctuating continuous functions) would always be needing very
careful handling/programming so that we get reasonably good usable numerical results.

The results (produced partially here to save space) and the corresponding graph (Fig.
2) are as follows.

Fractional order alpha=0 Sampled derivatives are
0.0000 0.0998 0.1987 0.2955 0.3894 0.4794 0.5646 0.6442 0.7174 0.7833 0.8415 0.8912
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Fig. 1b Fractional derivative of sin(x)forx = 0(h)4π for α = 0(0.1)1, h = 0.01 (The
graph is slightly different in appearance from the original graph produced by Matlab due

to copy (under Matlab Edit) and paste)

0.9320 0.9636 0.9854 0.9975 0.9996 0.9917 0.9738 0.9463 0.9093 0.8632 0.8085 0.7457 0.6755
0.5985 0.5155 0.4274 0.3350 0.2392 0.1411 0.0416 -0.0584 -0.1577 -0.2555 -0.3508 -0.4425
-0.5298 -0.6119 -0.6878 -0.7568 -0.8183 -0.8716 -0.9162 -0.9516 -0.9775 -0.9937 -0.9999
-0.9962 -0.9825 -0.9589 -0.9258 -0.8835 -0.8323 -0.7728 -0.7055 -0.6313 -0.5507 -0.4646
-0.3739 -0.2794 -0.1822 -0.0831 0.0168 0.1165 0.2151 0.3115 0.4048 0.4941 0.5784 0.6570
0.7290 0.7937 0.8504 0.8987 0.9380 0.9679 0.9882 0.9985 0.9989 0.9894 0.9699 0.9407 0.9022
0.8546 0.7985 0.7344 0.6630 0.5849 0.5010 0.4121 0.3191 0.2229 0.1245 0.0248 -0.0752
-0.1743 -0.2718 -0.3665 -0.4575 -0.5440 -0.6251 -0.6999 -0.7677 -0.8278 -0.8797 -0.9228
-0.9566 -0.9809 -0.9954 -1.0000 -0.9946 -0.9792 -0.9540 -0.9193 -0.8755 -0.8228 -0.7620 -
0.6935 -0.6181 -0.5366 -0.4496 -0.3582 -0.2632 -0.1656 -0.0663 0.0336 0.1332 0.2315 0.3275
0.4202 0.5087 0.5921 0.6696 0.7404 0.8038 0.8592 0.9060 0.9437 0.9720 0.9906 0.9993 0.9980
0.9868 0.9657 0.9349 0.8948 0.8457 0.7883 0.7229 0.6503 0.5712 0.4864 0.3967 0.3031 0.2065
0.1078 0.0080 -0.0919 -0.1909 -0.2879 -0.3821 -0.4724 -0.5581 -0.6381 -0.7118 -0.7784 -
0.8371 -0.8876 -0.9291 -0.9614 -0.9841 -0.9969 -0.9998 -0.9927 -0.9756 -0.9488 -0.9126
-0.8672 -0.8132 -0.7510 -0.6813 -0.6048 -0.5223 -0.4346 -0.3425 -0.2470 -0.1490 -0.0495
0.0504 0.1499 0.2478 0.3433 0.4354 0.5231 0.6055 0.6820 0.7516 0.8137 0.8676 0.9129 0.9491
0.9758 0.9928 0.9998
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Fractional order alpha= 0.1000 Sampled derivatives are
0.0000 (omit) 0.1257 0.2375 0.3414 0.4382 0.5281 0.6106 0.6854 0.7520 0.8098 0.8585

0.8977 0.9271 0.9464 0.9556 0.9546 0.9434 0.9223 0.8914 0.8511 0.8019 0.7442 0.6786 0.6059
0.5268 0.4420 0.3525 0.2591 0.1628 0.0646 -0.0345 -0.1336 -0.2316 -0.3276 -0.4205 -0.5095
-0.5936 -0.6720 -0.7440 -0.8087 -0.8655 -0.9139 -0.9534 -0.9835 -1.0040 -1.0146 -1.0153
-1.0060 -0.9868 -0.9580 -0.9197 -0.8724 -0.8165 -0.7527 -0.6814 -0.6035 -0.5197 -0.4309
-0.3379 -0.2416 -0.1431 -0.0433 0.0569 0.1563 0.2541 0.3492 0.4406 0.5276 0.6092 0.6846
0.7530 0.8138 0.8664 0.9102 0.9447 0.9698 0.9851 0.9904 0.9857 0.9711 0.9467 0.9127 0.8695
0.8175 0.7573 0.6894 0.6145 0.5334 0.4469 0.3559 0.2612 0.1638 0.0647 -0.0352 -0.1347
-0.2330 -0.3291 -0.4219 -0.5106 -0.5943 -0.6721 -0.7433 -0.8071 -0.8629 -0.9102 -0.9485
-0.9773 -0.9965 -1.0057 -1.0050 -0.9943 -0.9738 -0.9435 -0.9039 -0.8554 -0.7984 -0.7334 -
0.6612 -0.5825 -0.4979 -0.4085 -0.3151 -0.2185 -0.1199 -0.0201 0.0799 0.1790 0.2762 0.3706
0.4613 0.5473 0.6277 0.7019 0.7690 0.8283 0.8793 0.9215 0.9544 0.9777 0.9912 0.9948 0.9883
0.9720 0.9458 0.9102 0.8654 0.8119 0.7503 0.6811 0.6051 0.5230 0.4356 0.3438 0.2485 0.1507
0.0513 -0.0486 -0.1481 -0.2461 -0.3418 -0.4340 -0.5220 -0.6048 -0.6816 -0.7516 -0.8142 -
0.8687 -0.9145 -0.9512 -0.9785 -0.9961 -1.0037 -1.0013 -0.9889 -0.9666 -0.9347 -0.8934 -
0.8432 -0.7845 -0.7181 -0.6444 -0.5644 -0.4786 -0.3881 -0.2937 -0.1964 -0.0971 0.0031 0.1033
0.2025 0.2997 0.3938 0.4841 0.5695 0.6492 0.7224 0.7884 0.8465 0.8962 0.9369 0.9683 0.9899
1.0017 1.0035 0.9953

Fractional order alpha= 0.9000 Sampled derivatives are
0.0000 (omit) 0.7930 0.8644 0.8914 0.8965 0.8857 0.8619 0.8265 0.7807 0.7255 0.6618

0.5904 0.5123 0.4284 0.3395 0.2468 0.1511 0.0534 -0.0451 -0.1435 -0.2407 -0.3358 -0.4278
-0.5157 -0.5987 -0.6759 -0.7465 -0.8098 -0.8652 -0.9120 -0.9499 -0.9784 -0.9973 -1.0062
-1.0053 -0.9943 -0.9736 -0.9432 -0.9034 -0.8547 -0.7975 -0.7325 -0.6601 -0.5813 -0.4967 -
0.4072 -0.3136 -0.2170 -0.1183 -0.0185 0.0815 0.1807 0.2779 0.3724 0.4631 0.5491 0.6297
0.7038 0.7710 0.8303 0.8814 0.9236 0.9565 0.9799 0.9935 0.9970 0.9907 0.9743 0.9482 0.9127
0.8679 0.8145 0.7529 0.6838 0.6078 0.5257 0.4384 0.3466 0.2514 0.1536 0.0543 -0.0456
-0.1450 -0.2430 -0.3386 -0.4309 -0.5188 -0.6016 -0.6784 -0.7484 -0.8110 -0.8654 -0.9113
-0.9480 -0.9753 -0.9928 -1.0005 -0.9982 -0.9859 -0.9637 -0.9320 -0.8909 -0.8410 -0.7827 -
0.7165 -0.6432 -0.5635 -0.4782 -0.3881 -0.2941 -0.1973 -0.0984 0.0014 0.1012 0.2000 0.2968
0.3906 0.4804 0.5655 0.6449 0.7179 0.7837 0.8416 0.8912 0.9318 0.9631 0.9847 0.9965 0.9984
0.9903 0.9722 0.9445 0.9073 0.8610 0.8061 0.7432 0.6728 0.5957 0.5127 0.4245 0.3320 0.2363
0.1381 0.0386 -0.0613 -0.1606 -0.2583 -0.3534 -0.4450 -0.5322 -0.6140 -0.6897 -0.7586 -
0.8198 -0.8729 -0.9173 -0.9525 -0.9782 -0.9941 -1.0001 -0.9961 -0.9821 -0.9584 -0.9250
-0.8825 -0.8311 -0.7714 -0.7041 -0.6296 -0.5490 -0.4628 -0.3720 -0.2775 -0.1802 -0.0811
0.0188 0.1185 0.2170 0.3134 0.4066 0.4958 0.5800 0.6584 0.7302 0.7947 0.8513 0.8994 0.9385
0.9683 0.9883 0.9985 0.9987 0.9889 0.9693 0.9399 0.9012 0.8534 0.7972 0.7329 0.6614 0.5832
0.4992 0.4103 0.3172 0.2209

Fractional order alpha= 1 Sampled derivatives are
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0.0000 (omit) 0.9983 0.9884 0.9685 0.9390 0.9001 0.8522 0.7958 0.7314 0.6597 0.5814
0.4974 0.4083 0.3152 0.2189 0.1205 0.0208 -0.0791 -0.1782 -0.2755 -0.3700 -0.4609 -0.5471
-0.6279 -0.7024 -0.7699 -0.8297 -0.8812 -0.9239 -0.9574 -0.9813 -0.9954 -0.9995 -0.9937
-0.9780 -0.9524 -0.9174 -0.8732 -0.8202 -0.7591 -0.6904 -0.6147 -0.5330 -0.4459 -0.3544 -
0.2593 -0.1616 -0.0623 0.0376 0.1371 0.2353 0.3311 0.4236 0.5119 0.5950 0.6722 0.7427
0.8058 0.8608 0.9073 0.9446 0.9725 0.9907 0.9990 0.9974 0.9857 0.9642 0.9331 0.8926 0.8433
0.7855 0.7198 0.6470 0.5677 0.4827 0.3929 0.2992 0.2025 0.1038 0.0040 -0.0958 -0.1947
-0.2916 -0.3856 -0.4757 -0.5611 -0.6409 -0.7143 -0.7805 -0.8390 -0.8890 -0.9302 -0.9621
-0.9844 -0.9968 -0.9993 -0.9918 -0.9743 -0.9472 -0.9106 -0.8649 -0.8105 -0.7480 -0.6781 -
0.6014 -0.5187 -0.4308 -0.3386 -0.2430 -0.1450 -0.0455 0.0544 0.1537 0.2516 0.3469 0.4388
0.5262 0.6085 0.6846 0.7539 0.8156 0.8693 0.9142 0.9500 0.9763 0.9928 0.9994 0.9961 0.9828
0.9596 0.9269 0.8849 0.8341 0.7750 0.7081 0.6341 0.5538 0.4679 0.3774 0.2831 0.1860 0.0870
-0.0128 -0.1125 -0.2111 -0.3076 -0.4010 -0.4904 -0.5749 -0.6537 -0.7259 -0.7909 -0.8480
-0.8966 -0.9362 -0.9665 -0.9871 -0.9979 -0.9987 -0.9895 -0.9704 -0.9417 -0.9035 -0.8563 -
0.8005 -0.7368 -0.6657 -0.5879 -0.5043 -0.4156 -0.3227 -0.2267 -0.1284 -0.0287 0.0712 0.1703
0.2678 0.3626 0.4538 0.5405 0.6217 0.6967 0.7648 0.8252 0.8774 0.9209 0.9551 0.9797 0.9946
0.9996 0.9945 0.9796 0.9548 0.9205 0.8770 0.8247 0.7642 0.6961 0.6210 0.5397 0.4530 0.3618
0.2670 0.1695 0.0703

As in the foregoing example, here too the accuracy improves when the function cos(t)
is sampled with higher frequency. If h = .01 (implying 10 times higher frequency), then
the result will be correct up to 3 significant digits. However, if the sampling is done with
frequency increasingly too large, then the result will deteriorate since the computational
error starts creeping in depending on the precision used. For most practical usage, too
large a sampling frequency should not be used since instead of increasingly improving the
result, it degenerates (worsens) the result.

Riemann-Liouville (RL) Derivative The 3 most frequently used definitions for the gen-
eral fractional differintegral are GL, RL (Riemann-Liouville), and Caputo definitions. We
have already discussed GL derivative in both reverse and direct forms. In terms of the
fundamental continuous integrodifferential operator defined as

Dα
t =

dα

dtα
: α > 0;Dα

t = 1 : α = 0;Dα
t =

∫ t

a
dτα : α < 0 (32)

where a,t are bounds of the operation and α ∈ R is a real fractional (including of
course integer) order [6, 8].

The RL derivative for the general function f(t) is

Dα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (n− 1 < α < n) (33)

The RL definition for the fractional derivative of f(t) involves both integration and
differentiation (differintegral) unlike the integer order derivative which is mathematically
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Fig. 2 Fractional derivative of cos(t) for t = −π
2 (h)6π for = 0(0.1)1, h = 0.1

definable exactly for almost all analytic functions without any recourse to integration.
Also, the restriction on the fractional order α viz. (n−1 < α < n) is a severe one in terms
of generalization.

The mathematical integration in the equation (33) cannot be obtained in a closed form
(unlike the fractional integration of functions such as sin(x), ex, xk) for most functions,
a numerical integration is always possible for all computable mathematical analytical
functions though.

However, we simply have to resort to mathematical/numerical differentiation only for
derivatives of any integer order without any restriction on the integer order (unlike the
fractional order α). Computational error and computational complexity in such definitions
of fractional derivatives are usually more dominant and involved than those for integer
order derivatives.

Can we devise/innovate a simple procedure (numerical or otherwise) that will obviate
these problems in the process of achieving rather a straight-forward generalization for
the derivative of any fractional order? There is a scope to explore this issue and come
out either defining a straight-forward generalization or demonstrating/proving that such
a generalization is impossible.

We leave the computational exploration of the RL fractional derivative definition for
the reader so that he could find out the pros and cons of this definition compared with
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those of Grunwald-Letnikov and Caputo definitions (described below).
Caputo derivative The Caputo derivative for the general function f(t) is

Dα
t f(t) =

1

Γ(n− α)

∫ t

a

fn(τ)

(t− τ)α−n+1
dτ, (n− 1 < α < n) (34)

The foregoing comments and question are more or less valid here too.
To illustrate mainly the numerical computation of the integration in equation (34), we

consider the data n = 1, f(t) = sin(t), α = .99, a = 0, t = π. The Caputo fractional
derivative of sin(t) can be written as

Dα
t sin(t) =

1

Γ(1− α)

∫ t

a

cos(τ)

(t− τ)α
dτ, (0 < α < 1)

=
1

Γ(0.01)

∫ π

0

cos(τ)

(t− τ)0.99
dτ.

The following 5-line Matlab program is named caputo alp sin.m

clear all; close all; global alp bet; alp=0:.01:1;
for i=1:101,
bet=alp(i); Q(i)=quadgk(@caputo sind, 0, pi)./gamma(1− bet);
end; disp( ’ alpha derivative’);
disp([alp’ ’Q’]); plot(alp, Q);

%Usage
% >> caputo alp sin
%uses function caputo sind; computes fractional derivatives of sin(pi)
%Accuracy diminishes.

function y=caputo sind(x)
%fractional (0 ≤ alp ≤ 1) derivative of sin (pi)
global alp bet; %alp=0:01:.9, bet=alp(i);
y=cos(x)./(pi-x). ̂bet; % (0 <= alp <= 1)

The results (retaining only partially to conserve space) are as follows.
alpha derivative 0 0.0000 (omit this row)
0.0100 -0.0185
0.0200 -0.0368
0.0300 -0.0551
0.0400 -0.0732

. . .

0.9600 -0.7603
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Fig. 3 Fractional order α = 0(.01)1 versus the Caputo derivative of sin(π)

0.9700 -0.6569
0.9800 -0.5094
0.9900 -0.2992
1.0000 0

The graph (fractional order α = 0(.01)1 versus the derivative of sin(π) is as in (Fig. 3).

It can be seen both from the numerical results as well as from the graph that the
computational error is considerable. For α close to 0.9 the derivative of sin(π) is close to
-1 while the derivative should be -1 for α = 1, However, a better programming skill along
with an increased precision would produce better accuracy.

Consider the Caputo fractional derivative of sin(pi/2) where the fractional order =.5,.9,
.99,.999,.9999,.99999. The Matlab program is

function y=caputo sin(x)
%fractional (0 ≤ alp ≤ 1) derivative of sin (pi)
global alp bet; %alp=.999; bet=alp;
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y=cos(x)./(pi-x).̂alp; % (0 ≤ alp ≤ 1)

%Usage for Caputo derivative (0 < alp < 1)

%clear all; close all; format long g; global alp bet;
%alp=.999; bet=alp; Q=quadgk(@caputo sin, 0,pi/2)./gamma(1-bet);

%’ alp alp-derivative of sin(pi/2)’, disp([bet Q])

%Write foregoing 3 lines in 1 line in command window omitting %
% and replace ”alp=.999” by ”alp=.5” when we wish to compute
% the fractional derivative of sin(pi/2) at alp=0.5 .

%global alp bet; alp=.99, bet=alp; Q=quadgk( @ caputo sin,
%0,pi/2)./gamma(1-bet); disp([bet Q]) OR

%>> clear all; close all; global alp bet; alp=.99; bet=alp;
%Q=quadgk( @ caputo sin, 0,pi/2)./gamma(1.-bet); disp([bet Q])

%alp =

% 0.9900

% 0.9900 0.0040

% Caputo derivative viz. D̂alp(sin x) for x= pi/2 is .0040
%when alp = .99 and 3.9892e-004 when alp = .999.
% quadgk( @ caputo sin, 0, pi/2) when alp=.99
%x should not be pi because of division by 0
% and also it exceeds max no of divns. permitted.

We obtain the following output for the fractional derivative of sin(pi/2) at the frac-
tional order α=.5,.9,.99,.999..9999,.99999

α α order derivative of sin(π/2)
0.5 0.354970157186708
0.9 0.0458549655973837
0.99 0.00404259546470162
0.999 0.000398924379050003
0.9999 3.98391892857323e-005
0.99999 3.98338654632647e-006
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Observe that the foregoing result provides some idea about the accuracy of Caputo
fractional order derivative. Specifically one can see how well the fractional order α merges
with the integer order 1.

Here the generalization of the fractional derivative through numerical integration is
not a straight-forward approach. Can we have such an approach with improved accuracy
without limiting ourselves among several definitions of fractional derivatives as mentioned
above? As a matter of fact, one may have totally new definition for fractional derivatives
and fractional integrals, that would eventually be widely accepted as a generalization of
classical calculus.

On the other hand, can we prove that no more definition better than the existing ones
is possible? We believe that we have not come to a dead end; there is still a scope of
deeper exploration.

An important point is the readily understood precise physical interpretation of every
fractional order derivative and every fractional order integral just like every integer order
derivative and integer order integral. A generalization demands such an interpretation so
that we need not worry about whether the order is an integer or a fraction.

Every integer/fractional order derivative/integral carries a message. Every derived step
in a procedure also gives us a distinct message. It is a good habit to readily get/understand
the message carried by a step/equation. This will immensely help us to grasp/to get a
complete feel of what is going on in the process/procedure. One should never behave like
a machine oblivious of what is going around us. Only then we will have the right frame of
mind for the generalization or for showing mathematically that the desired generalization
having similar applicable properties of generalized matrix inverses is impossible.

2.3. Fractional ordinary differential equations (FODEs)

Any system of integer order ordinary differential equations (IODEs) with adequate
initial/2-point boundary conditions can always be written as a system of n 1st order odes
with n initial/2-point boundary conditions. The general form can be written follows.

dy1

dt
= f1(t, y1, y2, ..., yn)

dy2

dt
= f2(t, y1, y2, ..., yn)

. . .

dyn
dt

= fn(t, y1, y2, ..., yn) (35)

with n initial conditions: At t = T0,y1 = α1,y2 = α2,,yn = αn or with n boundary condi-
tions where some of these n conditions are specified at t = T0 while the rest at t = Tf inal.
The functions f1, f2, ..., fn are written from a given actual system of IODEs with the ini-
tial/boundary conditions. Observe that α′is are specified numerical values and are not
connected with the fractional order α.
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Similarly FODEs of fractional order 0 < α < 1 can be written as

dαy1

dt
= f1(t, y1, y2, ..., yn)

dαy2

dt
= f2(t, y1, y2, ..., yn)

. . .

dαyn
dt

= fn(t, y1, y2, ..., yn) (36)

with n initial conditions: At t = T0,y1 = α1,y2 = α2,,yn = αn or with n boundary
conditions where some of these n conditions are specified at t = T0 while the rest at
t = Tf inal. The functions f1, f2, ..., fn are written from a given actual system of IODEs
with the initial/boundary conditions.

Consider, as an example, the projectile motion problem. A projectile of mass m is
launched with initial velocity v0 at an angle θ at time t = 0. Atmosphere exerts a resistance
force R on the mass, proportional to the velocity of the mass at time t, i.e.R = βv(t),
where β is a constant and is opposite to the direction of the velocity of the mass.

At time t, the mass is at location (x(t), y(t)); the velocity of the mass in the x-direction
and that in the y-direction are ẋ(t), ẏ(t), respectively. Thus the velocity of the mass is

v(t) =
√

(ẋ2(t) + ẏ2(t)) at an angle θ(t) = tan−1 ẏ(t)
ẋ(t) . The x-component of resistance force

R is R(t)cosθ(t) and y-component of R is R(t)sinθ(t). Using Newtons 2nd law of motion,
we can write

x− direction : mẍ(t) = −R(t)cosθ(t)

y − direction : mÿ(t) = −mg −R(t)sinθ(t) (37)

The equation of motion (mathematical model) becomes

mẍ(t) = −βvcosθ(t) = −βv ẋ√
ẋ2 + ẏ2

i.e., mẍ+ βẋ = 0

mÿ(t) = −mg − βv ẏ√
ẋ2 + ẏ2

i.e., mÿ + βẏ = −mg (38)

IC : at t = 0, x(0) = 0, y(0) = 0, ẋ(0) = v0cosθ0, ẏ(0) = v0sinθ0

Hence the system of 4 1st order ODEs (computational mathematical model suitable for
computer implementation for n (general) 1st order ODEs) can be written as follows. Let
x = x1, y = x2,

dx
dt = x3,

dy
dt = x4. Then the equation of motion (mathematical model)

becomes
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dx1

dt
= f1(t, x1, x2, x3, x4) = x3

dx2

dt
= f2(t, x1, x2, x3, x4) = x4

dx3

dt
= f3(t, x1, x2, x3, x4) =

−βx3

m
dx4

dt
= f4(t, x1, x2, x3, x4) =

(−mg − βx4)

m
(39)

IC : at t = 0, x1 = 0, x2 = 0, x3 = v0cosθ0, x4 = v0sinθ0.
Compute: at t = 0(0.1)5, x1, x2, x3, x4 given v0 = 3000meter/s, β = 0.05,
g = 9.8meter/s2.

Introducing the fractional order α such that 0 < α < 1 in the foregoing system of 4
1st order ODEs and using the Matlab routine fde12s [9− 13], we can solve a system of n
fractional order ODEs (n is a finite positive integer).

Refer the systems (36). It can be seen that when α =0, the differential equations cease
to exist. On the other hand, when α =1, the system ceases to be FODEs. It becomes the
classical 1st order ODEs as in the system (39).

However, we consider first the classical (non-fractional) pendulum problem where no
damping exists. The Matlab version (program) of this problem is named as pendulum.
Then we present the Matlab program pendulumfde.m, where α =.97, which uses the
Matlab routine fde12s. Both the programs are compatible with the computational math-
ematical notation and thus self-explanatory. Further both use the 3-line Matlab function
sub-program pend shown below both the programs pendulum and pendulumfde.

The 2nd order ODE representing the motion of a simple gravity pendulum i.e. the
simple harmonic motion is

d2z

dt2
+
g

l
sinz = 0, i.e.,

d2z

dt2
= −kz (40)

where z = a small (≤ 20 degree or 0.3491 radian) displacement, g= acceleration due to
gravity, l= length of the pendulum, k = g/l. At time t = 0, z = z0, ż = v0. Expressing the
foregoing 2nd order ODE into 2 1st order ODEs with 2 initial conditions, one can readily
check the concerned pend Matlab function sub-program.
Pendulum non-fractional Matlab program (Main) uses Matlab routine ode23 and the Mat-
lab function sub-program pend.m

%9-line Matlab program pendulum
[t,z]=ode23(’pend’, [0,20], [1,0]);
disp(’ t col 1 of z col 2 of z’);
disp ([t z]);
plot (t,z(:,1), t, z(:, 2));
xlabel(′t′); ylabel(′col 1 of z & col 2 of z′);
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figure (2)
plot(z(:,1),z(:,2));
xlabel(’Displacement’);ylabel(’Velocity’);
title(’Phase Plane Plot’);
%Usage Type pendulum in command window

%pend.m Matlab function sub-program
function zdot=pend(t, z);
wsq=1.56;
zdot=[z(2); -wsq*sin(z(1))];

>> pendulum Integer-order alpha=1)
t col 1 of z col 2 of z
0 1.0000 0
0.0001 1.0000 − 0.0001
0.0004 1.0000 − 0.0005
0.0019 1.0000 − 0.0025
0.0095 0.9999 − 0.0125
19.3178 − 0.7918 0.6916
19.5401 − 0.6120 0.9163
19.7743 − 0.3755 1.0899
19.9454 − 0.1820 1.1634
20.0000 − 0.1181 1.17614
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Fig. 4 The graph of z1, z2 for time t=0 to 20.

Pendulumfde.m matlab program and the Matlab function subprogram pend are as fol-
lows. One can change/vary the value of alpha (α) in the program and observe for himself
the damped motion of the pendulum for each alpha.

global h y0;
%alpha=1
%alpha=.9
%alpha=.99
%alpha=.98
%alpha=.97
h=.1739; y0=[1;0]; alpha=.97,
[t,z]=fde12s(alpha,’pend’,0,20);
%global h y0;
%h=1; y0=[1;0]
disp(alpha’);
disp(’ t col 1 of z col 2 of z’);
disp ([t’ z’]);
plot (t’,z(1,:)’, t’, z(2, :)’);

xlabel(’t’); ylabel(’col 1 of z & col 2 of z’);
figure (2)
plot(z(1,:),z(2,:));
xlabel(’Displacement’);ylabel(’Velocity’);
title(’Phase Plane Plot’);
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Fig. 5 The Phase-Plane plot Displacement vs. Velocity (Observe that there are
rotations (non-spiral).)

%Usage

function zdot=pend(t, z);
wsq=1.56;
zdot=[z(2); -wsq*sin(z(1))];

Data and Results

>> pendulumfde

alpha = 1

t col 1 of z col 2 of z
0 1.0000 0
0.1739 0.9802 − 0.2283
0.3478 0.9209 − 0.4506
0.5217 0.8237 − 0.6602
0.6956 0.6916 − 0.8486
. . .
19.4768 − 0.6150 0.9634
19.6507 − 0.4338 1.1011
19.8246 − 0.2324 1.1915
19.9985 − 0.0198 1.2266
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20.0000 − 0.0180 1.2264

Fig. 6 z1, z2 for t=[0,20]. α = 1 (non-fractional no damping as in the foregoing simple
pendulum)

Fig. 7 Phase-plane plot for alpha = 1 (The graph goes round and round on the same
closed curve no spiral)
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alpha = 0.9900
t col 1 of z col 2 of z
0 1.0000 0
0.1739 0.9792 − 0.2333
0.3478 0.9178 − 0.4570
0.5217 0.8184 − 0.6661
0.6956 0.6842 − 0.8525
. . .
19.4768 − 0.0901 0.8556
19.6507 0.0610 0.8569
19.8246 0.2083 0.8173
19.9985 0.3447 0.7395
20.0000 0.3458 0.7386

Fig. 8 z1, z2 for alpha=.99 (Observe that due to slight damping (since alpha slightly
reduced) the amplitudes decrease gradually)

>> pendulumfde

Fig.9 Phase-plane plot (Observe that the graph (line goes round and round with
successive decrease in radius due to slight damping spiral formation)



S. K.Sen, J. V. Devi, R.V.G. R. Kumar / Eur. J. Pure Appl. Math, 11 (3) (2018), 1058-1099 1090

α= 0.9800

t col 1 of z col 2 of z
0 1.0000 0
0.1739 0.9781 − 0.2384
0.3478 0.9147 − 0.4634
0.5217 0.8129 − 0.6720
0.6956 0.6767 − 0.8563
0.8695 0.5115 − 1.0069
. . .
19.4768 0.1044 0.5781
19.6507 0.2017 0.5322
19.8246 0.2881 0.4619
19.9985 0.3597 0.3713
20.0000 0.3602 0.3704

Fig.10 z1, z2 for alpha=.98 (Observe that due to further reduced value of alpha the
amplitudes decrease still further)

Fig. 11 Phase-plane plot for alpha=.98; a spiral converging gradually.

alpha = 0.9700

t col 1 of z col 2 of z
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0 1.0000 0
0.1739 0.9771 − 0.2436
0.1739 0.9771 − 0.2436
0.3478 0.9114 − 0.4699
0.5217 0.8073 − 0.6778
0.6956 0.6691 − 0.8599
. . .
19.4768 0.1437 0.3571
19.6507 0.2009 0.3062
19.8246 0.2474 0.2418
19.9985 0.2812 0.1675
20.0000 0.2813 0.1668

Fig. 12 z1, z2 for alpha=.97 (Observe that the amplitudes decrease more sharply since
alpha is further reduced)

Fig. 13 Phase-plane plot for alpha=.97 (The spiral becomes shorter as alpha becomes
smaller.)

alpha = 0.9000
t col 1 of z col 2 of z

0 1.0000 0
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0.1739 0.9680 − 0.2827
0.3478 0.8854 − 0.5161
0.5217 0.7644 − 0.7167
0.6956 0.6134 − 0.8799
0.8695 0.4411 − 0.9986
. . .
19.4768 0.0121 0.0014
19.6507 0.0128 − 0.0024
19.8246 0.0128 − 0.0062
19.9985 0.0121 − 0.0097
20.0000 0.0121 − 0.0097

Fig. 14 z 1,z 2 for alpha=.90 (Observe that due to increased damping (i.e. reduced
alpha) the amplitudes almost merge as these should be.)

Fig. 15 Phase-plane plot looks like a snail’s back i.e. the spiral rapidly converges to a
point for alpha =0.9.

Remarks Zero Friction force (Ideal case): Non-existent in Nature If alpha (fractional
order, in general) is 1, then the pendulum will continue simple harmonic oscillations
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without any damping. The oscillation will have constant amplitude, constant time period,
and will continue the oscillatory motion for ever. The Matlab program for pendulum
depicts the motion (Figs. 4 and 5).

(Positive) Friction force. If alpha<1 is fractional and assumes successively the values
.99, .98, and .97, .90, then the pendulum will continue simple harmonic oscillations/motion
with progressively increased damping. While the time period remains unaltered, the am-
plitude will progressively decrease.

The Matlab program pendulumfde depicts the motion (Figs. 8-15). It can be seen that
for alpha=1 both the programs pendulum and pendulumfde depict beautifully same/similar
graphs.

Figs. 4 and 5 output by pendulum correspond to Figs. 6 and 7 produced by pendu-
lumfde, respectively. For such a specific type of FODEs, both the fractional order and the
integer order merge and integrate well. Consequently the efforts toward limited general-
ization are appreciated. But the physical implication of alpha in terms of friction forces
and that of friction forces in terms of alpha are not readily known (as we do for IODEs).

Implication of friction forces. In other words, friction forces s uch as resistance due
to air/wind and that due to various parts of the pendulum touching one another should
determine the value of alpha viz. the value of the fractional order approximately. Can we
still have precise magnitude of all the friction forces combined together from the knowledge
of alpha and vice versa? A meaningful generalization needs to sort out this question.

Is it possible that throughout the interval of the independent (time) variable t, the
combination of friction forces and the value of alpha match/are numerically the same at
all equi-spaced (or non-equi-spaced) points in the time interval? On the other hand, if
we know the magnitude and direction of friction forces, then the mathematical model
can be written as integer-order differential equations and then solved without any need of
fractional order model.

3. FODEs: Converting to α− th or/and 1st order ODEs with
generalizations

Consider, for instance, the following mathematical problem involving FODEs. Solve
numerically the following system of 2 FODEs

d3.71y

dx3.71
+
d2.81y

dx2.81
+
dy

dx
+ y2 = sint

y
d2.11y

dx2.11
− d1.9y

dx1.9
+ y0.5 = cost (41)

under the requisite number of initial conditions for t=0(.1)10.
The following questions arise: Can we express the system of equations (41) as a system

of k 1st order and/or m αth order ODEs? What will be the value of k and/or the value of
m? Can we write a real-world physical problem that corresponds to the foregoing system
(41) as the mathematical model? Or, can we have a real-world physical problem whose
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mathematical model will be one similar to the system (41)? Can we have a procedure to
solve a corresponding system of 1st order and/or αth order ODEs?

A generalization deserves the answer of the foregoing questions. Only after obtaining
the answer, we may determine if a complete generalization (i.e. a generalization that does
not at all differentiate between an integer-order say, 3 or 4 and a fractional order say
2.21 and 3.78 and get the desired numerical solution) is achievable. Or, to which extent
a generalization is feasible.

What are the specific procedures that need to be designed/ innovated to achieve a
partial generalization or a complete one? Then, of course, comes the efforts to solve
numerically computationally the problems for scientific/engineering implementation fol-
lowing the designed new procedures.

4. Conclusions

Generalizing matrix inverse and calculus: Analogy Generalized version of a
matrix inverse and that of the calculus viz. fractional calculus do not have one-to-one
correspondence so far as an analogy is concerned. One is fractional while the other is
non-fractional. Till early/mid- 20th century matrix algebra was in a formative stage. We
knew how to solve linear consistent square full-rank system using the true matrix inverse.
Or, without recourse to matrix algebra, we could solve the system using methods such as
the Gauss reduction method using partial/complete pivoting (during 19th century).

However, the essence of the concept of generalizing the true inverse so that we can
solve any linear system written/given in the matrix-vector form consistent or not, square
or rectangular without any botheration about pruning redundant (linearly dependent)
rows of the system was developed during around mid-20th century.

For the inconsistent (contradictory linear equations) system, we do not have any so-
lution that satisfies all the equations. But a specific generalized inverse of the coefficient
matrix of the equation in matrix form, called the pseudo-inverse, provides the minimum-
norm least-squares inverse (i.e. ||x|| = minimum implying minimum norm as well as
||Ax − b|| =minimum implying least squares, where x is the computed solution of the
linear system Ax=b, and ||.|| is the Euclidian matrix norm).

Consequently, we obtain the minimum-norm least-squares solution of the system. This
solution is of paramount importance and extensively used in whole of engineering and
science as long as the degree of inconsistency (contradiction among the linear equations)
is within acceptable limit depending on the context.

If there is unacceptable inconsistency in the linear system, then one should fall back
to the physical problem, find out the cause for abnormal inconsistency and correct the
error/mistake. It can be seen that Nature knows no inconsistency. The inconsistency
in a linear system (viz. the mathematical model corresponding to a physical problem of
Nature) could result only due to human error/mistake.

Since error (error (not mistake) in measurement and/or in computation) is ever im-
possible to be removed, it could often (not always) result in inconsistent/near-consistent
system. We need to deal with such a system almost always. So is the need for the
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minimum-norm least-squares inverse (not the true inverse as it does not exist for most of
the problems or is too erroneous due to near-singularity/non-square rectangularity of the
coefficient matrix A) almost always in the physical world.

One can devise a row-pruning algorithm for a given linear system Ax=b to remove all
redundant rows (i.e. linearly dependent rows) of the augmented matrix (A, b) [14 , 15].
Such an algorithm will act as a pre-processor for solving a linear system using the pseudo-
inverse. The pruning reduces the computational error and also storage complexity when-
ever it occurs. However, this is not widely used mainly because it is an additional task
and also, for most of the real-world problems, the current (2018) computing precision and
also storage is not an issue to obviate the foregoing 2 problems. Thus the generalized
inverse viz. the pseudo inverse of the matrix A is good enough for practically all physical
problems.

With the foregoing essence of generalizing the matrix inverse in mind, can we have the
similar essence of generalizing the classical calculus so that the generalized calculus (viz.
fractional calculus) universally serves the purpose for all calculus (including differential
equations) problems always? If we can, then the advantage of generalizing the calculus, of
course including the physical interpretation of fractional order derivative/integral, will be
enormous in terms of solving numerous problems in the physical world readily and easily.

Classical ode corresponding to any fractional ode A 1-independent variable
FDE can be written as 1 or more distinct classical ODEs in so far as its solution is
concerned. Consider, for example, 1 FDE where the fraction α < 1. Its solution will
correspond to a continuous function of 1 variable. Graphically, this will be a curve (a
continuous line) in the concerned interval of the independent variable.

Corresponding to this graph, we can readily produce a classical ode of order 1 or more
by successive differentiation. On the other hand, we may have a classical ODE (based,
say, on the 2nd law of Newton) appended with a friction force term obtained from a given
physical problem.

We can easily interpret the corresponding physical problem for each of the foregoing
classical ODEs. These interpretations are distinct in the sense that one physical inter-
pretation cannot be obtained from other and vice versa, although their solutions are the
same.

Best way to compute integer order derivatives While computing the derivative
of an analytical function is not only easier but also is possible for a much larger set of
functions by a concerned person. This is unlike analytical (not computational) integration
of an analytical function.

Most of the functions cannot be analytically integrated in a closed form. A famous
example is the normal distribution function

Φ(z) =
1√
2

∫ z

0
e−x

2
dx = erf(

z√
2

) (42)

where erf= error function, gives the probability that a standard normal variate assumes
a value in the interval [0, z]. Neither Φ(z) nor erf can be expressed exactly in terms of a
finite number of add, subtract, multiply, square-root operations. So both must be either
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computed numerically or approximated (to a finite number of terms). In either case we
get only erroneous ( acceptable or not depending on the context) values (numerical or
mathematical).

However, numerical computation of a derivative and of an integral with specified nu-
merical bounds (limits of integration) is not only always possible but also absolutely re-
quired in every engineering/science application.

The numerical computation of a derivative of higher integer order (order 2 or more)
does involve increasingly more pronounced error. Successive numerical derivatives are
successively more erroneous since a higher order numerical derivative is computed based
on already computed lower order derivative having inherent computational error. Like
entropy, errors go on increasing successively the higher the derivatives we compute.

Under these circumstances, a best way to compute integer order derivatives would be
to use (successive) symbolic derivative computations followed by the numerical derivative
computation at the final step. The successive symbolic computations can be carried out
exactly in Matlab for most (not all) of the analytic functions and/or for a combination of
this functions. The foregoing best way will provide least computational error (for a given
precision of the computer) which is most desired in all forms of computations.

Sometimes the successive integer-order derivative of a non-polynomial function or a
combination of non-polynomial and polynomial functions could result in a much larger
analytical function implying much more numerical computation. In such a case, one may
follow one of the 2 ways viz. the foregoing ”a best way” and the straight-forward (usual)
successive numerical computation way (from the very 1st step) for the given function and
decide one of the ways, that produces less computational error. The computational com-
plexity (cost of computation) issue is mostly a minor/trivial issue in this hyper-computing
(over 1018 floating-point operations per sec) era.

The difficulty of determining symbolic derivative for a long involved function (not being
able to write/automate the symbolic derivative computation for all highly involved/lengthy
analytic functions) is due to the programmers limitations in his comprehension (A common
human being can comprehend 5 to 9 things at a time.) and his programming skill involving
differentiation of a general function. Such limitations may not come into picture for a
person/programmer when he uses the rules of symbolic derivation with sufficient care and
concentration for a specific function or a combination of functions.

However, a mistake, though rare, cannot be ruled out for any living being including
a mathematical/computational prodigy (as to err (mistake) is human (living being) is
eternally true without any exception. In this context, Not to err is computer (non-living
being) may be considered equally true).

For computing a fractional order derivative of a function where the order α = n.f, n
being a positive integer and (.f) the fractional part, successive integer order derivatives
can be obtained as in the foregoing case and then the fractional part (.f) could be com-
puted according to one of the most appropriate definitions such as the Grunwald-Letnikov
definition. Here a generalization procedure that could be considered a straight-forward
extension of the integer order derivatives deserves to be devised/designed for a widely
accepted integration/merger.
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When the function is known as equi-spaced sampled numbers or non-equi-spaced sam-
pled numbers, then the problem of computing derivative is usually completely numerical.
The symbolic derivation successive or not that either physically inflates the function or
deflates the function usually will not figure here.

Numerical input functions. It is possible that we may deal with functions which are
known through tables of numbers. After all, everything has to be in numbers for every
practical/real-world application. The problem of generalization seems to be comparatively
easy (if it is possible) since we may not have to worry too much about a large array of
mathematical functions and their varying properties over the concerned domain. All we
need to worry is about computational error and occasionally computational complexity
subject, however, to continuity/analyticity of the functions.

For the differential equations integer-order as well as fractional order we would get
the solution viz. the function not in terms of a mathematical function but in terms of a
numerical table containing a number of rows, every row consists of values of independent
variables and the corresponding function value. Here too the problem of generalization
appears to be relatively simple. However, the background mathematical knowledge in this
subject area is extremely (sometimes critically) helpful to completely and confidently rely
on the numerical results and the concerned graphs. Blindly/mechanically doing compu-
tations without getting a feel/an understanding about what the numbers are saying (or
giving us message) is unacceptable.

Problems and efforts toward generalization. We have mentioned the various problems
and innovative efforts toward generalization of fractional calculus not only in section 2
(Problems and Efforts), but also in section 1 (Introduction). Section 3 that deals with
fractional ordinary differential equation may be considered as a good effort toward gener-
alization. The pain-staking effort of the author in writing a detailed Matlab program that
works well for ODEs with, of course, restricted fractional order is remarkable. However,
the restriction on the fractional order is an important issue that needs to be sorted out
for a possible usable generalization.

Any system of ODEs can always be written as a system of n 1st order ODEs with n
initial conditions or n 2-point boundary conditions. A general computer (Matlab, say)
program for the system of n 1st order ODEs can always be written [16]. The widely
used Matlab provides such a program for n 1st order ODEs with n initial conditions.
Such a general computer program cannot be written for a system of integer order partial
differential equations (PDEs). Fractional partial differential equations are no exceptions.
However, we are not much concerned with this issue in this context.

Quality and cost of the solution. How do the quality (relative computational error)
and the cost (computational complexity) of the solution of a system of FDEs differ from
that of the equivalent system of integer order differential equations? Which solution will
be better? These questions, though appear to be out of context for generalization, are
still important to support the scope of fractional order systems in calculus and to make it
an integral part of the current calculus that we are taught globally.
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